CONTRIBUTIONS FROM CONJUGACY CLASSES OF REGULAR ELLIPTIC ELEMENTS IN HERMITIAN MODULAR GROUPS TO THE DIMENSION FORMULA OF HERMITIAN MODULAR CUSP FORMS¹

BY MINKING EIE

ABSTRACT. The dimension of the vector space of hermitian modular cusp forms on the hermitian upper half plane can be obtained from the Selberg trace formula; in this paper we shall compute the contributions from conjugacy classes of regular elliptic elements in hermitian modular groups by constructing an orthonomal basis in a certain Hilbert space of holomorphic functions. A generalization of the main Theorem can be applied to the dimension formula of cusp forms of SU(p,q). A similar theorem was given for the case of regular elliptic elements of $Sp(n,\mathbf{Z})$ in [5] via a different method.

1. Introduction and notation. Denote by E the unit matrix and by 0 the zero matrix in the matrix ring $M_n(\mathbf{C})$. Put $J = \begin{bmatrix} 0 & E \\ -E & 0 \end{bmatrix}$. The hermitian symplectic group of degree n, Ω_n , is then defined as the group of matrices in $M_{2n}(\mathbf{C})$; it satisfies ${}^t\overline{M}JM = J$; i.e.

$$\Omega_n = \{ M \in M_{2n}(\mathbf{C}) | {}^t \overline{M} J M = J \}.$$

Here ${}^{t}\overline{M}$ is the transpose complex conjugate to M.

Let \mathcal{X}_n be the hermitian upper half plane; specifically,

$$\mathcal{H}_n = \{ Z \in M_n(\mathbf{C}) | Z = X + iY, \ X = {}^t\overline{X}, \ Y = {}^t\overline{Y} > 0 \}.$$

The hermitian symplectic group Ω_n operates on \mathcal{H}_n transitively by the action

$$M: Z \to M(Z) = (AZ + B)(CZ + D)^{-1}, \qquad M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \Omega_n.$$

For a given imaginary quadratic number field \mathbf{F} , we denote by \mathbf{K} its ring of integers. The hermitian modular group of degree n, $\Gamma_n(\mathbf{K})$, is defined as

$$\Gamma_n(\mathbf{K}) = \Omega_n \cap M_{2n}(\mathbf{K}).$$

An element M in $\Gamma_n(\mathbf{K})$ is regular elliptic if M has an isolated fixed point on \mathcal{X}_n , i.e. the equation M(Z) = Z has a unique solution on \mathcal{X}_n . A similar argument as in [5] shows that the following statements are equivalent:

- (1) M is a regular elliptic element in $\Gamma_n(\mathbf{K})$ and its characteristic polynomial $\varphi(X)$ is in Z[X].
- (2) $M \in \Gamma_n(\mathbf{K})$ and is conjugate in Ω_n to diag $[\lambda_1, \lambda_2, \dots, \lambda_n, \overline{\lambda}_1, \overline{\lambda}_2, \dots, \overline{\lambda}_n]; \lambda_i$ $(i = 1, 2, \dots, n)$ are roots of unity and $\lambda_i \lambda_j \neq 1$ for all i, j.

Received by the editors January 7, 1985.

1980 Mathematics Subject Classification. Primary 10D20, 10D05.

¹Research supported by Academia Sinica and NSC of Taiwan, Republic of China.

Let $S(k; \Gamma_n(\mathbf{K}))$ denote the space of holomorphic functions f(Z) on \mathcal{X}_n ; f(Z)satisfies the following conditions:

- (1) $f(M(Z)) = \det(CZ + D)^k f(Z)$ for all $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ in $\Gamma_n(\mathbf{K}), Z \in \mathcal{X}_n$.
- (2) $(\det Y)^{k/2} f(Z)$ is bounded on $\mathcal{H}_n, Z = X + iY$.

A function in $S(k; \Gamma_n(\mathbf{K}))$ is called a hermitian modular cusp form of weight k and degree n.

For fixed degree n and certain k, the first condition may be satisfied only for f(Z) = 0. However we shall exclude these trivial cases. For example, we assume $kn \equiv 0 \pmod{4}$ when $\mathbf{K} = \mathbf{Z}[i]$ and $\mathbf{F} = \mathbf{Q}[i]$. It is well known that $S(k, \Gamma_n(\mathbf{K}))$ is a finite dimensional Hilbert space [6]. Furthermore, its dimension can be written as an integral of a Bergman kernel function on a certain Hilbert space over the fundamental domain in \mathcal{Y}_n with respect to $\Gamma_n(\mathbf{K})$, when k is sufficiently large (for example k > (4n-2); see also [9]). This is the so-called Selberg trace formula.

