HYPERREFLEXIVITY AND A DUAL PRODUCT CONSTRUCTION1

BY

DAVID R. LARSON

ABSTRACT. We show that an example of a nonhyperreflexive CSL algebra recently constructed by Davidson and Power is a special case of a general and natural reflexive subspace construction. Completely different techniques of proof are needed because of absence of symmetry. It is proven that if $\mathscr S$ and $\mathscr T$ are reflexive proper linear subspaces of operators acting on a separable Hilbert space, then the hyperreflexivity constant of $(\mathscr S_\perp \otimes \mathscr T_\perp)^\perp$ is at least as great as the product of the constants of $\mathscr S$ and $\mathscr T$.

This paper was inspired by the interesting "key example" in the recent paper [2] by Davidson and Power in which a nonhyperreflexive CSL algebra was constructed. In an attempt to completely understand this result we obtained a distance constant inequality of a more general nature, which we present here.

Let H, K be separable Hilbert spaces—finite or infinite dimensional—and let \mathscr{S} , \mathscr{T} be linear subspaces of L(H), L(K), which are reflexive in the Loginov-Shulman sense. (\mathscr{S} is *reflexive* iff whenever $T \in L(H)$ is such that $Tx \in [Sx]$, $x \in H$, then $T \in \mathscr{S}$, where $[\cdot]$ means closure.) Let $\mathscr{K}(\mathscr{S})$, $\mathscr{K}(\mathscr{T})$ be the constants of hyperreflexivity of \mathscr{S} and \mathscr{T} as defined in [4]. We recall that a subspace \mathscr{S} of L(H) is hyperreflexive if there is a constant C such that for operators T in L(H),

$$d(T, \mathcal{S}) \leq C \sup\{\|P^{\perp}TQ\|: P, Q \text{ are projections with } P^{\perp}\mathcal{S}Q = 0\},$$

and the optimal constant is denoted $\mathscr{K}(\mathscr{S})$. If \mathscr{S} is reflexive but not hyperreflexive, then we define $\mathscr{K}(\mathscr{S}) = +\infty$. We make use of preannihilator techniques, and refer the reader to [1, 4, 5, 7] for details. As shown in [4], the reflexive subspaces of L(H) are precisely those for which the preannihilator in $\mathscr{L}_* \equiv C_1$ is the $\|\cdot\|_1$ -closed linear span of rank $\leqslant 1$ operators, where $\|\cdot\|_1$ denotes trace-class norm. Since \mathscr{S}_{\perp} , \mathscr{T}_{\perp} are generated by rank $\leqslant 1$ operators, so is the tensor product of preannihilators $\mathscr{S}_{\perp} \otimes \mathscr{T}_{\perp}$. By this we mean the $\|\cdot\|_1$ -closed linear subspace of the ideal of trace-class operators on $L(H \otimes K)$ generated by the elementary tensors $\{f \otimes g: f \in \mathscr{S}_{\perp}, g \in \mathscr{T}_{\perp}\}$, where $H \otimes K$ denotes the usual tensor product Hilbert space. (When we write $\mathscr{S} \otimes \mathscr{T}$, we will mean the σ -weakly closed linear subspace of $L(H \otimes K)$ generated by $\{S \otimes T: S \in \mathscr{S}, T \in \mathscr{F}\}$.) Thus the annihilator

$$(\mathscr{S}_{\perp} \otimes \mathscr{T}_{\perp})^{\perp} = \{ A \in L(H \otimes K) : \operatorname{Tr}(Ah) = 0, h \in \mathscr{S}_{\perp} \otimes \mathscr{T}_{\perp} \}$$

Received by the editors April 15, 1985.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 47D25; Secondary 47A15, 46L10.

Key words and phrases. Reflexive operator algebra, hyperreflexive, tensor product, dual product, distance constant, preannihilator.

¹ This work was partially supported by NSF grant MCS-8301740.

¹⁹⁸⁶ American Mathematical Society0002-9947/86 \$1.00 + \$.25 per page

is a reflexive subspace of $L(H \otimes K)$. We will call this the *dual* product of $\mathscr S$ and $\mathscr T$ since it is in a sense dual to the usual tensor product, and will adopt the notation $\mathscr S * \mathscr T = (\mathscr S_\bot \otimes \mathscr T_\bot)^\bot$. We extend this term, and notation, to arbitrary σ -weakly closed subspaces.

For reflexive \mathscr{S} and \mathscr{T} , Theorem 8 states that $\mathscr{S} * \mathscr{T}$ is the smallest reflexive subspace containing $\mathscr{S} \otimes L(K) + L(H) \otimes \mathscr{T}$. In special cases (and perhaps in general) this coincides with the σ -weak closure of $\mathscr{S} \otimes L(K) + L(H) \otimes \mathscr{T}$. This is the case in finite dimensions (Proposition 1).

It is clear that for subspaces \mathscr{S}_i we have $(\mathscr{S}_1 * \mathscr{S}_2) * \mathscr{S}_3 = \mathscr{S}_1 * (\mathscr{S}_2 * \mathscr{S}_3)$ (or rather, equivalence), so we may drop parentheses with no ambiguity. An *n*-fold dual product $\mathscr{S}_1 * \cdots * \mathscr{S}_n$ will have the *n*-fold tensor product $(\mathscr{S}_1)_{\perp} \otimes \cdots \otimes (\mathscr{S}_n)_{\perp}$ as preannihilator.

The main result of this paper, Theorem 9, states that the inequality $\mathcal{K}(\mathcal{S}*\mathcal{T}) \geqslant \mathcal{K}(\mathcal{S})\cdot\mathcal{K}(\mathcal{T})$ always holds for reflexive *proper* subspaces \mathcal{S} , \mathcal{T} . (If either $\mathcal{S}=L(H)$ or $\mathcal{T}=L(K)$, then $\mathcal{S}*\mathcal{T}=L(H\otimes K)$, so the inequality need not hold. These are the only exceptions.)

