EQUIVARIANT MINIMAL IMMERSIONS OF S^2 INTO $S^{2m}(1)$

NORIO EJIRI

ABSTRACT. We classify the directrix curves associated with equivariant minimal immersions of S^2 into $S^{2m}(1)$ and obtain some applications.

0. Introduction. Minimal immersions of the 2-sphere S^2 into the standard *n*-dimensional unit sphere $S^n(1)$ in the euclidean space R^{n+1} were studied by O. Boruvka [1], E. Calabi [6], S. S. Chern [7], J. L. M. Barbosa [2], and R. L. Bryant [5]. On the other hand, K. Uhlenbeck [16] handled equivariant harmonic maps of S^2 into $S^n(1)$ as completely integrable systems.

In this paper, we study equivariant minimal immersions of S^2 into $S^n(1)$ of type $(m_{(1)}, \ldots, m_{(m)})$ (see §3) by using Chern and Barbosa's method [7, 2]. That is, we classify directrix curves associated with equivariant (generalized) minimal immersions of S^2 into $S^{2m}(1)$ of type $(m_{(1)}, \ldots, m_{(m)})$. We see that the volume of the generalized minimal immersions is equal to $4\pi(m_{(1)} + \cdots + m_{(m)})$ and the regularity of the generalized minimal immersions is equivalent to $m_{(1)} = 1$, which gives another proof of [16]. In particular, examples constructed by Barbosa [2] are equivariant minimal immersions of type $(1, \dots, m-1, k)$. Furthermore, in §4, we investigate minimal immersions of the real projective 2-space P² into the standard 2m-dimensional real projective space $P^{2m}(1)$ and show that there is no full minimal immersion of P^2 into $S^{2(2m-1)}(1)$. We classify equivariant minimal immersions of P^2 into $P^{2m}(1)$ of type $(m_{(1)}, \ldots, m_{(m)})$ and prove that an equivariant minimal immersion of P^2 into $P^{2m}(1)$ of type $(m_{(1)}, \ldots, m_{(m)})$ is unique. Hence we note that a minimal immersion with volume $m(m+1)\pi$ is the standard minimal immersion $P^{2}(2/m(m+1)) \rightarrow P^{2m}(1)$. Using this fact, we obtain an application to P. Li and S. T. Yau's inequality [12]. In §5, we show that the minimal cone of a full minimal immersion of S^2 into $S^{2m}(1)$ is stable. The minimal cone of the holomorphic immersion of S^2 into $S^6(1)$ with almost complex structure defined by Cayley numbers has the parallel calibration ω [11] and hence is homologically volume minimizing. Conversely we prove that the full minimal immersion of S^2 into $S^{2m}(1)$ whose minimal cone has a parallel calibration is holomorphic in $S^6(1)$. Using this equivalence, we classify equivariant holomorphic immersion of S^2 into $S^6(1)$. On the other hand, it is known that 3-dimensional totally real submanifolds in $S^6(1)$ are minimal [8] and their minimal cones have the parallel calibration $*\omega$ and hence are

Received by the editors January 4, 1985 and, in revised form, July 12, 1985. 1980 *Mathematics Subject Classification*. Primary 53A10; Secondary 53C40.

homologically volume minimizing [13]. In §7, we prove that some tubes in the direction of the first and second normal bundle of holomorphic curves give 3-dimensional totally real submanifolds in $S^6(1)$. Using this fact, we see that circle bundles of S^2 of positive even Chern number (≥ 4) are minimally immersed in $S^6(1)$. In particular, the minimal immersion of $S^3(\frac{1}{16})$ into $S^6(1)$ is constructed by the above method as well as the holomorphic immersion of $S^2(\frac{1}{6})$ into $S^6(1)$.

The author is grateful to Professor K. Ogiue for his useful criticism.