More precisely, let $K(Z_1, Z_2)$ be a kernel function of the space $H(k; \mathcal{X}_n)$ which consists of a holomorphic function on \mathcal{X}_n and satisfies

$$\int_{\mathcal{V}_{-}} (\det Y)^{k-2n} |f(Z)|^2 dZ < \infty.$$

Then

$$\dim_{\mathbf{C}} S(k; \Gamma_n(\mathbf{K})) = \int_{\mathcal{F}_n} \sum_{\gamma \in \overline{\Gamma_n(\mathbf{K})}} K(Z, \gamma(Z)) \overline{j(\gamma, Z)}^{-k} (\det Y)^{k-2n} dZ,$$

where

- (1) $\overline{\Gamma_n(\mathbf{K})}$ is the quotient group $\Gamma_n(\mathbf{K})/U$ with U the center of $\Gamma_n(\mathbf{K})$,
- (2) \mathcal{F}_n is a fundamental domain in \mathcal{N}_n with respect to $\Gamma_n(\mathbf{K})$, (3) $j(\gamma, Z) = \det(CZ + D)$ if $\gamma = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \Gamma_n(\mathbf{K})$,
- (4) Z = X + iY in \mathcal{A}_n and dZ = dXdY is the Euclidean measure on C^{n^2} .

In this paper, we shall consider the subseries with the summation ranging over all regular elliptic elements in $\Gamma_n(\mathbf{K})$; or consider the contributions from conjugacy classes of regular elliptic elements to $\dim_{\mathbf{C}} S(k; \Gamma_n(\mathbf{K}))$. We shall obtain the following

THEOREM. Suppose $M \in \Gamma_n(\mathbf{K})$ and is conjugate in Ω_n to

$$\operatorname{diag}[\lambda_1, \lambda_2, \dots, \lambda_n, \overline{\lambda}_1, \overline{\lambda}_2, \dots, \overline{\lambda}_n]$$

with λ_j $(j=1,2,\ldots,n)$ roots of unity and $\lambda_1\lambda_j\neq 1$ for all $1\leq i,j\leq n$. Then the contribution to $\dim_{\mathbf{C}} S(k; \Gamma_n(\mathbf{K}))$ (k > (4n-2)) of regular elliptic elements in $\Gamma_2(\mathbf{K})$ which are conjugate in $\Gamma_n(\mathbf{K})/U$ to M is given by

$$N_{\{M\}} = |C_{M,\mathbf{Z}}|^{-1} \prod_{j=1}^{n} \overline{\lambda}_{j}^{k} \cdot \prod_{j,k=1}^{n} (1 - \overline{\lambda}_{j} \overline{\lambda}_{k})^{-1}.$$

Here $C_{M,\mathbf{Z}}$ is the centralizer of M in $\Gamma_n(\mathbf{K})/U$ and $|C_{M,\mathbf{Z}}|$ is its order.

REMARK. Here we shall exclude those integers k such that

$$f(M(Z)) = \det(CZ + D)^k f(Z), \qquad M = egin{bmatrix} A & B \ C & D \end{bmatrix} \in \Gamma_n(\mathbf{K}),$$

is satisfied only for f(Z) = 0.

2. The Selberg trace formula. Since \mathcal{A}_n is mapped biholomorphically onto the bounded domain

$$D_n: W \in M_n(\mathbf{C}), \quad E - W^t \overline{W} > 0,$$

under the Cayley transform $W = (Z - iE)(Z + iE)^{-1}$, it suffices to consider $H(k; D_n)$ instead of $H(k; \mathcal{H}_n)$. $H(k; D_n)$ consists of holomorphic function f(W) satisfying

$$\int_{D_n} \det(E - W^t \overline{W})^{k-2n} |f(W)|^2 dW < \infty.$$

The Bergmann kernel function for $H(k; D_n)$ is given by the following propositions.

PROPOSITION 1 [11, THEOREM 3.3]. Let $\varphi_1, \varphi_2, \ldots, \varphi_n, \ldots$ be any orthonormal basis of the Hilbert space $H(k; D_n)$. Then the series

$$\sum_{n=1}^{\infty} \varphi_n(W) \overline{\varphi_n(W_1)}$$

converges uniformly on each compact subset of $D_n \times D_n$. The sum, denoted by $K(W,W_1)$, is independent of the choice of orthonormal basis and

$$f(W) = \int_{D_n} \det(E - W_1^{t} \overline{W}_1)^{k-2n} K(W, W_1) f(W_1) dW_1$$

for each $f \in H(k; D_n)$.

PROPOSITION 2 [9, LEMMA 2.1]. Suppose that k > (4n-2). Then the function $K(W, W_1)$ is given by

$$K(W, W_1) = C(k, n) \det(E - W^t \overline{W}_1)^{-k}$$

with

$$C(k,n) = \pi^{-n^2} \prod_{0 \le i,j \le n-1} (k-2n+1+i+j).$$

PROOF. The kernel function is a constant multiple of $\det(E - W^t \overline{W}_1)^{-k}$ by arguments similar to I of [7]. The constant C(k, n) is determined by

$$C(k,n)^{-1} = \int_{D_n} \det(E - W^t \overline{W})^{k-2n} dW.$$

3. Convergence of the series. Let $\Lambda = \operatorname{diag}[\lambda_1, \lambda_2, \dots, \lambda_n]$ be a unitary matrix. As an element of a hermitian symplectic group, the operation of Λ on D_n is given by

$$\Lambda: W \to \Lambda W \Lambda, \qquad W \in D_n,$$

and

$$K(W, \Lambda W \Lambda) \overline{j(\Lambda, W)}^{-k} = C(k, n) (\det \Lambda)^{-k} \det(E - \overline{\Lambda} W \overline{\Lambda}^{t} \overline{W})^{-k}.$$

Now we shall prove this function is absolutely integrable on D_n with respect to the measure $\det(E - W^t \overline{W})^{k-2n} dW$ when k > (2n-1).