A special case arises when \mathscr{D} is the algebra of 3×3 diagonal operators acting on a 3-dimensional Hilbert space. Then, since it is known (M. D. Choi, unpublished) that $\mathscr{K}(\mathscr{D}) \geqslant \sqrt{9/8}$, the *n*-fold dual product $\mathscr{D}*\cdots *\mathscr{D}$ has constant $\geqslant (9/8)^{n/2}$. This is seen to be the Davidson-Power example. The subspace $\mathscr{D}*\cdots *\mathscr{D}$ is a bimodule over the *n*-fold tensor product $\mathscr{D}\otimes\cdots\otimes\mathscr{D}$, a m.a.s.a.; hence

$$\begin{pmatrix} \mathscr{D} \otimes \cdots \otimes \mathscr{D} & \mathscr{D} \ast \cdots \ast \mathscr{D} \\ 0 & \mathscr{D} \otimes \cdots \otimes \mathscr{D} \end{pmatrix}$$

is a CSL algebra. It can be shown directly, as in [2], or via duality, as in Theorem 12, that the hyperreflexivity constant for this algebra is at least as great as that of $\mathscr{D}*\cdots*\mathscr{D}$. Theorem 9 can be viewed as a generalization of the induction step in the Davidson-Power construction. Since averaging techniques utilizing symmetry do not apply, proofs are necessarily different. Prior to their example, inequalities of this nature were not suspected.

We note that while \mathcal{D} is an algebra, $\mathcal{D} * \mathcal{D}$ is not. Hence, analysis of multi-dual-products such as $\mathcal{D} * \cdots * \mathcal{D}$ requires reflexive subspace theory. Also, we note that Propositions 1 and 3 are not used in the proofs of our main results, but are given for perspective on these.

The next lemma will be used repeatedly.

LEMMA 0. Let $\mathcal{G} \subseteq L(H)$, $\mathcal{T} \subseteq L(K)$ be linear subspaces. Then $\mathcal{G} * \mathcal{T} \supseteq \mathcal{G} \otimes L(K) + L(H) \otimes \mathcal{T}$.

PROOF. If $f\in\mathcal{S}_{\perp}$, $g\in\mathcal{T}_{\perp}$, then for each $S\in\mathcal{S}$, $T\in\mathcal{T}$, $A\in L(H)$, $B\in L(K)$ we have

$$\operatorname{Tr}[(S \otimes B + A \otimes T)(f \otimes g)] = \operatorname{Tr}[(sf) \otimes (Bg)] + \operatorname{Tr}[(Af) \otimes (Tg)]$$
$$= \operatorname{Tr}(Sf) \cdot \operatorname{Tr}(Bg) + \operatorname{Tr}(Af) \cdot \operatorname{Tr}(Tg) = 0$$

since $\operatorname{Tr}(Sf)=0$ and $\operatorname{Tr}(Tg)=0$. Since the operators $S\otimes B+A\otimes T$ generate $\mathscr{S}\otimes L(K)+L(H)\otimes \mathscr{T}$, and the operators $f\otimes g$ generate $\mathscr{S}_{\perp}\otimes \mathscr{T}_{\perp}=(\mathscr{S}*\mathscr{T})_{\perp}$, we conclude that $(\mathscr{S}*\mathscr{T})_{\perp}\subseteq (\mathscr{S}\otimes L(K)+L(H)\otimes \mathscr{T})_{\perp}$, and hence that $\mathscr{S}\otimes \mathscr{T}\supseteq \mathscr{S}\otimes L(K)+L(H)\otimes \mathscr{T}$. \square

PROPOSITION 1. Let H, K be finite dimensional Hilbert spaces, and let $\mathscr{S} \subseteq L(H)$, $\mathscr{T} \subseteq L(K)$ be linear subspaces. Then $\mathscr{S} * \mathscr{T} = \mathscr{S} \otimes L(K) + L(H) \otimes \mathscr{T}$.

PROOF. Let n_1 , n_2 be the dimensions of H, K, respectively, and let m_1 , m_2 be the vector space dimensions of \mathcal{S} , \mathcal{T} , respectively. Then $\dim(L(H)) = n_1^2$, $\dim(L(K)) = n_2^2$, $\dim(\mathcal{S}_{\perp}) = n_1^2 - m_1$ and $\dim(\mathcal{T}_{\perp}) = n_2^2 - m_2$. So $\dim(\mathcal{S}_{\perp} \otimes \mathcal{T}_{\perp}) = (n_1^2 - m_1)(n_2^2 - m_2)$, and thus

$$\dim(\mathscr{S} \otimes \mathscr{T}) = n_1^2 n_2^2 - (n_1^2 - m_1)(n_2^2 - m_2) = n_1^2 m_2 + m_1 n_2^2 - m_1 m_2.$$

If X, Y are finite dimensional vector spaces over \mathbb{C} , and if $X_1 \subseteq X$, $Y_1 \subseteq Y$ are linear subspaces, then $(X_1 \otimes Y) \cap (X \otimes Y_1) = X_1 \otimes Y_1$. Thus $(\mathscr{S} \otimes L(K)) \cap (L(H) \otimes \mathscr{T}) = \mathscr{S} \otimes \mathscr{T}$. So

$$\dim(\mathscr{S} \otimes L(K) + L(H) \otimes \mathscr{T})$$

$$= \dim(\mathscr{S} \otimes L(K)) + \dim(L(H) \otimes \mathscr{T}) - \dim(\mathscr{S} \otimes \mathscr{T})$$

$$= m_1 n_2^2 + n_1^2 m_2 - m_1 m_2 = \dim(\mathscr{S} * \mathscr{T}).$$

So by Lemma 0 we must have $\mathscr{S} * \mathscr{T} = \mathscr{S} \otimes L(K) + L(H) \otimes \mathscr{T}$. \square

If $\mathscr{A} \subseteq L(H)$ is a reflexive algebra and $T \in L(H)$, the Arveson estimate for the distance from T to \mathscr{A} is $\alpha(T,\mathscr{A}) = \sup\{\|P^{\perp}TP\|: P \in \text{lat }\mathscr{A}\}$. For reflexive subspaces $\mathscr{S} \subseteq L(H)$ the estimate is defined [4] by $\alpha(T,\mathscr{S}) = \sup\{\|P^{\perp}TQ\|: P, Q$ are projections with $P^{\perp}\mathscr{S}Q = 0\}$. This agrees with the " PTP^{\perp} " formula when $I \in \mathscr{S}$. There is a "projection free" characterization of this estimate which proves useful. Let $d(\cdot, \cdot)$ denote distance.