1. Higher fundamental forms. Let $\overline{M}^n(c)$ be an *n*-dimensional Riemannian manifold of constant curvature c. We denote by \langle , \rangle and $\overline{\nabla}$ the metric and the covariant differentiation of $\overline{M}^n(c)$, respectively. Let M be an *m*-dimensional manifold immersed in $\overline{M}^n(c)$, χ the immersion and ∇ the covariant differentiation of M with respect to the induced metric. Then the second fundamental form σ_2 of M is given by

$$\sigma_2(X,Y) = \overline{\nabla}_X Y - \nabla_X Y$$

and satisfies

$$\sigma_2(X,Y) = \sigma_2(Y,X).$$

Let $N_x(M)$ be the normal space at x. We call the subspace $N_1(x)$ of $N_x(M)$ spanned by $\sigma_2(X,Y)$ for all $X,Y \in T_x(M)$ the *first normal space* at x and we denote $\bigcup_{x \in M} N_1(x)$ by $N_1(M)$. Let M_1 be the subset of M defined by

$$\left\{x \in M: \dim N_1(x) = \max_{x \in M} \dim N_1(x)\right\}.$$

Then, by the definition of M_1 , M_1 is open in M. Since the restriction $N_1(M_1)$ of $N_1(M)$ to M_1 is a subbundle of $N(M_1)$, we can define the third fundamental form σ_3 by

$$\sigma_3(X_1, X_2, X_3)$$
 = the component of $\nabla_{X_1}^N \sigma_2(X_2, X_3)$ which is orthogonal to $N_1(M_1)$,

where ∇^N is the normal connection of N(M).

It is easy to see that σ_3 is a 3-symmetric tensor. Continuing this process, we can define the (s+1)st fundamental form σ_{s+1} , the sth normal bundle $N_s(M_s)$ ($M_0=M$) and the open set M_s for $s \ge 1$. Furthermore we have the fact that σ_{s+1} is an (s+1)-symmetric tensor. We set $r_s = \operatorname{rank} N_s(M_s)$. If there is an s_0 such that $r_{s_0} = 0$, then by [10], $N(M_{s_0})$ has the Whitney sum decomposition:

$$N_1(M_{s_0}) + \cdots + N_{s_0-1}(M_{s_0}) + P$$

where $N_i(M_{s_0})$ is the restriction of $N_i(M_i)$ to M_{s_0} and P is the bundle which is parallel with respect to ∇^N . By J. Erbacher [10], we obtain

$$\chi(M_{s_0}) \subset a$$
 totally geodesic submanifold of codimension dim P .

2. Minimal immersions of S^2 **into** $S^n(1)$. In this section, we review necessary results on minimal immersions of S^2 into $S^n(1) \subset R^{n+1}$.

If S^2 is fully immersed in $S^n(1)$, then n is an even integer (=2m). Moreover the higher fundamental forms σ_s for $s=2,\ldots,m$ satisfy

$$\sum_{i=1}^{2} \sigma_{s}(e_{i}, e_{i}, X_{1}, X_{2}, \dots, X_{s-2}) = 0,$$

$$\sigma_{s}(X, \dots, X, Y) \text{ is orthogonal to } \sigma_{s}(X, \dots, X),$$

$$\|\sigma_{s}(X, \dots, X)\| = \|\sigma_{s}(X, \dots, X, Y)\| = l_{s-1},$$

where $\{e_1, e_2\}$ is an orthonormal basis and X, Y are orthonormal vectors of $T(S_{s-2}^2)$. Since the immersion is full and analytic, we obtain $l_1, \ldots, l_{m-1} \neq 0$ on any open subset. For an orthonormal local cross section e_3, \ldots, e_{2m} of $N(M_{m-1})$ defined by

$$e_{2s-1} = \frac{1}{l_{s-1}} \sigma_s(e_1, \dots, e_1), \quad e_{2s} = \frac{1}{l_{s-1}} \sigma_s(e_1, \dots, e_1, e_2),$$

we set $E_s = e_{2s-1} + ie_{2s}$ for $2 \le s \le m$. Then we have

(2.1)
$$\overline{\nabla}E_s = -\kappa_{s-1}\phi E_{s-1} - i\omega_{2s-1,2s}E_s + \kappa_s\overline{\phi}E_{s+1},$$

