SPHERICAL POLYNOMIALS AND THE PERIODS OF A CERTAIN MODULAR FORM

BY

DAVID KRAMER

ABSTRACT. The space of cusp forms on $\mathrm{SL}_2(\mathbf{Z})$ of weight 2k is spanned by certain modular forms with rational periods.

Kohnen and Zagier [5] have investigated those modular forms on $SL_2(\mathbf{Z})$ whose periods (in the sense of Eichler-Shimura) are rational. As an example they consider the function

$$f_{k,D}(z) = C \sum_{(a,b,c)} \frac{1}{(az^2 + bz + c)^k}$$

where D is a positive integer, k an integer greater than one, C a constant, and the summation over all triples of integers (a, b, c) with $b^2 - 4ac = D$. This function was introduced by Zagier in [13], where it was shown to be a cusp form of weight 2k on $SL_2(\mathbb{Z})$, and was later shown by Kohnen [4] to be the Dth Fourier coefficient of the holomorphic kernel function for the Shimura-Shintani correspondence between modular forms of half-integral and integral weight. In [6] it is shown that the $f_{k,D}$ span S_{2k} , the space of cusp forms on $SL_2(\mathbb{Z})$ of weight 2k, if and only if L(f,k), the L-series associated to the modular form f, does not vanish at s = k, the center of the critical strip, for every Hecke eigenform f. It is at present only a conjecture, supported by some numerical evidence, that the $f_{k,D}$ span S_{2k} for all even k (for k odd, $f_{k,D} = 0$). We study the related functions $f_{k,D,A}(z)$ where now the summation is restricted to quadratic forms (a, b, c) belonging to the $SL_2(\mathbb{Z})$ equivalence class A. We prove that certain finite sets of the $f_{k,D,A}$ span S_{2k} . The method of proof relies on the special structure of certain ideal classes and does not indicate how the conjecture that the $f_{k,D}$ span S_{2k} might be settled.

A similar result for modular forms on an arbitrary discrete cocompact subgroup of $SL_2(\mathbf{R})$ has been obtained by Svetlana Katok [3].

Let \mathscr{A} be the set of all narrow equivalence classes of primitive binary quadratic forms of positive discriminant. Throughout k will denote a positive integer, and we set w = 2k - 2. Let A be an $SL_2(\mathbb{Z})$ equivalence class of quadratic forms. We define the following classes associated to A:

$$\theta A = \{(-c, -b, -a) | (a, b, c) \in A\}, \quad A' = \{(a, -b, c) | (a, b, c) \in A\}.$$

Received by the editors May 1, 1985.

1980 Mathematics Subject Classification (1985 Revision). Primary 11F11, 11F12; Secondary 11C08.

Let P_k denote the C-vector space of homogeneous polynomials in two variables of degree w. For an equivalence class $A \in \mathcal{A}$ of forms of discriminant D, let

$$P_{k,D,A}(x,y) = \sum_{Q \in A} Q(x,y)^{k-1},$$

with the summation over the reduced forms of A (a binary quadratic form $Q(x, y) = ax^2 + bxy + cy^2$ is reduced if a > 0, c > 0, b > a + c), and then set

$$P_{k,D,A}^{\pm} = P_{k,D,A} \pm P_{k,D,\theta A}.$$

We shall study the span in P_k of $P_{k,D,A}^{\pm}$, $A \in \mathcal{A}$, and prove a theorem about the space of modular forms on $SL_2(\mathbf{Z})$ of weight 2k.

DEFINITION 1. A polynomial $\pi(a, b, c)$ is called *spherical* with respect to $b^2 - 4ac$ if it satisfies

$$\left(\frac{\partial^2}{\partial b^2} - \frac{\partial^2}{\partial a \partial c}\right) \pi(a, b, c) = 0.$$

PROPOSITION 1. Let $d_{n,k}(a,b,c)$ be defined by

$$\sum_{n=0}^{2k-2} d_{n,k}(a,b,c) x^n y^{2k-2-n} = (ax^2 + bxy + cy^2)^{k-1}.$$

The set $\{d_{n,k}(a,b,c), 0 \le n \le w\}$ is a basis for the space of homogeneous spherical polynomials of degree k-1.

For a proof see [8, the corollary to Theorem 18].