LEMMA 2. Let $\mathscr{G} \subseteq L(H)$ be a reflexive subspace. Then $\alpha(T, \mathscr{G}) = \sup\{d(Tx, \mathscr{G}x): x \in H, ||x|| = 1\}, T \in L(H).$

PROOF. We have $d(Tx, \mathcal{S}x) = ||P^{\perp}Tx||$, where P is the orthogonal projection onto $[\mathcal{S}x]$. Let ||x|| = 1 and let Q be the projection onto $\mathbb{C}x$. Then $||P^{\perp}Tx|| = ||P^{\perp}TQ||$. Since $P^{\perp}\mathcal{S}Q = 0$, the inequality " \geqslant " follows.

Conversely, suppose P, Q are projections with $P^{\perp}\mathcal{S}Q = 0$. Let $\varepsilon > 0$ be given, and choose $x \in QH$, ||x|| = 1, such that $||P^{\perp}Tx|| \ge ||P^{\perp}TQ|| - \varepsilon$. Then

$$d(Tx, \mathcal{S}x) \geqslant d(Tx, PH) = ||P^{\perp}Tx|| \geqslant ||P^{\perp}TQ|| - \varepsilon.$$

Since ε was arbitrary, we have $||P^{\perp}TQ|| \le \sup\{d(T, \mathcal{S}x): x \in H, ||x|| = 1\}$. Taking the supremum over all pairs $\{P,Q\}$ with $P^{\perp}\mathcal{S}Q = 0$ completes the proof. \square

Lemma 2 points out that only cyclic projections P need be considered in distance estimate computations. Also, taking this as the definition permits natural extension of the concept to general normed linear spaces.

If $\mathscr{S} \neq L(H)$ is reflexive and $T \notin \mathscr{S}$, we write $\mathscr{K}(T, \mathscr{S}) = d(T, \mathscr{S})/\alpha(T, \mathscr{S})$. So $\mathscr{K}(\mathscr{S}) = \sup \{ \mathscr{K}(T, \mathscr{S}) \colon T \in L(H), T \notin \mathscr{S} \}$. By convention $\mathscr{K}(L(H)) = 1$. \mathscr{S} is hyperreflexive if $\mathscr{K}(\mathscr{S}) < \infty$, and is nonhyperreflexive otherwise.

We first give an initial generalization of the Davidson-Power induction step in which use is made of symmetry. The proof is more direct than that of our general result, so is included for perspective.

PROPOSITION 3. Let \mathcal{S} be a reflexive subspace of L(H), with $\mathcal{S} \neq L(H)$. Let

$$\tilde{\mathcal{S}} = \begin{pmatrix} * & \mathcal{S} & \mathcal{S} \\ \mathcal{S} & * & \mathcal{S} \\ \mathcal{S} & \mathcal{S} & * \end{pmatrix}$$

be the subspace of all 3×3 operator matrices with diagonal elements arbitrary and off-diagonal elements in \mathscr{S} . Then $\mathscr{K}(\tilde{\mathscr{S}}) \geqslant \sqrt{9/8} \cdot \mathscr{K}(\mathscr{S})$.

PROOF. First, suppose $\mathscr{K}(\mathscr{S})$ is finite. Fix $\varepsilon > 0$. Choose $T \in L(H)$ for which $\mathscr{K}(T,\mathscr{S}) \geqslant \mathscr{K}(\mathscr{S}) - \varepsilon$. Let

$$\tilde{T} = \begin{pmatrix} T & T & T \\ T & T & T \\ T & T & T \end{pmatrix}.$$

The averaging technique used in the proof of Theorem 1.1 in [2] yields without modification that $d(\tilde{T}, \tilde{\mathscr{S}}) = \frac{3}{2} \cdot d(T, \mathscr{S})$. We need only show that $\alpha(\tilde{T}, \tilde{\mathscr{S}}) \leq \sqrt{2} \alpha(T, \mathscr{S})$, for then

$$\mathcal{K}(\tilde{\mathcal{S}}) \geqslant \mathcal{K}(\tilde{T}, \tilde{\mathcal{S}}) \geqslant \sqrt{9/8} \mathcal{K}(T, \mathcal{S}) > \sqrt{9/8} (\mathcal{K}(\mathcal{S}) - \varepsilon),$$

and since ε was arbitrary the desired inequality would follow.