$$\omega_{2s-1,2s} = s\omega_{1,2} + \theta_{s-1}, \quad \theta_s = d^c\log(\kappa_1,\ldots,\kappa_s),$$

where $\kappa_s = l_s/l_{s-1}$ $(l_0 = 1)$, $\phi = \omega_1 + i\omega_2$ such that ω_1 , ω_2 are the dual frames of $\{e_1, e_2\}$, $\kappa_0 = 0$, $d^c = i(\bar{\partial} - \partial)$, and

$$\omega_{1,2}(X) = \langle \nabla_X e_1, e_2 \rangle, \qquad \omega_{2s-1,2s}(X) = \langle \overline{\nabla}_X e_{2s-1}, e_{2s} \rangle.$$

We have the following relations among $\kappa_1, \ldots, \kappa_m$:

(2.2)
$$\kappa_1^2 = \frac{1}{2}(1 - K), \qquad \kappa_m = 0, \\ \frac{1}{2}\Delta \log(\kappa_1, \dots, \kappa_s) + \kappa_s^2 - \kappa_{s+1}^2 - \frac{1}{2}(s+1)K = 0,$$

where K is the Gauss curvature of M. These results are given in [7]. Moreover we note the following [3, 7]:

 $M-M_{m-1}$ consists of isolated points and the sth normal bundle is defined over isolated points.

Next we review Barbosa's result [2].

Let z be an isothermal coordinate of S^2 and (,) the symmetrical product of C^{2m+1} , i.e., the complex linear extension of the euclidean product of R^{2m+1} . Then we construct vector valued functions G_0, G_1, \ldots, G_m as follows:

(2.3)
$$G_{0} = \chi, \quad G_{1} = \overline{\partial}\chi,$$

$$G_{k} = \overline{\partial}^{k}\chi - \sum_{j=1}^{k-1} a_{k}^{j}G_{j}, \quad G_{m} = \overline{\partial}^{m}\chi - \sum_{j=1}^{m-1} a_{m}^{j}G_{j},$$

where the a_k^j are chosen in such a way that $(G_k, \overline{G}_j) = 0$ for j < k. Barbosa obtains the following

LEMMA 2.1 (BARBOSA [2]). (1)
$$\bar{\partial}G_k = G_{k+1} + (\bar{\partial}\log|G_k|^2)G_k$$
, (2) $\partial G_k = -|G_k|^2G_{k-1}/|G_{k-1}|^2$ for $k > 0$, (3) $\bar{\partial}G_m = (\bar{\partial}\log|G_m|^2)G_m$.

Note the fact that $\xi = G_m/|G_m|^2$ is holomorphic and

(2.2)
$$(\xi, \xi) = \cdots = (\xi^{m-1}, \xi^{m-1}) = 0,$$

where $\xi^k = \partial^k \xi$. We call ξ the associated holomorphic map of χ . Furthermore

LEMMA 2.2 (BARBOSA [2]). ξ has only isolated singularities with poles and ξ gives a holomorphic map Ξ of S^2 into a 2m-dimensional complex projective space P_{2m} .

We call the above holomorphic map Ξ the *directrix curve* of the immersion χ . We define ψ by

$$\psi = \xi \wedge \xi^1 \wedge \cdots \wedge \xi^{m-1} \wedge \bar{\xi} \wedge \bar{\xi}^1 \wedge \cdots \wedge \bar{\xi}^{m-1},$$

which is a map into $\bigwedge^{2m}C^{2m+1}$ and define $\tilde{\psi}$ by

$$\tilde{\psi} = \begin{cases} \psi & \text{if } m \text{ is even,} \\ -i\psi & \text{if } m \text{ is odd.} \end{cases}$$

Regarding $\Lambda^{2m}C^{2m+1}$ as C^{2m+1} , we note that $\tilde{\psi}$ is parallel to χ . Conversely let Ξ be a holomorphic curve of S^2 into P_{2m} which is not contained in any hyperplane of P_{2m} . Using an isothermal coordinate z and the inhomogeneous coordinates of P_{2m} , we have a local expression $\xi(z)$ of $\Xi(z)$ into C^{2m+1} . Assume that ξ satisfies (2.2). Then we can construct $\tilde{\psi}$ as above and we have the following