THEOREM 1. Let \mathcal{W}_k^{\pm} be the subspaces of P_k spanned by the collections $\{P_{k,D,A}^{\pm} + P_{k,D,A'}^{\pm}\}, A \in \mathcal{A}$.

I. Then the dimensions of W_k^{\pm} are equal to η_k^{\pm} , where

$$\eta_k^+ = \begin{cases} k/2 + 1, & k \text{ even,} \\ (k+1)/2, & k \text{ odd,} \end{cases}$$

and

$$\eta_k^- = \begin{cases} k/2, & k \text{ even}, \\ (k+1)/2, & k \text{ odd}. \end{cases}$$

II. There is an infinite subset of the set \mathscr{A} of equivalence classes of forms, which we shall construct explicitly, that has the following property: any 2k classes in this set have corresponding $P_{k,D,A}^{\pm} + P_{k,D,A'}^{\pm}$ which span \mathscr{W}_{k}^{\pm} . Moreover, given any positive discriminant D, we can choose these classes such that each has discriminant $f^{2}D$ for some integer f; i.e., all of the equivalence classes are associated to module classes in the same real quadratic field.

NOTE. We consider $P_{k,D,A}^{\pm} + P_{k,D,A'}^{\pm}$ rather than $P_{k,D,A}^{\pm}$ alone, because in the course of the proof we need to assume that our summation includes the form

(c, b, a) whenever it contains (a, b, c). Let

$$\Sigma_A^{\pm}$$
 mean $\sum_A + \sum_{A'} \pm \sum_{\theta A} \pm \sum_{\theta A'}$,

where the summation is over the reduced forms in the given class. Since the coefficients of $Q(x, y)^{k-1}$ are the $d_{n,k}(a, b, c)$, it follows from Proposition 1 that to establish the dimension of \mathcal{W}_k^{\pm} it suffices to find $w+1-\eta_k^{\pm}$ Q-linearly independent linear combinations of the $d_{n,k}(a,b,c)$, for each of which $\Sigma_A^{\pm}=0$ for all $A\in\mathcal{A}$, and η_k^{\pm} Q-linearly independent linear combinations of the $d_{n,k}(a,b,c)$, of which no nontrivial linear combination sums (Σ_A^{\pm}) to zero for all cycles $A\in\mathcal{A}$.

We first establish the requisite number of relations. Let

(1)
$$\phi_{n,k}(a,b,c) = d_{n,k}(a,b,c) - d_{w-n,k}(a,b,c), \qquad 0 \le n \le w,$$

and

(2)

$$\psi_{n,k}^{\pm}(a,b,c) = d_{n,k}(a,b-2a,a-b+c) - d_{n,k}(c,2c-b,a-b+c)$$

$$\mp (-1)^{k} [d_{n,k}(a-b+c,b-2a,a) - d_{n,k}(c-b+a,2c-b,c)],$$

$$0 \le n \le w.$$

We assert that for any $A \in \mathcal{A}$

- (i) $0 = \sum_{A}^{\pm} \phi_{n,k}(a, b, c),$
- (ii) $0 = \sum_{A}^{\pm} \psi_{n,k}^{\pm}(a,b,c)$.

That (i) is true follows immediately from the facts that $d_{w-n,k}(a,b,c) = d_{n,k}(c,b,a)$ and $(a,b,c) \in A \Leftrightarrow (c,b,a) \in A'$. To establish (ii), let $R_{n,k}^{\pm}(a,b,c) = d_{n,k}(a,b,c)$ $\mp (-1)^k d_{n,k}(c,b,a)$. Then $R_{n,k}^{\pm}(a,b,c) = \pm R_{n,k}^{\pm}(-c,-b,-a)$, and the result follows from [7, Proposition 3']. From among the polynomials (1) and (2) we select $w+1-\eta_k^{\pm}$ that are independent.

LEMMA 1. The collections

$$\mathcal{R}_{k}^{+} = \{ \phi_{n,k}, 0 \leq n < k-1; \psi_{n,k}^{+}, 1 \leq n < k-1, n \text{ odd } \}$$

and

$$\mathcal{R}_{k}^{-} = \left\{ \phi_{n,k}, 0 \leq n < k-1; \, \psi_{n,k}^{-}, 1 \leq n \leq k-1, \, n \, odd \, \right\}$$

are each composed of linearly independent polynomials.