To show that $\alpha(\tilde{T}, \tilde{\mathscr{S}}) \leq \sqrt{2} \alpha(T, \mathscr{S})$, it is useful to use Lemma 2. Let

$$\tilde{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

be an arbitrary unit vector in $H \otimes H_3$. Then

$$\tilde{T}\tilde{x} = \begin{pmatrix} Tz \\ Tz \\ Tz \end{pmatrix},$$

where $z = x_1 + x_2 + x_3$. Descriptively, we have

$$\tilde{\mathcal{S}}\tilde{x} = \begin{pmatrix} * & \mathcal{S} & \mathcal{S} \\ \mathcal{S} & * & \mathcal{S} \\ \mathcal{S} & \mathcal{S} & * \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} L(H)x_1 + \mathcal{S}x_2 + \mathcal{S}x_3 \\ \mathcal{S}x_1 + L(H)x_2 + \mathcal{S}x_3 \\ \mathcal{S}x_1 + \mathcal{S}x_2 + L(H)x_3 \end{pmatrix}.$$

We consider three cases:

- (1) If neither x_1 , x_2 nor $x_3 = 0$, then $\tilde{\mathscr{S}}\tilde{x} = H \otimes H_3$, so $d(\tilde{T}\tilde{x}, \tilde{\mathscr{S}}\tilde{x}) = 0$.
- (2) If precisely one of x_1, x_2, x_3 is 0, then without loss of generality we may assume $x_1 = 0$ by noting that $\tilde{\mathcal{S}}$ is invariant under the group of unitary transformations corresponding to permutation of basis vectors in H_3 . We have $z = x_2 + x_3$, and

$$\tilde{\mathcal{S}}\tilde{x} = \begin{pmatrix} \mathcal{S}x_2 + \mathcal{S}x_3 \\ L(H) \\ L(H) \end{pmatrix},$$

so

$$d(\tilde{T}\tilde{x}, \tilde{\mathscr{S}}\tilde{x}) = d(Tz, \mathscr{S}x_2 + \mathscr{S}x_3) \leqslant d(Tz, \mathscr{S}z).$$

We have $||z|| \le \sqrt{2}$. If z = 0, then $d(\tilde{T}\tilde{x}, \tilde{\mathscr{S}}\tilde{x}) = 0$. If $z \ne 0$, let w = z/||z||. Then $d(\tilde{T}\tilde{x}, \tilde{\mathscr{S}}\tilde{x}) \le \sqrt{2} d(Tw, \mathscr{S}w) \le \sqrt{2} \alpha(T, S),$

as desired.

(3) If precisely two of x_1, x_2, x_3 are 0, via permutation as above, we may assume $x_1 = x_2 = 0$. Then $z = x_3$, so ||z|| = 1. We have

$$\tilde{\mathscr{S}}\tilde{x} = \begin{pmatrix} \mathscr{S}_{\mathcal{Z}} \\ \mathscr{S}_{\mathcal{Z}} \\ L(H) \end{pmatrix},$$

so

$$d(\tilde{T}\tilde{x}, \tilde{\mathscr{S}}\tilde{x}) = \sqrt{2} d(Tz, \mathscr{S}z) \leqslant \sqrt{2} \alpha(T, \mathscr{S}).$$

Now from cases (1)–(3) we have

$$\alpha(\tilde{T}, \tilde{\mathscr{S}}) = \sup \left\{ d(\tilde{T}\tilde{x}, \tilde{\mathscr{S}}\tilde{x}) \colon \tilde{x} \in H \otimes H_3, \|\tilde{x}\| = 1 \right\}$$

$$\leq \sqrt{2} \alpha(T, \mathscr{S}),$$

as required. For the case $\mathscr{K}(\mathscr{S}) = \infty$, let $n \ge 1$ be arbitrary and choose T with $\mathscr{K}(T,\mathscr{S}) \ge n$. The same argument as above shows that $\mathscr{K}(\tilde{T},\tilde{\mathscr{S}}) \ge \sqrt{9/8} n$. Hence $\mathscr{K}(\tilde{\mathscr{S}}) = +\infty$. \square

A simple duality computation shows that the preannihilator of $\tilde{\mathscr{S}}$ in Proposition 3 has the form

$$\tilde{\mathcal{S}}_{\perp} = \begin{pmatrix} 0 & \mathcal{S}_{\perp} & \mathcal{S}_{\perp} \\ \mathcal{S}_{\perp} & 0 & \mathcal{S}_{\perp} \\ \mathcal{S}_{\perp} & \mathcal{S}_{\perp} & 0 \end{pmatrix},$$

where \mathscr{S}_{\perp} is the preannihilator of \mathscr{S} . The preannihilator of \mathscr{D}_3 has the form

$$\begin{pmatrix} 0 & * & * \\ * & 0 & * \\ * & * & 0 \end{pmatrix},$$

so $\tilde{\mathscr{S}}_{\perp} = \mathscr{S}_{\perp} \otimes (\mathscr{D}_3)_{\perp}$, and hence $\tilde{\mathscr{S}} = (\mathscr{S}_{\perp} \otimes (\mathscr{D}_3)_{\perp})^{\perp} = \mathscr{S} * \mathscr{D}_3$. This suggests that a generalization is possible. The next proposition is used in place of an averaging technique.

PROPOSITION 4. Let $\mathscr{S} \subseteq L(H)$, $\mathscr{T} \subseteq L(K)$ be σ -weakly closed subspaces. If $A \in L(H)$ and $B \in L(K)$ are arbitrary, then $d(A \otimes B, \mathscr{S} * \mathscr{T}) = d(A, \mathscr{S}) \cdot d(B, \mathscr{T})$.