PROPOSITION 2.1 (BARBOSA [2]). The function $\tilde{\psi}/|\tilde{\psi}|$ is independent of the particular local coordinates used, and so it defines a global map χ from S^2 into $S^{2m}(1)$. Furthermore, we have, relative to a local coordinate z, that $(\partial \chi, \partial \chi) = 0$, $\partial \bar{\partial} \chi$ is parallel to χ and

$$\left(\partial \chi, \overline{\partial} \chi\right) = \left|\xi_{m-1} \wedge \xi'_{m-1}\right|^2 / \left|\xi_{m-1}\right|^4,$$

where $\xi_{m-1} = \xi \wedge \xi' \wedge \cdots \wedge \xi^{m-1}$.

Proposition 2.1 implies that χ is a generalized minimal immersion (see, for example, [2]). Let Ξ be a holomorphic map of S^2 into P_{2m} which is not contained in a hyperplane and whose local expression ξ satisfies (2.2). Then we call Ξ a totally isotropic curve. Consequently we obtain

THEOREM 2.1 (BARBOSA [2]). There exists a canonical 1-1 correspondence between the set of generalized minimal immersions $\chi\colon S^2\to S^{2m}(1)$ which are not contained in any lower dimensional subspace of R^{2m+1} and the set of totally isotropic holomorphic curves $\Xi\colon S^2\to P_{2m}$ which are not contained in any complex hyperplane of P_{2m} . The correspondence is the one that associates with minimal immersion χ its directrix curve.

By the definition of G_j and E_j , we obtain

LEMMA 2.3. $G_j = \lambda^j/2\kappa_1 \cdots \kappa_{j-1}E_j$, where $\lambda^2 dz d\bar{z}$ is the metric tensor.

3. Equivariant minimal immersions of S^2 into $S^{2m}(1)$. Let ρ and $\tilde{\rho}$ be a circle action of S^2 and a one-parameter subgroup of isometries of $S^{2m}(1)$, respectively. Let χ be an equivariant minimal immersion of S^2 into $S^{2m}(1)$ which is not contained in any hyperplane of R^{2m+1} and satisfies

(3.1)
$$\chi(\rho(\theta)x) = \bar{\rho}(\theta)\chi(x).$$

Since $\rho(\theta)$ is a circle action and gives a conformal transformation of $S^2(1)$, there exists an isothermal coordinate z defined by the stereographic projection of $S^2(1)$ onto R^2 such that

$$\rho(\theta)$$
: $z \to e^{i\theta}z$.

Choosing orthogonal coordinates $(x^1, y^1, ..., x^m, y^m, u)$ of R^{2m+1} , we have positive integers $0 \le m_{(1)} \le m_{(2)} \le \cdots \le m_{(m)}$ such that

$$\tilde{\rho}(\theta)(x^1, y^1, \dots, x^m, y^m, u)$$

$$= (\dots, x^k \cos m_{(k)}\theta - y^k \sin m_{(k)}\theta, x^k \sin m_{(k)}\theta + y^k \cos m_{(k)}\theta, \dots, u).$$

The equivariant minimal immersion is said to be of type $(m_{(1)}, \ldots, m_{(m)})$.

 χ gives the same vector valued functions G_j as (2.1). Let D_j and F_j be the vector valued functions defined by $\chi \cdot \rho$, $\tilde{\rho} \cdot \chi$, respectively. Then we have

LEMMA 3.1.
$$D_i = e^{-i(j\theta)}G_i \cdot \rho$$
 and $F_i = \tilde{\rho} \cdot G_i$.