PROOF. From Proposition 1 it is clear that the $\phi_{n,k}$, $0 \le n < k - 1$, are linearly independent. Moreover, $\phi_{n,k}(a,b,c) = -\phi_{n,k}(c,b,a)$, while for n odd, $\psi_{n,k}^{\pm}(a,b,c) = +\psi_{n,k}^{\pm}(c,b,a)$. Thus it suffices now to show that the $\psi_{n,k}^{\pm}(a,b,c)$ in \mathcal{R}_k^{\pm} are independent among themselves.

To establish this we introduce a change of basis for the space of spherical polynomials, namely the transformation

$$(a,b,c) \mapsto (A,B+2A,A+B+C).$$

Then

$$\begin{split} \psi_{n,k}^{\pm}(a,b,c) &= \psi_{n,k}^{\pm}(A,B+2A,A+B+C) \\ &= d_{n,k}(A,B,C) - d_{n,k}(A+B+C,B+2C,C) \\ &\mp (-1)^k d_{n,k}(A,B,C) - d_{n,k}(C,B+2C,A+B+C) \\ &= d_{n,k}(A,B,C) - \sum_{j=0}^n \binom{w-j}{n-j} d_{j,k}(A,B,C) \\ &\mp (-1)^k \left(d_{w-n,k}(A,B,C) - \sum_{j=0}^{w-n} \binom{w-j}{n} d_{j,k}(A,B,C) \right), \end{split}$$

which for $1 \le n \le k-1$, n odd, is a linear combination of the $d_{j,k}(A,B,C)$ with $0 \le j \le w-n-1$ and the coefficient of $d_{w-n-1,j}$ not equal to zero (except for $\psi_{k-1,k}^+$, k even, which is zero). This triangularization of the $\psi_{n,k}^{\pm}$ in \mathcal{R}_k^{\pm} demonstrates their linear independence.

The number of $\phi_{n,k}$ in \mathcal{R}_k^{\pm} is k-1 and the number of ψ_n^{\pm} in \mathcal{R}_k^{\pm} is given in Table 1.

Table 1. The number of $\psi_{n,k}^{\pm}$ in \mathscr{R}_{k}^{\pm}

	\mathscr{R}^+	<i>ℛ</i> ⁻
k even k odd	k/2 - 1 (k - 1)/2	$\frac{k/2}{(k-1)/2}$

Thus in all cases we have, as asserted, $w + 1 - \eta_k$ independent relations.

We complete the proof of Theorem 1 by proving the following: Consider the family of discriminants $D_t = t^2 + 4t$, $t = 2, 3, 4, \ldots$ Belonging to D_t is a wide equivalence class of quadratic forms associated to the reduced (in the wide sense) number

$$[[1,t]] = 1 + \frac{1}{t+\frac{1}{1+\cdots}}.$$

(For a discussion of the relationship between continued fractions and reduced quadratic forms see [12].) Since this "+"-continued fraction is of even length, the wide equivalence class consists of two distinct narrow equivalence classes, A_t and θA_t , whose cycles of reduced forms are generated by the "-"-continued fractions $\mu_0 = ((3, 2, 2, ..., 2))$ and $\omega_0 = ((t + 2))$, respectively.

PROPOSITION 2. Set

(3)
$$g_{n,k}^{\pm}(t) = \frac{1}{2} \sum_{k=0}^{\infty} d_{n,k}(a, b - 2a, a - b + c).$$

Then any nontrivial linear combination of elements of the set (of cardinality η_k^{\pm})

$$\left\{g_{n,k}^{\pm}(t), \ n \ odd, 1 \leq n < k-1 \ \left(\leq k-1 \ if \ (-1)^k = \pm 1 \right); \ g_{w,k}^{\pm}(t) \right\}$$

is zero for at most 2k values of t > 2.