PROOF. Let $\mathscr{R} = \mathscr{S} \otimes L(K) + L(H) \otimes \mathscr{T}$. By Lemma 0 we have $\mathscr{R} \subseteq \mathscr{S} * \mathscr{T}$, so for each $S \in \mathscr{S}$ and $T \in \mathscr{T}$ we have $(A - S) \otimes (B - T) - A \otimes B \in \mathscr{R} \subseteq \mathscr{S} * \mathscr{T}$. Thus

$$d(A \otimes B, \mathcal{S} * \mathcal{T}) = d((A - S) \otimes (B - T), \mathcal{S} * \mathcal{T}) \leq ||A - S|| \cdot ||B - T||.$$
 It follows that $d(A \otimes B, \mathcal{S} * \mathcal{T}) \leq d(A, \mathcal{S}) \cdot d(B, \mathcal{T}).$

For the reverse inequality, let $\varepsilon > 0$ be given and choose $f \in \mathcal{S}_{\perp}$, $g \in \mathcal{T}_{\perp}$ with $||f||_1 = ||g||_1 = 1$, such that $\operatorname{Tr}(Af) > d(A, \mathcal{S}) - \varepsilon$, and $\operatorname{Tr}(Bg) > d(B, \mathcal{T}) - \varepsilon$. Let $h = f \otimes g$. We have

$$|\operatorname{Tr}[(A \otimes B)h]| = |\operatorname{Tr}(Af \otimes Bg)| = |\operatorname{Tr}(Af)| \cdot |\operatorname{Tr}(Bg)|$$
$$> (d(A, \mathcal{S}) - \varepsilon) \cdot (d(B, \mathcal{T}) - \varepsilon).$$

Since h is a norm -1 operator in $\mathscr{S}_{\perp} \otimes \mathscr{T}_{\perp}$, and this is the preannihilator of $\mathscr{S} * \mathscr{T}$ by definition, this implies that $d(A \otimes B, \mathscr{S} * \mathscr{T}) > (d(A, \mathscr{S}) - \varepsilon) \cdot (d(B, \mathscr{T}) - \varepsilon)$. Since ε was arbitrary, the proof is complete. \square

LEMMA 5. Let $\mathcal{S} \subseteq L(H)$ be a linear subspace, and let x be a vector in $H \otimes K$. Let F be the smallest projection in L(H) such that $(F \otimes I)x = x$. Let P be the orthogonal projection onto $[\mathcal{S} \cap F]$. Then $P \otimes I$ is the orthogonal projection onto $[\mathcal{S} \cap F]$.

PROOF. Let $\{e_1, e_2, \dots\}$ be any orthonormal basis for K. Then there is a sequence $\{x_i\}$ of vectors in H with $\sum ||x_i||^2 = ||x||^2$ such that $x = \sum x_i \otimes e_i$. Let E_i be the projection onto $\mathbb{C}e_i$. If $S \in \mathcal{S}$, $T \in L(K)$, then $(S \otimes TE_i)x = Sx_i \otimes Te_i$. Hence $[(\mathcal{S} \otimes L(K))x]$ contains all vectors of the form $Sx_i \otimes y$ for arbitrary $S \in \mathcal{S}$, $y \in K$, for each i. Let F' be the projection onto the closed span of vectors $\{x_i: i = 1, 2, \dots\}$. Then $F' \geqslant F$, and we have

$$[(\mathscr{S} \otimes L(K))x] \supseteq [\mathscr{S}F'H] \otimes K \supseteq [\mathscr{S}FH] \otimes K$$
$$= [(\mathscr{S} \otimes L(K))(FH \otimes K)] \supseteq [(\mathscr{S} \otimes L(K))x],$$

so

$$[(\mathscr{S} \otimes L(K))_X] = [\mathscr{S}FH] \otimes K = (P \otimes I)(H \otimes K). \quad \Box$$

LEMMA 6. Let H be a Hilbert space, let $\mathcal{S} \subseteq L(H)$ be a linear subspace, and let $h \in \mathcal{S}_{\perp}$ be a rank-1 operator. Then hP = 0, where P is the orthogonal projection onto $[\mathcal{S}hH]$.

PROOF. Write $h = v \otimes u$, where u, v are vectors such that hw = (w, v)u, $w \in H$. Then $[\mathscr{S}hH] = [\mathscr{S}u]$. If $S \in \mathscr{S}$ we have 0 = Tr(Sh) = (Su, v), so $[\mathscr{S}u] \perp v$; hence Pv = 0. Then $hP = (Pv) \otimes u = 0$. \square

LEMMA 7. Let $\mathcal{S} \subseteq L(H)$, $\mathcal{T} \subseteq L(K)$ be linear subspaces, and let $\mathcal{R} = \mathcal{S} \otimes L(K) + L(H) \otimes \mathcal{T}$. Let $x \in H \otimes K$. Let $F \in L(H)$, $E \in L(K)$ be the smallest projections such that $F \otimes I$ and $I \otimes E$ contain x in their range, and let P be the projection onto $[\mathcal{S}FH]$ and Q the projection onto $[\mathcal{T}EK]$. The projection onto $[\mathcal{R}x]$ is then $(P^{\perp} \otimes Q^{\perp})^{\perp}$.

PROOF. We have $[\Re x] = [(\mathscr{S} \otimes L(K))x] \vee [(L(H) \otimes \mathscr{T})x]$. By Lemma 5, the projections onto $[(\mathscr{S} \otimes L(K))x]$ and $[(L(H) \otimes \mathscr{T})x]$ are $P \otimes I$ and $I \otimes Q$, respectively. The projection onto $[\Re x]$ is then $(P \otimes I) \vee (I \otimes Q)$, and since $P \otimes I$ and $I \otimes Q$ commute this reduces to $P \otimes I + I \otimes Q - P \otimes Q$. The orthogonal complement is then

$$I \otimes I - P \otimes I - I \otimes Q + P \otimes Q = P^{\perp} \otimes I - P^{\perp} \otimes Q = P^{\perp} \otimes Q^{\perp},$$
 so proj $[\mathcal{R}x] = (P^{\perp} \otimes Q^{\perp})^{\perp}$. \square

If $\mathscr S$ is a linear subspace of L(H), we adopt the notation $\operatorname{ref}(\mathscr S)$ to mean the smallest reflexive subspace of L(H) containing $\mathscr S$. Thus $\operatorname{ref}(\mathscr S)=\{T\in L(H)\colon Tx\in [\mathscr Sx], x\in H\}$.

THEOREM 8. Let $\mathcal{S} \subseteq L(H)$, $\mathcal{T} \subseteq L(K)$ be reflexive subspaces. Then $\mathcal{S} * \mathcal{T}$ is the smallest reflexive subspace containing $\mathcal{S} \otimes L(K) + L(H) \otimes \mathcal{T}$.