LEMMA 1 [8, THEOREM 1, P. 266]. If $E-Z^t\overline{Z}\geq 0$ and $E-W^t\overline{W}\geq 0$, then

$$\det(E - Z^{t}\overline{Z})\det(E - W^{t}\overline{W}) + |\det(Z - W)|^{2} \le |\det(E - Z^{t}\overline{W})|^{2}.$$

Equality holds only when Z = W.

LEMMA 2. If $\Lambda = \text{diag}[\lambda_1, \lambda_2, \dots, \lambda_n]$ with λ_i $(i = 1, 2, \dots, n)$ roots of unity and $1 - \lambda_i \lambda_j \neq 0$ for all i, j, then

$$\det(E - \overline{\Lambda}W\overline{\Lambda}^t\overline{W}) \neq 0$$

for all $W \in \overline{D}_n$.

PROOF. Applying the previous lemma with $Z = \overline{\Lambda}W\overline{\Lambda} = [\overline{\lambda}_i\overline{\lambda}_jw_{ij}]$, we get

$$[\det(E - W^t \overline{W})]^2 + |\det(\overline{\Lambda} W \overline{\Lambda} - W)|^2 \le [\det(E - \overline{\Lambda} W \overline{\Lambda}^t \overline{W})]^2.$$

Now suppose $\det(E - \overline{\Lambda}W\overline{\Lambda}^t\overline{W}) = 0$. Then it forces

$$\det(E - W^t \overline{W}) = 0$$
 and $\overline{\Lambda} W \overline{\Lambda} = W$.

From $\overline{\Lambda}W\overline{\Lambda}=W$ and our assumption on Λ , we get W=0, which contradicts $\det(E-W^t\overline{W})=0$. This proves our assertion.

PROPOSITION 3. Let $M \in \Gamma_n(\mathbf{K})$ and be conjugate in Ω_n to

$$\operatorname{diag}[\lambda_1, \lambda_2, \dots, \lambda_n, \overline{\lambda}_1, \overline{\lambda}_2, \dots, \overline{\lambda}_n],$$

 λ_i $(i=1,2,\ldots,n)$ roots of unity and $\lambda_i\lambda_j\neq 1$ for all i,j. Then we have

- $(1) \int_{D_n} \det(E W^t \overline{W})^{k-2n} |\det(E \overline{\Lambda} W \overline{\Lambda}^t \overline{W})|^{-k} dW < \infty \text{ for } k > (2n-1),$
- (2) the contribution $N_{\{M\}}$ in the Theorem is given by

$$N_{\{M\}} = C(k, n)(\det \Lambda)^{-k} |C_{M, Z}|^{-1} \times \int_{D_n} \det(E - W^t \overline{W})^{k-2n} \det(E - \overline{\Lambda} W \overline{\Lambda}^t \overline{W})^{-k} dW.$$

PROOF. (1) follows since $\det(E - W^t \overline{W})^{k-2n} dW$ is a bounded measure on D_n if k > (2n-1) and $\det(E - \overline{\Lambda}W\overline{\Lambda}^t \overline{W}) \neq 0$ for all W in D_n .

To prove (2), we let $\{M\}$ denote the conjugacy class in $\Gamma_n(\mathbf{K})/U$ and which can be represented by M. Then we have

$$N_{\{M\}} = \int_{\mathcal{F}_n} (\det Y)^{k-2n} \sum_{\gamma \in \{M\}} K(Z, \gamma(Z)) \overline{j(\gamma, Z)}^{-k} dZ.$$

Note that the integral

$$N = \int_{\mathcal{H}_n} (\det Y)^{k-2n} K(Z, M(Z)) \overline{j(M, Z)}^{-k} dZ$$

is transformed into

$$(\det \Lambda)^{-k} C(k,n) \int_{D_n} \det (E - W^t \overline{W})^{k-2n} \det (E - \overline{\Lambda} W \overline{\Lambda}^t \overline{W})^{-k} dW$$

under the Cayley transform $W = (Z - iE)(Z + iE)^{-1}$. Now with (1), we know the integral N is absolutely convergent. Hence we have

$$N = \int_{\mathcal{F}_n} (\det Y)^{k-2n} \sum_{\gamma \in \overline{\Gamma_n(K)}} K(Z, \gamma^{-1} M \gamma(Z)) \overline{j(\gamma^{-1} M \gamma, Z)}^{-k} dZ$$
$$= |C_{M, \mathbf{Z}}| \int_{\mathcal{F}_n} \sum_{\gamma \in \{M\}} K(Z, \gamma(Z)) \overline{j(\gamma, Z)}^{-k} dZ = |C_{M, \mathbf{Z}}| \cdot N_{\{M\}}.$$

This proves our assertion in (2).