PROOF. The cycle of reduced forms of A_t is $\{Q_p = (a_p, b_p, c_p)\}_{0 \le p \le t-1}$ where $a_p = (p+1)t - p^2$, $b_p = (2p+3)t - 2(p^2+p)$, $c_p = (p+2)t - (p+1)^2$. θA_t contains the single reduced form $\overline{Q} = (1, t+2, 1)$. (Note that $A_t = A_t'$, so $\sum_{A_t}^{\pm} = 2(\sum_{A_t} \pm \sum_{\theta A_t})$.) Taking n odd, and recalling that

$$d_{n,k}(a,b,c) = (-1)^n d_{n,k}(a,-b,c),$$

we have

(4)
$$\sum_{A_t} d_{n,k}(a,b-2a,a-b+c) = \sum_{p=0}^{t-1} d_{n,k}((p+1)t-p^2,t-2p,-1).$$

Under the transformation $p \mapsto t - p$ the right-hand side of (4) becomes

$$\sum_{p=1}^{t} d_{n,k}((p+1)t - p^2, 2p - t, -1) = -\sum_{p=1}^{t} d_{n,k}((p+1)t - p^2, t - 2p, -1)$$

$$= -\sum_{p=0}^{t-1} d_{n,k}((p+1)t - p^2, t - 2p, -1) + d_{n,k}(t, t, -1) - d_{n,k}(t, -t, -1),$$

from which we conclude that

$$\sum_{A_{t}} d_{n,k}(a,b-2a,a-b+c) = \frac{1}{2} (d_{n,k}(t,t,-1) - d_{n,k}(t,-t,-1))$$
$$= d_{n,k}(t,t,-1).$$

We also have

$$\sum_{\theta A_t} d_{n,k}(a, b - 2a, a - b + c) = d_{n,k}(1, t, -t).$$

Thus for n odd,

$$\left(\sum_{A} \pm \sum_{\theta A}\right) d_{n,k}(a,b-2a,a-b+c) = d_{n,k}(t,t,-1) \pm d_{n,k}(1,t,-t) = g_{n,k}^{\pm}(t).$$

Writing

$$d_{n,k}(a,b,c) = \sum_{\substack{2\alpha+\beta=n\\\alpha+\beta\leqslant k+1}} {k-1\choose\beta} {k-1-\beta\choose\alpha} a^{\alpha}b^{\beta}c^{k-(1+\alpha+\beta)},$$

we have

$$(5) \quad g_{n,k}^{\pm}(t) = \sum_{\substack{2\alpha+\beta=n\\\alpha+\beta\leqslant k-1}} {k-1\choose\beta} {k-1-\beta\choose\alpha} (-1)^{k-(1+\alpha+\beta)} (t^{\alpha+\beta} \pm t^{k-1-\alpha}).$$

If n = k - 1, then $\alpha + \beta = k - 1 - \alpha$, and so $g_{n,k}^{\pm}(t) = 0$. Otherwise, for $n \le k - 1$, n odd, we claim that the right-hand side of (5) is a polynomial in t of degree $\le k - 1$ whose $t^{(n+1)/2}$ coefficient is nonzero but all of whose lower powers of t vanish.

To see this, observe that $\alpha + \beta = n - \alpha$, and so $\alpha + \beta$ and $k - 1 - \alpha$ are each minimal for the largest possible choice of α , namely for $\beta = 1$, $\alpha = (n - 1)/2$. Then $\alpha + \beta = (n + 1)/2$, and $k - 1 - \alpha = k - ((n + 1)/2) \ge (n + 1)/2$, since $n \le k - 1$.

We now consider

$$g_{w,k}^{\pm}(t) = \sum_{p=0}^{t-1} d_{w,k}((p+1)t - p^2, t - 2p, -1) \pm d_{w,k}(1, t, -t)$$
$$= (\pm 1) + \sum_{p=0}^{t-1} ((p+1)t - p^2)^{k-1}.$$

We claim that the sum in this expression is a polynomial in t with no constant term, whence $g_{w,k}^{\pm}(t)$ does have a constant term, namely ± 1 .

$$\sum_{p=0}^{t-1} ((p+1)t - p^2)^{k-1} = \sum_{p=0}^{t-1} (\pm p^w + \text{higher powers of } t).$$

But

$$\sum_{p=0}^{t-1} p^{w} = \frac{B_{w+1}(t) - B_{w+1}}{w+1},$$

where $B_s(t)$ is the sth Bernoulli polynomial. Since w + 1 is odd, this is a polynomial in t with no constant term, and our claim has been proved.

This triangularization of the polynomials in (3) shows them to be linearly independent.