PROOF. Let $\mathscr{R} = \mathscr{S} \otimes L(K) + L(H) \otimes \mathscr{T}$, and let $\hat{\mathscr{R}} = \operatorname{ref}(\mathscr{R})$. By definition, \mathscr{R} and $\hat{\mathscr{R}}$ have the same closed cyclic subspaces. Since $\mathscr{S} * \mathscr{T}$ is reflexive and contains \mathscr{R} it contains $\hat{\mathscr{R}}$. To show equality, it will suffice to show that every rank-1 operator in $\hat{\mathscr{R}}_{\perp}$ is in $(\mathscr{S} * \mathscr{T})_{\perp} = \mathscr{S}_{\perp} \otimes \mathscr{T}_{\perp}$. Let h be a rank-1 operator in \mathscr{R}_{\perp} , and let x be a nonzero vector in the range of h. By Lemma 6, $h = hG^{\perp}$, where G is the projection onto $[\hat{\mathscr{R}}x] = [\mathscr{R}x]$. Let $F \in L(H)$, $E \in L(K)$ be the smallest projections such that $(F \otimes I)x = x = (I \otimes E)x$, and let $P = \operatorname{proj}[\mathscr{S}FH]$, $Q = \operatorname{proj}[\mathscr{T}EK]$. Then by Lemma 7, $G^{\perp} = P^{\perp} \otimes Q^{\perp}$. We have $(F \otimes E)x = x$; hence

$$h = (F \otimes E)h = (F \otimes E)h(P^{\perp} \otimes Q^{\perp}) \in (F \otimes E)(\mathscr{L}_{*}(H \otimes K))(P^{\perp} \otimes Q^{\perp}),$$

where $\mathscr{L}_*(H \otimes K)$ denotes the ideal of trace-class operators on $H \otimes K$. Since $\mathscr{L}_*(H \otimes K)$ is the trace-class norm closed span of elementary tensors $\{f \otimes g: f \in \mathscr{L}_*(H), g \in \mathscr{L}_*(K)\}$, the space $(F \otimes E)(\mathscr{L}_*(H \otimes K))(P^{\perp} \otimes Q^{\perp})$ is the closed span of elementary tensors $\{(FfP^{\perp}) \otimes (EgQ^{\perp}): f \in \mathscr{L}_*(H), g \in \mathscr{L}_*(K)\}$.

But for f arbitrary and $S \in \mathscr{S}$ we have $\operatorname{Tr}(SFfP^{\perp}) = \operatorname{Tr}(P^{\perp}SFf) = 0$ since $P^{\perp}\mathscr{S}F = 0$. So $FfP^{\perp} \in S_{\perp}$. Similarly, $EgQ^{\perp} \in \mathscr{T}_{\perp}$ for all $g \in \mathscr{L}_{*}(K)$. So each $(FfP^{\perp}) \otimes (EgQ^{\perp}) \in \mathscr{S}_{\perp} \otimes \mathscr{T}_{\perp}$, and hence $h \in \mathscr{S}_{\perp} \otimes \mathscr{T}_{\perp}$. \square

Theorem 9. Let $\mathcal{S} \subseteq L(H)$, $\mathcal{T} \subseteq L(K)$ be reflexive proper subspaces. Then $\mathcal{K}(\mathcal{S} * \mathcal{T}) \geqslant \mathcal{K}(\mathcal{S}) \cdot \mathcal{K}(\mathcal{T})$.

PROOF. Let $A \in L(H)$, $B \in L(K)$ be arbitrary. By Proposition 4 we have $d(A \otimes B, \mathcal{S} * \mathcal{T}) = d(A, \mathcal{S}) \cdot d(B, \mathcal{T})$. We will show that in general $\alpha(A \otimes B, \mathcal{S} * \mathcal{T}) \leq \alpha(A, \mathcal{S}) \cdot \alpha(B, \mathcal{T})$, and hence if $A \notin \mathcal{S}$ and $B \notin \mathcal{T}$ then $\mathcal{K}(A \otimes B, \mathcal{S} * \mathcal{T}) \geq \mathcal{K}(A, \mathcal{S}) \cdot \mathcal{K}(B, \mathcal{T})$. Taking of suprema over all such A, B then yields $K(\mathcal{S} * \mathcal{T}) \geq \mathcal{K}(\mathcal{S}) \cdot \mathcal{K}(\mathcal{S})$, since by hypothesis $\mathcal{S} \neq L(H)$ and $\mathcal{T} \neq L(K)$.

We utilize Lemma 2. Let x be a unit vector in $H \otimes K$. Let $\mathscr{R} = \mathscr{S} \otimes L(K) + L(H) \otimes \mathscr{T}$. By Theorem 8, $\mathscr{S} * \mathscr{T} = \operatorname{ref}(\mathscr{R})$, so $\mathscr{S} * \mathscr{T}$ and \mathscr{R} have the same cyclic subspaces. As in the proof of Theorem 8, let G be the projection onto $[\mathscr{R}x] = [(\mathscr{S} * \mathscr{T})x]$, and let $F \in L(H)$, $E \in L(K)$ be the smallest projections such that $(F \otimes I)x = (I \otimes E)x$. Let $P = \operatorname{proj}[\mathscr{S}FH]$, $Q = \operatorname{proj}[\mathscr{T}EK]$. By Lemma 7, $G = (P^{\perp} \otimes Q^{\perp})^{\perp}$. Since $(F \otimes E)x = x$ we have

$$d[(A \otimes B)x, (\mathscr{S} * \mathscr{T})x] = ||G^{\perp}(A \otimes B)x|| = ||(P^{\perp} \otimes Q^{\perp})(A \otimes B)(F \otimes E)x||$$
$$= ||((P^{\perp}AF) \otimes (Q^{\perp}BE))x|| \leq ||P^{\perp}AF|| \cdot ||Q^{\perp}BE|| \leq \alpha(A, \mathscr{S}) \cdot \alpha(B, \mathscr{T})$$

since $P^{\perp} \mathcal{S} F = 0$ and $Q^{\perp} \mathcal{T} E = 0$.