REMARK. Here we use the fact that the centralizer $C_{M,\mathbf{Z}}$ of M in $\overline{\Gamma_n(\mathbf{K})}$ is a group of finite order since it is discrete and is conjugate in Ω_n to a subgroup of a unitary group which is compact.

4. Proof of the Theorem. To prove our Theorem, by Proposition 3 it suffices to evaluate the integral

$$C(k,n)\int_{D_n} \det(E - W^t \overline{W})^{k-2n} \det(E - \overline{\Lambda}W \overline{\Lambda}^t \overline{W})^{-k} dW.$$

But this is not easy when $n \geq 2$. Here we shall first construct a new orthonomal basis in $H(k; D_n)$.

LEMMA 3 [15, LEMMA 1, P. 27]. Let $S = [s_{ij}]$ be an $n \times n$ hermitian matrix, i.e. $s_{ij} = \bar{s}_{ji}$ for all i, j, and let S_j (j = 1, 2, ..., n - 1) be the submatrix consisting of $j \times j$ entries on the upper left block of S. Then S is positively definite if and only if

$$\det S > 0$$
 and $\det S_j > 0$ $(j = 1, 2, ..., n - 1).$

PROPOSITION 4. Let θ_{1j}, θ_{j1} $(j=1,2,3,\ldots,n)$ be 2n-1 real numbers and $W'=[w'_{jk}]\in D_n$. Suppose $W=[w_{jk}]\in M_n(\mathbf{C})$ is defined by

$$\begin{cases} w_{jk} = w'_{jk} e^{i\theta_{jk}}, & j = 1 \text{ or } k = 1, i = \sqrt{-1}, \\ w_{jk} = w'_{jk} e^{i(\theta_{j1} + \theta_{1k} - \theta_{11})}, & j \neq 1 \text{ and } k \neq 1. \end{cases}$$

Then we have $W \in D_n$.

PROOF. Let $E - W^t \overline{W} = [a_{jk}]$ and $E - W'^t \overline{W}' = [b_{jk}]$. A direct calculation shows

- (1) $a_{jk} = \overline{a_{kj}}, \ b_{jk} = \overline{b_{kj}} \text{ for all } k, j;$
- (2) $a_{jj} = b_{jj} > 0, \ j = 1, 2, \dots, j;$
- (3) $a_{jk} = b_{jk} e^{i(\theta_{j1} \theta_{k1})}$ for all j, k.

If $W' \in D_n$, then the submatrix W'_{n-1} obtained from cancellation of the *n*th row and *n*th column of W is in D_{n-1} . Thus by Lemma 3 and an induction on n, it suffices to prove $\det(E - W^t \overline{W}) > 0$. But it is easy to show

$$\det(E - W^t \overline{W}) = \det(E - W'^t \overline{W}')$$

by properites (1)–(3) and elementary properties of the determinant. This proves our assertion.

For each n^2 -tuple of nonnegative integers $\alpha = [\alpha_{jk}], \ 1 \leq j, k \leq n$; we shall let W^{α} denote the monomial

$$\prod_{j,k=1}^n w_{jk}^{\alpha_{jk}}$$

in the variable W, and let $|\alpha| = \sum_{j,k=1}^{n} \alpha_{jk}$ be the degree of W^{α} .

PROPOSITION 5. Let W^{α} and W^{β} be monomials in w_{jk} (j, k = 1, ..., n). Then

$$\int_{D_n} \det(E - W^t \overline{W})^{k-2n} W^{\alpha} \overline{W}^{\beta} dW = 0$$

unless

$$\begin{cases} \alpha_{11} - \beta_{11} + \sum_{j,k \ge 2} (-\alpha_{jk} + \beta_{jk}) = 0, \\ \sum_{j=1}^{n} (\alpha_{jk} - \beta_{jk}) = 0, \sum_{j=1}^{n} (\alpha_{kj} - \beta_{kj}) = 0, \end{cases} (k = 2, 3, \dots, n).$$

Under the above conditions, we have $|\alpha| = |\beta|$ and

$$\sum_{j=1}^{n} (\alpha_{jk} + \alpha_{kj}) = \sum_{j=1}^{n} (\beta_{jk} + \beta_{kj}), \qquad (k = 1, 2, \dots, n).$$

PROOF. By the previous proposition, we can use polar coordinates on certain entries of W as follows:

$$\begin{cases} w_{jk} = r_{jk}e^{i\theta_{jk}}, & j = 1 \text{ or } k = 1, \ r_{jk} \ge 0, 0 \le \theta_{jk} < 2\pi; \\ w_{jk} = w'_{jk}e^{i(\theta_{j1} + \theta_{1k} - \theta_{11})}, & j \ne 1 \text{ and } k \ne 1. \end{cases}$$