The $g_{n,k}^{\pm}(t)$ for n odd have degree at most k-1, while the degree of $g_{w,k}^{\pm}(t)$ is 2k-1. Thus any nontrivial linear combination of the $g_{n,k}^{\pm}$ is a polynomial in t of degree at most w+1=2k-1 and so can be zero for at most 2k-1 values of t. Thus for any 2k values of $t \ge 2$, the corresponding set of the P_{k,D,A_t}^{\pm} must span \mathcal{W}_k^{\pm} .

To show that we can choose the A_t to be associated to the same real quadratic field, fix a discriminant D > 0. The class A_t has discriminant $t^2 + 4t$, and since $t^2 + 4t = f^2D$ is equivalent to $(t + 2)^2 - f^2D = 4$, which is just Pell's equation, we can find infinitely many values of t for which A_t has discriminant f^2D (for different values of t).

We note the following corollary, which we shall need in the proof of a later theorem.

COROLLARY. The sets $\{\psi_{n,k}^+(a,b,c)\}$, n odd, $1 \le n < k-1$, and $\{\psi_{n,k}^-(a,b,c)\}$, n odd, $1 \le n \le k-1$, are bases for the spaces of those spherical polynomials P of degree k-1 for which $\Sigma_A^{\pm}P=0$ for all $A \in \mathscr{A}$.

We now consider the function

$$f_{k,D}(z) = \frac{\left(-1\right)^{(k-1)/2} 2^{3k-2} D^{k-1/2}}{\pi \binom{2k-2k-1}{k-1}} \sum_{(a,b,c)} \frac{1}{\left(az^2 + bz + c\right)^k},$$

where D is a positive integer, k an integer ≥ 2 , and where the summation is over all triples of integers (a, b, c) with $b^2 - 4ac = D$. This function was introduced by Zagier in [13], where it was shown to be a cusp form of weight 2k on $SL_2(\mathbf{Z})$. Then Kohnen showed in [4] that $f_{k,D}$ is the Dth Fourier coefficient of the holomorphic kernel function for the Shimura-Shintani correspondence between modular forms of weight $k + \frac{1}{2}$ and weight 2k. We shall be interested in the functions $f_{k,D,A}(z)$,

defined in the same way as $f_{k,D}$, except that here the summation is over only those forms (a, b, c) belonging to the equivalence class A. The periods of the functions $f_{k,D,A}^{\pm} =: f_{k,D,A} \pm f_{k,D,A'}$ were studied by Kohnen and Zagier in [5]. Let us here recall the basic facts about periods of modular forms.

Let f be a cusp form of weight 2k. Then for any integer $0 \le n \le 2k - 2 = w$, we can define the nth period of f,

$$r_n(f) = \int_0^{i\infty} f(z) z^n dz.$$

The fundamental theorems on periods are the following, our exposition being essentially that in Lang [9].

THEOREM 2 (EICHLER - SHIMURA). There are certain relations among the periods of modular forms:

(i)
$$r_s + (-1)^s \sum_{\substack{j=0 \ j \text{ even}}}^s {s \choose j} r_{w-s+j} + (-1)^s \sum_{\substack{j=0 \ j \equiv s \text{ mod } 2}}^{w-s} {w-s \choose j} r_j = 0;$$

(ii)
$$\sum_{\substack{j=1\\j \text{ odd}}}^{s} {s \choose j} r_{w-s+j} + \sum_{\substack{j=0\\j \neq s \text{ mod } 2}}^{w-s} {w-s \choose j} r_j = 0.$$

Since $r_j(f)$ is real if j is odd, and pure imaginary if j is even, these relations can be separated into two sets of relations: one involving only the even periods, the other only the odd. These relations then define two subspaces, V^+ of \mathcal{P}_k^+ and V^- of \mathcal{P}_k^- , where \mathcal{P}_k^+ (resp. \mathcal{P}_k^-) is the subspace of \mathcal{P}_k consisting of polynomials even (resp. odd) in both variables.

THEOREM 3 (EICHLER - SHIMURA). Let S_{2k} be the space of cusp forms of weight 2k on $SL_2(\mathbf{Z})$. Define the mappings r^{\pm} of S_{2k} into \mathcal{P}_k^{\pm} by

(6)
$$r^{\pm}(f)(x,y) = \varepsilon_{\pm} \sum_{\substack{0 \leq n \leq w \\ (-1)^n = +1}} {w \choose n} r_n(f) x^n y^{w-n},$$

where $\varepsilon_{+} = -i$, $\varepsilon_{-} = 1$.