PROOF. From the definition of D_i , we have

$$D_1 = \overline{\partial}(\chi \cdot \rho) = e^{-i\theta}G_1 \cdot \rho(z).$$

Assume $D_j = e^{-i(j\theta)}G_j \cdot \rho$ for $j \le k$. Then

$$\begin{split} D_{k+1} &= \frac{\partial^{k+1}}{\partial \bar{z}^{k+1}} (\chi \cdot \rho) - \sum_{l=1}^{k} \left(\frac{\partial^{k+1}}{\partial \bar{z}^{k+1}} (\chi \cdot \rho), \, \overline{D}_{l} \right) \frac{D_{l}}{\|D_{l}\|^{2}} \\ &= \frac{\partial^{k+1}}{\partial \bar{z}^{k+1}} (\chi \cdot \rho) - \sum_{l=1}^{k} \left(e^{-(k+1)\theta} \left(\frac{\partial^{k+1}}{\partial \bar{z}^{k+1}} \right) (e^{i\theta}z), \, \overline{e^{-i(l\theta)}G_{l} \cdot \rho} \right) \frac{e^{-i(l\theta)}G_{l} \cdot \rho}{\|G_{l} \cdot \rho\|^{2}} \\ &= e^{-(k+1)\theta}G_{k+1} \cdot \rho(z). \quad \text{Q.E.D.} \end{split}$$

Since $\tilde{\rho} \cdot \chi = \chi \cdot \rho$, we obtain

$$\frac{D_m}{\|D_m\|^2} = \frac{F_m}{\|F_m\|^2},$$

which implies

(3.2)
$$e^{-\mathrm{im}\theta}\xi(\rho(z)) = \tilde{\rho}(\theta)\xi(z).$$

Conversely, we have the following

LEMMA 3.2. Let χ be a full minimal immersion of S^2 into $S^{2m}(1)$ and Ξ the directrix curve. Let z be an isothermal coordinate of S^2 defined by the stereographic projection of $S^2(1)$ onto R^2 and $\xi(z)$ the expression of Ξ . If $\xi(\rho(\theta)z)$ is parallel to $\tilde{\rho}(\theta)\xi(z)$, then χ is an equivariant minimal immersion.

PROOF. From the definition of ψ , we get

$$\psi(\rho(\theta)z) = \xi(\rho(\theta)z) \wedge \cdots \wedge \xi^{m-1}(\rho(\theta)z)$$
$$\wedge \frac{\xi(\rho(\theta)z)}{\xi(\rho(\theta)z)} \wedge \cdots \wedge \frac{\xi^{m-1}(\rho(\theta)z)}{\xi^{m-1}(\rho(\theta)z)}.$$

It follows from (3.2) that

$$\psi(\rho(\theta)z) = \tilde{\rho}(\theta)\xi(z) \wedge \cdots \wedge \tilde{\rho}(\theta)\xi^{m-1}(z)$$
$$\wedge \frac{\tilde{\rho}(\theta)\xi(z)}{\tilde{\rho}(\theta)\xi(z)} \wedge \cdots \wedge \frac{\tilde{\rho}(\theta)\xi^{m-1}(z)}{\tilde{\rho}(\theta)\xi^{m-1}(z)}.$$

Since $\tilde{\rho}$ acts on $\Lambda^{2m}C^{2m+1}$, we have $\psi(\rho(\theta)z) = \tilde{\rho}(\theta)\psi(z)$. This, together with $\chi = \tilde{\psi}/||\tilde{\psi}||$, implies that χ is an equivariant minimal immersion of S^2 into $S^{2m}(1)$. Q.E.D.

Hence, by Theorem 2.1, the study of equivariant minimal immersions of type $(m_{(1)}, \ldots, m_{(m)})$ reduces to that of totally isotropic curves whose expression ξ satisfies (3.2). Then, since ξ has no essential singularity at z = 0, it can be written in some neighborhood of 0 as

$$\xi(z) = \sum_{\alpha=k}^{l} a_{\alpha} z^{\alpha},$$

where $a_{\alpha} \in C^{2m+1}$ and k is the degree of poles at z = 0. Setting $\xi^{j}(z) = \sum_{\alpha} A_{\alpha}^{j} z^{\alpha}$, we obtain

$$e^{i(\alpha-m)}A_{\alpha}^{2j-1} = A_{\alpha}^{2j-1}\cos m_{(j)}\theta - A_{\alpha}^{2j}\sin m_{(j)}\theta,$$

$$e^{i(\alpha-m)\theta}A_{\alpha}^{2j} = A_{\alpha}^{2j-1}\sin m_{(j)}\theta + A_{\alpha}^{2j}\cos m_{(j)}\theta.$$