Since x was an arbitrary unit vector, we have

$$\alpha(A \otimes B, \mathcal{S} * \mathcal{T}) \leq \alpha(A, \mathcal{S}) \cdot \alpha(B, \mathcal{T})$$
, as required. \square

The proof of Theorem 9 can be improved slightly to show that for arbitrary $A \in L(H)$, $B \in L(K)$ the inequality $\alpha(A \otimes B, \mathcal{S} * \mathcal{T}) \leq \alpha(A, \mathcal{S}) \cdot \alpha(B, \mathcal{T})$ is in fact an equality. We capture this fact.

COROLLARY 10. Let $\mathcal{S} \subseteq L(H)$ and $\mathcal{T} \subseteq L(K)$ be reflexive subspaces, and let $A \in L(H)$, $B \in L(K)$ be arbitrary. Then $\alpha(A \otimes B, \mathcal{S} * \mathcal{T}) = \alpha(A, \mathcal{S}) \cdot \alpha(B, \mathcal{T})$.

PROOF. The inequality " \leqslant " is contained in the proof of Theorem 9. For the converse, let F, $P \in L(H)$ and E, $Q \in L(K)$ be arbitrary projections satisfying $P^{\perp} \mathscr{S} F = 0$ and $Q^{\perp} \mathscr{T} E = 0$. Then if $\mathscr{R} = \mathscr{S} \otimes L(K) + L(H) \otimes \mathscr{T}$, we have $(P^{\perp} \otimes Q^{\perp}) \mathscr{R} (F \otimes E) = 0$, so since $\mathscr{S} * \mathscr{T} = \operatorname{ref}(\mathscr{R})$ by Theorem 8, we have $(P^{\perp} \otimes Q^{\perp}) (\mathscr{S} * \mathscr{T}) (F \otimes E) = 0$. Since $||(P^{\perp} \otimes Q^{\perp}) (A \otimes B) (F \otimes E)|| = ||P^{\perp} A F|| \cdot ||Q^{\perp} B E||$, we have

$$\alpha(A \otimes B, \mathcal{S} * \mathcal{T}) = \sup \{ \| L(A \otimes B) M \| : L, M \text{ are projections}$$
 in $L(H \otimes K)$ with $L(\mathcal{S} \otimes \mathcal{T}) M = 0 \}$
$$\geqslant \| P^{\perp} A F \| \cdot \| Q^{\perp} B E \|.$$

So since P, F, Q, E were arbitrary, we conclude that $\alpha(A \otimes B, \mathcal{S} * \mathcal{T}) \geqslant \alpha(A, \mathcal{S}) \cdot \alpha(B, \mathcal{T})$. Finally, we note that equality is trivially true if either $\mathcal{S} = L(H)$ or $\mathcal{T} = L(K)$. \square

From Corollary 10 and Proposition 4 we conclude that $\mathcal{K}(A \otimes B, \mathcal{S} * \mathcal{T}) = \mathcal{K}(A, \mathcal{S}) \cdot \mathcal{K}(B, \mathcal{T})$ whenever \mathcal{S} , \mathcal{T} are reflexive proper subspaces with $A \notin \mathcal{S}$, $B \notin \mathcal{T}$. That is, the basic inequality is an equality when restricted to the class of elementary tensors. It can happen, however, that for some operator $T \in L(H \otimes K)$, which is not an elementary tensor, we have $\mathcal{K}(T, \mathcal{S} * \mathcal{T}) > \mathcal{K}(\mathcal{S}) \cdot \mathcal{K}(\mathcal{T})$, and thus the inequality in Theorem 9 may be strict. The following simple example shows this.

Example 11. Let

$$S = \begin{pmatrix} * & 0 \\ 0 & 0 \end{pmatrix} = \left\{ \begin{pmatrix} \lambda & 0 \\ 0 & 0 \end{pmatrix} : \lambda \in \mathbf{C} \right\}$$

be regarded as a subspace of operators acting on 2-dimensional Hilbert space. An elementary computation shows that S is reflexive. An application of [6, Lemma 3.3] after interchanging rows, and either [4, Proposition 3 or 5, Theorems 1.1 or 1.2] to the preannihilator

$$S_{\perp} = \begin{pmatrix} 0 & * \\ * & * \end{pmatrix},$$

shows that $\mathcal{K}(S) = 1$. Since

$$\mathcal{S}_{\perp} \otimes \mathcal{S}_{\perp} = \begin{pmatrix} 0 & 0 & 0 & * \\ 0 & 0 & * & * \\ 0 & * & 0 & * \\ * & * & * & * \end{pmatrix}$$

we have

$$S * S = \begin{pmatrix} * & * & * & 0 \\ * & * & 0 & 0 \\ * & 0 & * & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

acting on 4-dimensional Hilbert space. Let

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Then $P(S * S) \subseteq S * S$, and thus by [5, Lemma 1.3] the compression $P(S * S)|_{PH}$ is reflexive with hyperreflexivity constant no greater than that of S * S. But this compression has diagram

$$\begin{pmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

and by [5, Example 4.7] this has constant $\geqslant \sqrt{9/8}$. Thus $\mathcal{K}(S * S) \geqslant \sqrt{9/8} > 1 = \mathcal{K}(S) \cdot \mathcal{K}(S)$. So in this case the inequality of Theorem 9 is strict. \square