Then r^- is an isomorphism of S_{2k} and V^- , while r^+ is an isomorphism of S_{2k} with a subspace of V^+ of codimension 1, not containing $x^w - y^w$.

Recall that $P_{k,D,A}(x, y) = \sum_{A} Q(x, y)^{k-1}$. In [5] the following theorem is proved.

THEOREM 4. Let $k \ge 2$, and let A be an $SL_2(\mathbf{Z})$ class of quadratic forms of discriminant D > 0, D not a square. Then

$$\frac{(-1)^{(k+1)/2}}{2^{3k+1}} r^{\pm} (f_{k,D,A})$$

$$= P_{k,D,A}(x+y,-x) - P_{k,D,A}(x-y,y) + (-1)^{k} P_{k,D,\theta A}(x,-x+y)$$

$$- P_{k,D,\theta A}(-y,x+y) \frac{1 + (-1)^{n}}{B_{2k}} \zeta(A,1-k) (x^{w}-y^{w}),$$

or, equivalently, for $(-1)^n = \pm 1$,

$$\begin{split} &\frac{(-1)^{(k+1)/2}}{2^{3k-1}} {w \choose n} r_n (f_{k,D,A}^{\pm}) \\ &= \sum_{\substack{(a,b,c) \in A \\ reduced}} d_{n,k} (c-b+a,2a-b,a) - d_{n,k} (a,b-2a,a-b+c) \\ &+ (-1)^k \sum_{\substack{(a,b,c) \in \theta A \\ reduced}} (d_{n,k} (a-b+c,b-2c,c) - d_{n,k} (c,2c-b,c-b+a)) \\ &+ (\delta_{w,n} - \delta_{0,n}) \frac{2k}{B_{2k}} \zeta(A,1-k), \end{split}$$

where B_s is the sth Bernoulli number, $\delta_{j,k}$ the Kronecker delta, and $\zeta(A,s)$ the Dedekind zeta function of the ideal class associated to A.

We can now state and prove our second result.

THEOREM 5. Let $f_{k,D,A}$ be defined as above. For k an integer greater than 1, the collection of the $f_{k,D,A}$, $A \in \mathcal{A}$, spans S_{2k} , the space of cusp forms on $SL_2(\mathbf{Z})$ of weight 2k.

PROOF. By Theorems 3 and 4, if suffices to show that the polynomials $r^+(f_{k,D,A}^+)$ span the image of $r^+(S_{2k})$ as defined in Theorem 3.

Lemma 2.
$$f_{k,D,A}^{\pm} = (-1)^k f_{k,D,\theta A}^{\pm}$$

PROOF. If $(a, b, c) \in A$, then $(-a, -b, -c) \in \theta A'$. Thus $f_{k,D,A} = (-1)^k f_{k,D,\theta A'}$, and the result follows at once from the definition of $f_{k,D,A}^{\pm}$.

From Lemma 2 and Theorem 4, as well as the fact that $(a, b, c) \in A \Rightarrow (c, b, a) \in A'$, we immediately deduce

LEMMA 3. Let

$$S_{n,k}(a,b,c) = -d_{n,k}(a-b+c,b-2a,a) -d_{n,k}(c-b+a,b-2c,c) + d_{n,k}(c,b-2c,c-b+a).$$

The even periods of $f_{k,D,A}^+$ are given for $2 \le n \le w - 2$ by

$$\frac{-(-1)^{(k+1)/2} {w \choose n}}{2^{3k-3}} r_n (f_{k,D,A}^+)$$

$$= \left(\sum_A + (-1)^k \sum_{\theta A}\right) (-d_{n,k} (a-b+c,b-2a,a) - d_{n,k} (c-b+a,b-2c,c) + d_{n,k} (c,b-2c,c-b+a))$$

$$=: \left(\sum_A + (-1)^k \sum_{\theta A}\right) S_{n,k} (a,b,c).$$

Now, by the corollary to Theorem 1 and Lemma 3, there is a relation among these even periods of $f_{k,D,A}^+$ if and only if some linear combinations of the $S_{n,k}$, n even, equals a linear combination of the $S_{n,k}$, n odd. Thus to prove Theorem 5, it suffices