Let D'_n be the subset of D_n and be defined by

$$D'_n: W = [w_{jk}] \in D_n, \qquad w_{j1}, w_{1j} \ge 0 \ (j = 1, 2, \dots, n).$$

With these new coordinates, we have

$$\int_{D_{n}} \det(E - W^{t}\overline{W})^{k-2n}W^{\alpha}\overline{W}^{\beta} dW$$

$$= \int_{D'_{n}} \det(E - W'^{t}\overline{W}')^{k-2n} \prod_{j=1}^{n} r_{1j}^{\alpha_{1j}+\beta_{1j}+1} dr_{1j}$$

$$\times \prod_{j=2}^{n} r_{j1}^{\alpha_{j1}+\beta_{j1}+1} dr_{j1} \prod_{j,k\geq 2} w_{jk}^{\alpha_{jk}} \overline{w}_{jk}^{\beta_{jk}} dw_{jk}$$

$$\times \int_{0}^{2\pi} \exp[i\theta_{11}(\alpha_{11} - \beta_{11} + \sum_{j,k\geq 2} (-\alpha_{jk} + \beta_{jk}))] d\theta_{11}$$

$$\times \prod_{k=2}^{n} \int_{0}^{2\pi} \int_{0}^{2\pi} \exp\left[i\theta_{1k} \left(\sum_{j=1}^{n} (\alpha_{jk} - \beta_{jk})\right)\right]$$

$$\times \exp\left[i\theta_{k1} \left(\sum_{j=1}^{n} (\alpha_{kj} - \beta_{kj})\right)\right] d\theta_{1k} d\theta_{k1}.$$

The above integral will vanish unless

$$\begin{cases} \alpha_{11} - \beta_{11} + \sum_{j,k \geq 2} (-\alpha_{jk} + \beta_{jk}) = 0, \\ \sum_{j=1}^{n} (\alpha_{jk} - \beta_{jk}) = 0, \sum_{j=1}^{n} (\alpha_{kj} - \beta_{kj}) = 0, \end{cases} (k = 2, ..., n).$$

This proves our first assertion. Multiplying the first eqution by 2 and adding all together, we get

$$\sum_{j=1}^{n} (\alpha_{j1} + \alpha_{1j}) = \sum_{j=1}^{n} (\beta_{j1} + \beta_{1j}).$$

For k = 2, 3, ..., n, we note that

$$\sum_{j=1}^{n} (\alpha_{jk} + \alpha_{kj}) - \sum_{j=1}^{n} (\beta_{jk} + \beta_{kj})$$
$$= \sum_{j=1}^{n} (\alpha_{jk} - \beta_{jk}) + \sum_{j=1}^{n} (\alpha_{kj} - \beta_{kj}) = 0$$

and

$$2|\alpha| = \sum_{k,j=1}^{n} (\alpha_{jk} + \alpha_{kj}) = \sum_{j,k=1}^{n} (\beta_{jk} + \beta_{kj}) = 2|\beta|.$$

Thus the proof is completed.

COROLLARY. Suppose α, β are two n^2 -tuples of nonnegative integers satisfying the conditions in Proposition 5. Then

$$\prod_{j,k=1}^{n} (\lambda_j \lambda_k)^{\alpha_{jk}} = \prod_{j,k=1}^{n} (\lambda_j \lambda_k)^{\beta_{jk}}$$

for any numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$.

PROOF OF THE THEOREM. Let

$$N_{\{M\}}(t\Lambda) = C(k,n) \int_{D_n} \det(E - W^t \overline{W})^{k-2n} \det(E - t^2 \overline{\Lambda} W \overline{\Lambda}^t \overline{W})^{-k} dW$$

with 0 < t < 1. If we can prove

(A)
$$N_{\{M\}}(t\Lambda) = \prod_{j,k=1}^{n} (1 - t^2 \overline{\lambda}_j \overline{\lambda}_k)^{-1},$$

then we get

(B)
$$C(k,n) \int_{D_n} \det(E - W^t \overline{W})^{k-2n} \det(E - \overline{\Lambda} W \overline{\Lambda}^t \overline{W})^{-k} dW$$
$$= \prod_{j,k}^n (1 - \overline{\lambda}_j \overline{\lambda}_k)^{-1}$$

by letting t approach 1. Now, we shall prove (A).