We note that A_{α}^{2j-1} , $A_{\alpha}^{2j} \neq 0$ holds if and only if

$$\left(\cos m_{(j)}\theta - e^{i(\alpha-m)\theta}\right)^2 + \sin^2 m_{(j)}\theta = 0.$$

Then $\alpha = m - m_{(j)}$ or $\alpha = m + m_{(j)}$ and $A_{m-m_{(j)}}^{2j} = iA_{m-m_{(j)}}^{2j-1}$, $A_{m+m_{(j)}}^{2j} = -iA_{m-m_{(j)}}^{2j-1}$. We denote $A_{m-m_{(j)}}^{2j-1}$ and $A_{m+m_{(j)}}^{2j-1}$ by A_j and B_j , respectively. By $(\xi, \xi) = 0$, we obtain

$$\xi^{2m+1}(z)^2 + \left(4\sum_{j=1}^m A_j B_j\right) z^{2m} = 0$$

and hence

$$\xi^{2m+1}(z) = i\sqrt{4\sum_{j=1}^{m}C_{j}z^{m}},$$

where $C_j = A^j B^j$. Setting $\kappa = \sqrt{4 \sum_{j=1}^m C_j}$, we have

(3.3)
$$\xi(z) = (\ldots, A_j z^{m-m_{(j)}} + B_j z^{m+m_{(j)}}, iA_j z^{m-m_{(j)}} - iB_j z^{m+m_{(j)}}, \ldots, i\kappa z^m).$$

By (3.3), $m_{(1)} < \cdots < m_{(m)}$ holds, because $\xi(z)$ is not contained in any subspace of C^{2m+1} . Let a_i , b_i be the vectors of C^{2m+1} defined by

$$a_i = A^j (e_{2i-1} + ie_{2i})$$
 and $b_i = B^j (e_{2i-1} - ie_{2i})$,

where $e_k = (0, ..., 0, 1, 0, ..., 0)$ (one in the kth position). Then $(a_j, b_j) = 2C_j$ for $1 \le j \le m$ clearly holds, and ξ can be written as

$$\xi(z) = z^{-m+m_{(m)}} \left\{ a_m + b_m z^{2m_m} + \sum_{j=1}^{m-1} a_j z^{m_m - m_{(j)}} + \sum_{j=1}^{m-1} b_j z^{m_m + m_{(j)}} + i \kappa e_{2m+1} z^{m_{(m)}} \right\}.$$

Let $\eta(z)$ be the terms in $\{\cdots\}$. Then $\xi(z)$ is totally isotropic if and only if $\eta(z)$ is. $\eta'(z)$ is given by

$$\begin{split} z^{m_{(m)}-m_{(m-1)}-1} & \Big\{ 2m_{(m)}b_{m}z^{m_{(m)}+m_{(m)}-1} + \big(m_{(m)}-m_{(m-1)}\big)a_{m-1} \\ & + \big(m_{(m)}+m_{(m-1)}\big)b_{m-1}z^{2m_{(m-1)}} + \big(m_{(m)}-m_{(j)}\big)a_{j}z^{m_{(m)}-m_{(j)}} \\ & + \big(m_{(m)}+m_{(j)}\big)b_{j}z^{m_{(m-1)}+m_{(j)}} + \big(m_{(m)}-m_{(1)}\big)a_{1}z^{m_{(m-1)}-m_{(1)}} \\ & + \big(m_{(m)}+m_{(1)}\big)b_{1}z^{m_{(m-1)}+m_{(1)}} + i\kappa m_{(m)}e_{2m+1}z^{m_{(m-1)}} \Big\}. \end{split}$$