to show that the dimension of the subspace of the spherical polynomials of degree k-1 spanned by the $S_{n,k}$ has dimension equal to the span of the $S_{n,k}$, n odd (which is [(k-1)/2]) plus the dimension of S_{2k} (which is [k/6], unless $2k \equiv 2 \pmod{12}$, in which case it is [k/6]-1), plus 1 (for the zeroth period), which totals [2k/3] in all cases. We proceed now to calculate this dimension. For $0 \le n \le w$ define polynomials $\kappa_{n,k}(x,y)$ in \mathscr{P}_k by

$$\kappa_{n,k}(x,y) = (x-y)^n (-x)^{w-n} + (-x)^n (x-y)^{w-n} - (x-y)^n y^{w-n} - y^n (x-y)^{w-n}.$$

LEMMA 4. $\sum_{n=0}^{w} S_{n,k}(a,b,c) = \sum_{n=0}^{w} d_{n,k}(a,b,c) \kappa_{n,k}(x,y)$.

PROOF.

$$\sum_{n=0}^{w} S_{n,k}(a,b,c)x^{n}y^{w-n}$$

$$= \sum_{n=0}^{w} (d_{n,k}(a,b-2a,a-b+c) + d_{n,k}(c,b-2c,c-b+a)$$

$$-d_{n,k}(a-b+c,b-2a,a) - d_{n,k}(c-b+a,b-2c,c))x^{n}y^{w-n}$$

$$= ((a-b+c)x^{2} + (b-2a)xy + ay^{2})^{k-1}$$

$$+ ((c-b+a)x^{2} + (b-2c)xy + cy^{2})^{k-1}$$

$$-(ax^{2} + (b-2a)xy + (a-b+c)y^{2})^{k-1}$$

$$-(cx^{2} + (b-2c)xy + (c-b+a)y^{2})^{k-1}$$

$$= \sum_{n=0}^{w} (d_{n,k}(a,b,c))((x-y)^{n}(-x)^{w-n} + (-x)^{n}(x-y)^{w-n}$$

$$-(x-y)^{n}y^{w-n} - y^{n}(x-y)^{w-n})$$

$$= \sum_{n=0}^{w} d_{n,k}(a,b,c)\kappa_{n,k}(x,y).$$

We now assert that the dimension of the span of the $\mathcal{P}_{n,k}$ in the space of spherical polynomials of degree k-1 is equal to the dimension of the subspace of \mathcal{P}_k spanned by the $\kappa_{n,k}(x,y)$.

PROPOSITION 3. Let V and A be vector spaces over a field, of dimension N, with bases v_1, \ldots, v_N and a_1, \ldots, a_N respectively, and suppose that

$$\sum_{i=1}^{N} w_i \otimes a_i = \sum_{j=1}^{N} v_j \otimes b_j,$$

for some w_i , $1 \le j \le N$, in V and b_i , $1 \le j \le N$, in A.

Then the dimensions of the subspace of V generated by the w_i , and of the subspace of A generated by the b_i are equal.

PROOF. Write, for $1 \le i \le N$,

$$w_i = \sum_{j=1}^{N} \alpha_{ij} v_j$$
 and $b_i = \sum_{j=1}^{N} \beta_{ij} a_j$.

Then $\sum_{i=1}^{N} w_i \otimes a_i = \sum_{i=1}^{N} v_i \otimes b_i$ implies $\alpha_{ij} = \beta_{ji}$. Hence the matrices (α_{ij}) and (β_{ij}) are equal, whence (α_{ij}) and (β_{ij}) have the same rank. Applying Proposition 3 to A, the space of spherical polynomials, $V = \mathcal{P}_k$, $a_n = S_{n,k}(a,b,c)$, and $v_n = \kappa_{n,k}(x,y)$ proves the assertion.