Let S be the index set of all n^2 -tuples of integers $\alpha = [\alpha_{jk}], \ \alpha_{jk} \geq 0$. Consider all monomials $a_{\alpha}(W) = W^{\alpha}, \ \alpha \in S$, which are arranged in such order that their degrees are nondecreasing. By an argument similar to [7, p. 188], we can prove that $\{a_{\alpha}(W)|\alpha \in S\}$ is a complete system in $H(k,D_n)$ in the sense that if $f \in H(k,D_n)$ and

$$\int_{D_{\alpha}} \det(E - W^{t}\overline{W})^{k-2n} a_{\alpha}(W) \overline{f(W)} dW = 0 \quad \forall \alpha \in S,$$

then f(W) = 0. This system precisely consists of all terms in the power series expansion

$$\prod_{j,k=1}^{n} (1 - w_{jk})^{-1} = \prod_{j,k=1}^{n} (1 + w_{jk} + \dots + w_{jk}^{m} + \dots), \qquad |w_{jk}| < 1.$$

Of course, $\{a_{\alpha}(W) = W^{\alpha} | \alpha \in S\}$ is a linear independent set in $H(k, D_n)$. By the well-known Gram-Schmidt orthogonalization process, we can construct an orthonormal basis $\{\psi_{\alpha}(W) | \alpha \in S\}$ from $\{a_{\alpha}(W) | \alpha \in S\}$. Proposition 5 and its corollary then imply that the basis $\{\psi_{\alpha}(W) | \alpha \in S\}$ has the following properties:

- (1) $\psi_{\alpha}(W)$ is a finite linear combination of monomials of degree $|\alpha|$.
- (2) $\psi_{\alpha}(t^2\overline{\Lambda}W\overline{\Lambda}) = t^{2|\alpha|} \prod_{j,k=1}^n (\overline{\lambda}_j\overline{\lambda}_k)^{\alpha_{jk}} \cdot \psi_{\alpha}(W).$

Choose $\{\psi_{\alpha}(W)|\alpha\in S\}$ as an orthonormal basis of $H(k,D_n)$ and note that

$$C(k,n)\det(E-W^{t}\overline{W}_{1})^{-k}=K(W,W_{1})$$

is a kernel function of $H(k, D_n)$. By Proposition 1 we then have

$$\begin{split} C(k,n)\det(E-t^2\overline{\Lambda}W\overline{\Lambda}^t\overline{W})^{-k} &= \sum_{\alpha\in S} \psi_\alpha(t^2\overline{\Lambda}W\overline{\Lambda})\overline{\psi_\alpha(W)} \\ &= \sum_{\alpha\in S} t^{2|\alpha|} \prod_{p,q=1}^n (\overline{\lambda}_p\overline{\lambda}_q)^{\alpha_{pq}} \psi_\alpha(W)\overline{\psi_\alpha(W)}. \end{split}$$

Multiply both sides with $\det(E - W^t \overline{W})^{k-2n}$ and integrate on D_n to get

$$egin{aligned} N_{\{M\}}(t\Lambda) &= \sum_{lpha \in S} t^{2|lpha|} \prod_{j,k=1}^n (\overline{\lambda}_j \overline{\lambda}_k)^{lpha_{jk}} \ &= \prod_{j,k=1}^n (1 - t^2 \overline{\lambda}_j \overline{\lambda}_k)^{-1} \end{aligned}$$

by the orthnormality of $\{\psi_{\alpha}(W)|\alpha\in S\}$. This proves our assertion in (A) and hence completes our proof.

REMARK 1. Note that for 0 < t < 1, the integrand in $N_{\{M\}}(t\Lambda)$ is absolutely integrable and it can be integrated term by term after its decomposition as a Bergmann kernel function. However, it is not permissible for the integrand of $N_{\{M\}}(\Lambda)$ to do so.

REMARK 2. The Gram-Schmidt orthogonalization process is applied to monomials of the same degree since monomials of different degrees are orthogonal to each other by Proposition 5. Furthermore, we assume $\psi_{\alpha}(W)$ is the function obtained from W^{α} by this process.

- **5. Generalizations and applications.** We shall generalize the evaluation of the integral is our Theorem to cases as follows:
- (1) The integrand $\det(E \overline{\Lambda}W\overline{\Lambda}^t\overline{W})^{-k}$ is changed into a general form $\det(E \overline{\Lambda}_1W\overline{\Lambda}_2^t\overline{W})^{-k}$ with Λ_1, Λ_2 in U(n), the unitary group.
- (2) The domain D_n is changed into the hyperbolic space of $p \times q$ matrices defined by

$$D_{p,q}: W \in M_{p,q}(\mathbf{C}), \quad E_q - {}^t \overline{W}W > 0.$$

Here $M_{p,q}(\mathbf{C})$ is the set of all $p \times q$ matrices over \mathbf{C} and E_q is the unit matrix of $M_q(\mathbf{C})$.