We denote the terms in $\{\cdots\}$ by η_1 . Then

$$(\eta_1, \eta_1) = \cdots = (\eta_1^{m-2}, \eta_1^{m-2}) = 0$$

holds. Continuing this process, we obtain holomorphic curves $\eta(z)$, $\eta_{(1)}(z)$, ..., $\eta_{(m-1)}(z)$ such that

$$(\eta, \eta) = (\eta_{(1)}, \eta_{(1)}) = \cdots = (\eta_{(m-1)}, \eta_{(m-1)}) = 0,$$

which is equivalent to the fact that ξ is totally isotropic. Thus we get

LEMMA 3.3. § is totally isotropic if and only if

$$(1) C_1 + \cdots + C_m = \frac{1}{4}\kappa^2,$$

(2)

$$\left(m_{(m)}^2 - m_{(j)}^2 \right) \cdots \left(m_{(j+1)}^2 - m_{(j)}^2 \right) C_j + \sum_{k < j} \left(m_{(m)}^2 - m_{(k)}^2 \right) \cdots \left(m_{(j+1)}^2 - m_{(j)}^2 \right) C_k$$

$$= \frac{1}{4} \kappa^2 m_{(m)}^2 \cdots m_{(j+1)}^2 \quad \text{for each } j \le m-1.$$

We can solve the equations (1) and (2), that is, we get

LEMMA 3.4. The unique solutions C_j of (1) and (2) are given by

$$C_{j} = (-1)^{j-1} \times \frac{\kappa^{2} m_{(m)}^{2} \cdots m_{(j+1)}^{2} m_{(j-1)}^{2} \cdots m_{(1)}^{2}}{4(m_{(m)}^{2} - m_{(j)}^{2}) \cdots (m_{(j+1)}^{2} - m_{(j)}^{2})(m_{(j)}^{2} - m_{(j-1)}^{2}) \cdots (m_{(j)}^{2} - m_{(1)}^{2})}.$$

PROOF. It is easy to see that the solutions C_1, \ldots, C_m are unique. We prove that the above C_j satisfy (1) and (2). (2) holds if and only if (3.4)

$$\sum_{k=1}^{j} \frac{\left(-1\right)^{j-1}}{\left(m_{(m)}^{2} - m_{(j)}^{2}\right) \cdots \left(m_{(k)}^{2} - m_{(k+1)}^{2}\right) m_{(k)}^{2} \left(m_{(k)}^{2} - m_{(k-1)}^{2}\right) \cdots \left(m_{(k)}^{2} - m_{(1)}^{2}\right)}$$

$$= \frac{1}{m_{(i)}^{2} \cdots m_{(1)}^{2}}.$$

For each k > l,

$$\frac{1}{\left(m_{(k)}^{2}-m_{(f)}^{2}\right)\cdots\left(m_{(k)}^{2}-m_{(k+1)}^{2}\right)m_{(k)}^{2}\left(m_{(k)}^{2}-m_{(k-1)}^{2}\right)\cdots\left(m_{(k)}^{2}-m_{(f)}^{2}\right)\cdots\left(m_{(k)}^{2}-m_{(1)}^{2}\right)} + \frac{1}{\left(m_{(f)}-m_{(f)}\right)\cdots\left(m_{(f)}-m_{(k)}\right)\cdots\left(m_{(f)}-m_{(f+1)}\right)m_{(f)}\left(m_{(f)}-m_{(f+1)}\right)\cdots\left(m_{(f)}-m_{(f-1)}\right)\cdots\left(m_{(f)}-m_{(f)}\right)}$$

converges to some value if $m_{(k)} \to m_{(l)}$. Therefore the left-hand side of (3.4) converges to some value even if $m_{(k)} \to m_{(l)}$. Choosing the common denominator, we note that the numerator has the divisor:

$$(m_{(j)}-m_{(j-1)})\cdots(m_{(j)}-m_{(1)})(m_{(j-1)}-m_{(j-2)})$$

 $\cdots(m_{(j-1)}-m_{(1)})\cdots(m_{(2)}-m_{(1)}).$

Thus the left-hand side of (3.3) is given by

$$\frac{L}{m_{(i)}^2 \cdots m_{(1)}^2}$$

up to a real number L. We can easily prove $L = (-1)^{j-1}$ by induction and $m_{(1)} \to \infty$. Since (3.3) holds for j = m, we have (1). Q.E.D.