Theorem 12. Let n be a positive integer, and for $1 \le i \le n$ let \mathscr{A}_i be a reflexive proper subalgebra of $L(H_i)$ for H_i a separable Hilbert space. Suppose the tensor product $\mathscr{A}_1 \otimes \cdots \otimes \mathscr{A}_n$, acting on $H = H_1 \otimes \cdots \otimes H_n$, is reflexive. Let

$$\mathscr{A} = \begin{pmatrix} \mathscr{A}_1 \otimes \cdots \otimes \mathscr{A}_n & \mathscr{A}_1 * \cdots * \mathscr{A}_n \\ 0 & \mathscr{A}_1 \otimes \cdots \otimes \mathscr{A}_n \end{pmatrix}.$$

Then \mathscr{A} is a reflexive subalgebra of $L(H \otimes H)$, and $\mathscr{K}(\mathscr{A}) \geqslant \mathscr{K}(\mathscr{A}_1) \cdot \mathscr{K}(\mathscr{A}_2) \cdot \cdot \cdot \mathscr{K}(\mathscr{A}_n)$.

PROOF. \mathscr{A} is an algebra since $\mathscr{A}_1 * \cdots * \mathscr{A}_n$ is a bimodule over $\mathscr{A}_1 \otimes \cdots \otimes \mathscr{A}_n$. A simple calculation shows that

$$\mathscr{A}_{\perp} = \begin{pmatrix} (\mathscr{A}_1 \otimes \cdots \otimes \mathscr{A}_n)_{\perp} & L_{\ast}(H) \\ (\mathscr{A}_1 \ast \cdots \ast \mathscr{A}_n)_{\perp} & (\mathscr{A}_1 \otimes \cdots \otimes \mathscr{A}_n)_{\perp} \end{pmatrix}.$$

Since $\mathscr{A}_1 \otimes \cdots \otimes \mathscr{A}_n$ is reflexive, $(\mathscr{A}_1 \otimes \cdots \otimes \mathscr{A}_n)_{\perp}$ is generated by rank-1 operators. Since $\mathscr{A}_1 \cdots \mathscr{A}_n$ are reflexive, $(\mathscr{A}_1 * \cdots * \mathscr{A}_n)_{\perp} = (\mathscr{A}_1)_{\perp} \otimes \cdots \otimes (\mathscr{A}_n)_{\perp}$ is also generated by rank-1 operators. Hence \mathscr{A}_{\perp} is generated by rank-1 operators, so \mathscr{A} is reflexive.

To show $\mathcal{K}(\mathcal{A}) \geqslant \mathcal{K}(\mathcal{A}_1) \cdots \mathcal{K}(\mathcal{A}_n)$ we utilize [4, Proposition 3]. Let P be the orthogonal projection from $H \oplus H$ onto H. Let $S = \mathcal{A}_1 * \cdots * \mathcal{A}_n$. By Theorem 9, $\mathcal{K}(S) \geqslant \mathcal{K}(\mathcal{A}_1) \cdots \mathcal{K}(\mathcal{A}_n)$. Let $\mathcal{C}_1(\mathcal{A})$, $\mathcal{C}_1(S)$ denote the closed convex hulls of the rank $\leqslant 1$ operators in the unit balls of \mathcal{A}_{\perp} , S, respectively. Then clearly

$$P^{\perp} \mathcal{C}_1(\mathcal{A}) P = \begin{pmatrix} 0 & 0 \\ \mathcal{C}_1(S) & 0 \end{pmatrix}.$$

Let $R(\mathscr{A})$, R(S) be the largest radii such that $\{f \in \mathscr{A}_{\perp} : \|f\|_1 \leq R(\mathscr{A})\} \subseteq \mathscr{C}_1(\mathscr{A})$ and $\{g \in S_{\perp} : \|g\|_1 \leq R(S)\} \subseteq \mathscr{C}_1(S)$. It follows that $R(\mathscr{A}) \leq R(S)$. By [4, Proposition 3] we have $\mathscr{K}(\mathscr{A}) = 1/R(\mathscr{A})$ and $\mathscr{K}(S) = 1/R(S)$, so $\mathscr{K}(\mathscr{A}) \geq \mathscr{K}(S)$, as required. \square

REMARKS. The requirement that $\mathscr{A}_1 \otimes \cdots \otimes \mathscr{A}_n$ be reflexive will be met if each \mathscr{A}_i is finite dimensional, and more generally, if each \mathscr{A}_i has property S_σ (Kraus [3]). (It is, of course, an open question whether the tensor product of reflexive algebras is necessarily reflexive.) As in the special case of the "key example" in [2], Theorem 12 gives a means of constructing reflexive algebras of arbitrarily large distance constant. If each \mathscr{A}_i is a CSL algebra and so contains a m.a.s.a., then \mathscr{A} will also contain a m.a.s.a., so will be a CSL algebra. A direct sum of such algebras, with increasing constants, will be nonhyperreflexive.

REFERENCES

- 1. W. Arveson, Ten lectures on operator algebras, CBMS Regional Conf. Ser. in Math., No. 55, Amer. Math. Soc., Providence, R.I., 1984.
 - 2.K. Davidson and S. Power, Failure of the distance formula, preprint.
 - 3. J. Kraus, Tensor products of reflexive algebras, J. London Math. Soc. (2) 28 (1983), 350-358.
- 4. J. Kraus and D. Larson, Some applications of a technique for constructing reflexive operator algebras, J. Operator Theory 13 (1985), 227–236.
 - 5. _____, Reflexivitty and distance formulae, Proc. London Math. Soc. (to appear).
- 6. E. C. Lance, Cohomology and perturbations of nest algebras, Proc. London Math. Soc. 43 (1981), 334–356.
- 7. D. Larson, Annihilators of operators algebras, Topics in Modern Operator Theory, vol. 6, Birkhauser, Basel, 1982, pp. 119-130.

Department of Mathematics and Statistics, University of Nebraska, Lincoln, Nebraska 68588