For the first generalization, we then have the following

PROPOSITION 6. Let $\Lambda_1 = \text{diag}[\lambda_1, \ldots, \lambda_n], \Lambda_2 = \text{diag}[\lambda_{n+1}, \ldots, \lambda_{2n}],$ with λ_j $(j = 1, 2, \ldots, 2n)$ roots of unity and $\lambda_j \lambda_{n+k} \neq 1$ for all $1 \leq j, k \leq n$, and let

$$I = C(k,n) \int_{D_n} \det(E - W^t \overline{W})^{k-2n} \det(E - \overline{\Lambda}_1 W \overline{\Lambda}_2^t \overline{W})^{-k} dW \qquad (k > 4n - 2).$$

Then

$$I = \prod_{j,k=1}^{n} (1 - \overline{\lambda}_j \overline{\lambda}_{n+k})^{-1}.$$

PROOF. The proof follows from a slight change in our proof of the Theorem. Conditions in Proposition 5 imply

$$\sum_{j=1}^{n} (\alpha_{jk} - \beta_{jk}) = \sum_{j=1}^{n} (\alpha_{kj} - \beta_{kj}) = 0 \qquad (k = 1, 2, \dots, n).$$

Let $\psi_{\alpha}(W)$, $\alpha \in S$, be the function obtained from W^{α} with a Gram-Schmidt orthogonalization process. Then we have

$$\psi_{\alpha}(\overline{\Lambda}_{1}W\overline{\Lambda}_{2}) = \prod_{j=1}^{n} \overline{\lambda}_{j}^{a(j)} \prod_{k=1}^{n} \overline{\lambda}_{n+k}^{b(k)} \cdot \psi_{\alpha}(W)$$
$$= \prod_{j,k=1}^{n} (\overline{\lambda}_{j}\overline{\lambda}_{n+k})^{\alpha_{jk}} \cdot \psi_{\alpha}(W)$$

with $a(j) = \sum_{k=1}^{n} \alpha_{jk}$ and $b(k) = \sum_{j=1}^{n} \alpha_{jk}$. It follows

$$I = \lim_{t \to 1} \sum_{\alpha \in S} (t^2 \overline{\lambda}_j \overline{\lambda}_{n+k})^{\alpha_{jk}}$$
$$= \lim_{t \to 1} \prod_{j,k=1}^n (1 - t^2 \overline{\lambda}_j \overline{\lambda}_{n+k})^{-1} = \prod_{j,k=1}^n (1 - \overline{\lambda}_j \overline{\lambda}_{n+k})^{-1}.$$

Now we consider the second generalization. Let **F** be any imaginary quadratic field and define an algebraic group $G_{p,q}$ over Q as follows:

$$(G_{p,q})_Q = \left\{ M \in SL_{p+q}(F) | {}^t\overline{M}RM = R, R = \begin{bmatrix} E_p & 0 \\ 0 & -E_q \end{bmatrix} \right\},$$

and $(G_{p,q})_{\mathbf{R}} = SU(p,q)$. The group SU(p,q) operates on the bounded domain $D_{p,q}$ by the action

$$M: Z \to M(Z) = (AZ + B)(CZ + D)^{-1}, \qquad M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 in $SU(p,q)$.

Here M is so decomposed that A, B, C and D are $p \times p, p \times q, q \times p$ and $q \times q$ matrices respectively.

Let Γ be a discrete subgroup of $G_{\mathbf{R}}$ such that $\Gamma \backslash G_{\mathbf{R}}$ has definite volume with respect to the invariant measure $\det(E_q - {}^t\overline{W}W)^{-p-q}dW$. For positive integer

k, we let $S(k;\Gamma)$ be the vector space of the holomorphic function f(W) on $D_{p,q}$ satisfying the conditions:

- (1) $f(\gamma(W)) = \det(CW + D)^k f(W)$ for all $\gamma = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \Gamma$.
- (2) $[\det(E_q {}^t\overline{W}W)]^{k/2} f(W)$ is bounded in $D_{p,q}$.

A function f in $S(k;\Gamma)$ is called a cusp form of weight k. A standard argument [6] shows that if k>2(p+q-1), then $S(k;\Gamma)$ is a finite dimensional vector space. Furthermore, its dimension can be calculated via the Selberg trace formula. An element M in Γ is regular elliptic if M is conjugate in $G_{\mathbf{R}}$ to $\Lambda_p \times \overline{\Lambda}_q = \mathrm{diag}[\lambda_1,\ldots,\lambda_p,\overline{\lambda}_{p+1},\ldots,\overline{\lambda}_{p+q}] \in S(U_p\times U_q)$ and $\lambda_j\lambda_{p+q}\neq 1$ for all $1\leq j\leq p,\ 1\leq k\leq q$. This is equivalent to saying that M has an isolated fixed point on $D_{p,q}$.

With these preparations, we now have the following

PROPOSITION 7. Suppose $M \in \Gamma$ and is conjugate in $G_{\mathbf{R}}$ to $\Lambda_p \times \overline{\Lambda}_q = \operatorname{diag}[\lambda_1, \ldots, \lambda_p, \overline{\lambda}_{p+1}, \ldots, \overline{\lambda}_{p+q}] \in S(U_p \times U_q)$ with $\lambda_j \lambda_{p+r} \neq 1$ for all $1 \leq j \leq p$, $1 \leq r \leq q$. Then the contribution of elements in Γ which are conjugate in Γ to M, to $\dim_{\mathbf{C}} S(k; \Gamma)$ (k > 2(p+q-1)), is given by

$$N_{\{M\}} = |C_{M,\mathbf{Z}}|^{-1} \prod_{s=1}^{q} \overline{\lambda}_{p+s}^{k} \cdot \prod_{j=1}^{p} \prod_{r=1}^{q} (1 - \overline{\lambda}_{j} \overline{\lambda}_{p+r})^{-1}.$$

Here $|C_{M,\mathbf{Z}}|$ is the order of $C_{M,\mathbf{Z}}$ which is the centralizer of M in $\overline{\Gamma}$, the quotient of Γ by its center.