For a matrix $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $SL_2(\mathbf{Z})$ we define an endomorphism $\Pi(\gamma)$ on \mathcal{P}_k as follows: for any polynomial $P(x, y) \in \mathcal{P}_k$ let

$$\Pi(\gamma)P(x,y) - \phi_{n,k}((x,y)\gamma),$$

where

$$(x, y)\gamma = (x, y)\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (ax + cy, bx + dy).$$

Now let

$$t = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$$
 and $\sigma = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Let $\mathscr U$ be the image of $\mathscr P_k$ under $\Psi=(1-\sigma)(t-t^2)$. Then a simple calculation shows that $\mathscr U$ is precisely the span of the $\kappa_{n,k}$. In calculating the dimension of $\mathscr U$, it makes no difference if we consider the action of $\mathrm{SL}_2(\mathbf Z)$ on $\mathscr P_k(\mathbf C)$ instead of on $\mathscr P_k(\mathbf Q)$. The operator $\Pi(t)$ has two eigenspaces on the homogeneous polynomials of degree 1: $\mathbf C(x+\rho y)$ with eigenvalue $-\rho$, and $\mathbf C(x+\bar\rho y)$ with eigenvalue $-\bar\rho$ ($\rho=e^{(2\pi i/3)}$), while $\Pi(\sigma)$ takes $(x+\rho y)$ to $\rho(x+\bar\rho y)$ and $(x+\bar\rho y)$ to $\bar\rho(x+\rho y)$. Let $A=x+\rho y$, $B=x+\bar\rho y$. We have the direct sum decomposition

$$\mathscr{P}_{w}(\mathbf{C}) = \bigoplus_{j=0}^{k-1} \mathbf{C} \left(A^{j} B^{w-j} \oplus A^{w-j} B^{j} \right)$$

into ψ -invariant subspaces, with

$$\Pi(\Psi)(A^{j}B^{w-j} + A^{w-j}B^{j}) = \rho^{j}\bar{\rho}^{w-j}(1 - \rho^{j}\bar{\rho}^{w-j})(1 - \rho^{j}\bar{\rho}^{w-j})A^{j}B^{w-j} + \rho^{w-j}\bar{\rho}^{j}(1 - \rho^{j}\bar{\rho}^{w-j})(1 - \rho^{w-j}\bar{\rho}^{j})A^{w-j}B^{j}.$$

which is zero if and only if $\rho^j \bar{\rho}^{w-j} = 1$. But

$$\rho^{j}\overline{\rho}^{w-j} = \rho^{2w-j} = 1 \Leftrightarrow j \equiv 2w \pmod{3}.$$

Thus the dimension of \mathcal{U} is

$$\{j \mid 0 \le j \le k-1; 2w-j \equiv 1 \text{ or } 2 \pmod{3}\} = (2k/3),$$

as was to be shown.

REFERENCES

- 1. Erich Hecke, Zur Theorie der Elliptischen Modulfunktionen, Math. Ann. 97 (1926), 210-242. Number 23 in Hecke, Mathematische Werke, Vandenhoeck & Ruprecht, Göttingen, 1959.
- 2. _____, Analytische Funktionen und Algebraische Zahlen, Zweiter Teil, Abh. Math. Sem. Univ. Hamburg. 3 (1924), 13–236. Number 20 in Mathematische Werke.
- 3. Svetlana Katok, Modular forms associated to closed geodesics and arithmetic applications, Bull. Amer. Math. Soc. (N.S.) 11 (1984), 177–179.

- 4. Winfried Kohnen, Beziehungen Zwischen Modulformen Halbganzen Gewichts und Modulformen Ganzen Gewichts, Schriften Nr. 131, Bonner Math., Bonn, 1981.
 - 5. Winfried Kohnen and Don Zagier, Modular forms with rational periods (to appear).
- 6. _____, Values of L-series of modular forms at the center of the critical strip, Invent. Math. 64 (1981), 175-198.
- 7. David Kramer, Applications of Gauss's theory of binary quadratic forms to zeta functions and modular forms, Trans. Amer. Math. Soc. (to appear).
 - 8. Andrew Ogg, Modular forms and Dirichlet series, Benjamin, New York, 1969.
 - 9. Serge Lang, Introduction to modular forms, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
- 10. Carl L. Siegel, Berechnung von Zetafunktionen an ganzzahligen Stellen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1969, 87-102.
 - 11. Don Zagier, A Kronecker limit formula for real quadratic fields, Math. Ann. 213 (1975), 153-184.
- 12. _____, Zetafunktionen und Quadratische Körper, Springer-Verlag, Berlin-Heidelberg-New York, 1981.
 - 13. _____, Modular forms associated to real quadratic fields, Invent. Math. 30 (1975), 1-46.

DEPARTMENT OF MATHEMATICS, SMITH COLLEGE, NORTHAMPTON, MASSACHUSETTS 01063