PROOF. Let $H(k; D_{p,q})$ be the vector space of holomorphic functions which are square integrable on $D_{p,q}$ with respect to the measure $\det(E_q - {}^t\overline{W}W)^{k-p-q}dW$. From the argument of [7] or the explicit formula given in [9], we get that

$$K(W_1, W_2) = C(k; p, q) \det(E_q - {}^t\overline{W}_2W_1)^{-k}$$

with

$$C(k; p, q) = \pi^{-pq} \prod_{j=0}^{p-1} \prod_{r=0}^{q-1} (k - p - q + 1 + j + r),$$

the kernel function of $H(k; D_{p,q})$. Also we note that the set of monomials in $W = [w_{jr}]$ $(j = 1, \ldots, p, r = 1, \ldots, q)$ is an independent set as well as a complete system in $H(k; D_{p,q})$. Hence we can apply the Gram-Schmidt orthogonalization process to this set and get an orthonormal basis of $H(k; D_{p,q})$. The orthogonal relations in Proposition 5 still exist if we introduce the same coordinates for $D_{p,q}$ as we have done for D_n in Proposition 4. Consequently, we prove that

$$I_{p,q} = C(k; p, q) \int_{D_{p,q}} \det(E_q - {}^t \overline{W} W)^{k-p-q} \det(E_q - \overline{\Lambda}_q {}^t \overline{W} \overline{\Lambda}_p W)^{-k} dW$$
$$= \prod_{i=1}^p \prod_{r=1}^q (1 - \overline{\lambda}_j \overline{\lambda}_{p+r})^{-1}.$$

On the other hand, a standard argument (to change the order of integration and summation) [13] shows that the contribution $N_{\{M\}}$ is given by

$$\begin{split} N_{\{M\}} &= |C_{M,\mathbf{Z}}|^{-1} (\det \Lambda_q)^{-k} I_{p,q} \\ &= |C_{M,\mathbf{Z}}|^{-1} \prod_{s=1}^q \overline{\lambda}_{p+s}^k \cdot \prod_{j=1}^p \prod_{r=1}^q (1 - \overline{\lambda}_j \overline{\lambda}_{p+r})^{-1}. \end{split}$$

This proves our assertion.

REMARK. Proposition 6 can be applied to cases which may be left out by our main Theorem.

REFERENCES

- 1. Hel Braun, Hermitian modular functions, Ann. of Math. (2) 50 (1949), 827-855.
- 2. ____, Hermitian modular functions. III. The Hermitian modular group, Ann. of Math. (2) 53 (1951), 143-180.
- 3. Minking Eie, Dimension formulas for the vector spaces of Siegel's modular cusp forms of degree two and degree three, Thesis, University of Chicago, 1982, pp. 1-246.
- 4. ____, Dimensions of spaces of Siegel cusp forms of degree two and three, Mem. Amer. Math. Soc. No. 304 (1984), pp. 1-185.
- 5. ____, Contributions from conjugacy classes of regular elliptic elements in $Sp(n, \mathbf{Z})$ to the dimension formula, Trans. Amer. Math. Soc. **285** (1984), 403-410.
- R. Godement, Généralités sur les formes modulaires. I, II, Séminaire Henri Cartan, 10e années, 1957, 1958.
- L. K. Hua, On the theory of functions of several complex variables. I, II, III, Amer. Math. Soc. Transl. 32 (1962), 163-263.
- 8. ____, Inequalities involving determinants, Amer. Math. Soc. Transl. 32 (1962), 265-272.
- 9. Suehiro Kato, A dimension formula for a certain space of automorphic forms of SU(p,q), Math. Ann. **266** (1984), 457-477.
- Hans Maass, Siegel's modular forms and Dirichlet series, Lecture Notes in Math., vol. 216, Springer-Verlag, Berlin and New York, 1971.
- S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
- 12. George W. Machkey, Unitary group representation in physics, probability and number theory, Benjamin, New York, 1978.
- 13. A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47–87.
- 14. Hideo Shimizu, On discontinuous groups operating on the product of the upper half plane, Math. Ann. 177 (1963), 33-71.
- C. L. Siegel, Lectures on quadratic forms, Tata Institute of Fundamental Research, Bombay, 1967

INSTITUTE OF MATHEMATICS, ACADEMIA SINICA, NANKANG, TAIPEI, TAIWAN, REPUBLIC OF CHINA

MATHEMATISCHE INSTITUT DER UNIVERSITÄT GÖTTINGEN, BUNSENSTRASSE 3/5, D-3400 GÖTTINGEN, FEDERAL REPUBLIC OF GERMANY