LEMMA 3.5. Let χ be an equivariant minimal immersion of S^2 fully into $S^{2m}(1)$ of type $(m_{(1)}, \ldots, m_{(m)})$. Then $m_{(1)}, \ldots, m_{(m)}$ and the associated holomorphic map ξ of χ is given by

$$\xi(z) = (\ldots, A_j z^{m-m_{(j)}} + B_j z^{m+m_{(j)}}, iA_j z^{m-m_{(j)}} - iB_j z^{m+m_{(j)}}, \ldots, i\kappa z^m),$$
where $A_i B_i (= C_i)$ are given by Lemma 3.4.

Choose an arbitrary pair of antipodal points over S^2 , say p_1 and p_2 , and take isothermal coordinates z and w defined by the stereographic projections at these points. Consider the holomorphic curve $\Xi \colon S^2 \to P_{2m}$ defined by $\xi(z)$ and $\zeta(w)$, where $\zeta(w) = w^{2m}\xi(1/w)$ and each of the local functions is supposed to represent Ξ in the corresponding coordinate neighborhood. Then Theorem 2.1 and Lemma 3.2 imply that Ξ is the directrix curve for an equivariant minimal immersion of certain type $(m_{(1)}, \ldots, m_{(m)})$. We remark that the example constructed in [2, p. 101] is an equivariant minimal immersion of type $(1, 2, \ldots, m-1, k)$, because the directrix curve is given by $\eta(z)$.

Next we study the volume and regularity of the minimal surface χ defined by ξ in Lemma 3.5.

Let S be a unitary matrix of degree 2m + 1 given by

$$S = \frac{2j - 1}{2j} \begin{pmatrix} 1/\sqrt{2} & i/\sqrt{2} \\ -i/\sqrt{2} & -1/\sqrt{2} \\ & & 1 \end{pmatrix}.$$

Then $\phi = S \cdot \xi$ is given by

$$\phi(z) = \frac{2j-1}{2j} \begin{pmatrix} \sqrt{2} B_j z^{m+m_{(j)}} \\ -\sqrt{2} i A_j z^{m-m_{(j)}} \\ \vdots \\ i \kappa z^m \end{pmatrix}$$

and hence $\xi_{m-1}(z) = S^{-1}\phi_{m-1}(z)$. Considering ϕ_{m-1} a holomorphic curve in $P_{\binom{2m+1}{m}}$ with holomorphic sectional curvature 2, by Proposition 2.1, we see that

$$volume(\phi_{m-1}) = volume(\chi)$$

and that ϕ_{m-1} is regular if and only if χ is. We need the following lemma to decide the regularity of ϕ_{m-1} .

LEMMA 3.6. For real numbers $l, l_1, ..., l_m$, we have

(3.5)
$$\det \begin{pmatrix} (l-l_{j})\cdots(l-l_{j}-(k-1)) \\ (l-l_{j})\cdots(l-l_{j}-((m-1))-1) \end{pmatrix} = (l_{1}-l_{2})\cdots(l_{1}-l_{m})\cdots(l_{m-1}-l_{m}).$$

PROOF. The result follows from the fact that the left-hand side of (3.5) has common divisors $(l_i - l_k)$. Q.E.D.

Let $\{e_{j_1} \wedge \cdots \wedge e_{j_m}, 1 \leq j_1 < j_2 < \cdots < j_m \leq 2m+1\}$ be the basis of $\bigwedge^m C^{2m+1}$. Then there are polynomial functions A_{j_1}, \ldots, A_{j_m} such that

(3.6)
$$\phi_{m-1}(z) = \sum A_{j_1 j_2 \dots j_m} e_{j_1} \wedge e_{j_2} \wedge \dots \wedge e_{j_m}.$$

It is clear that

$$\min_{j_1 < \cdots < j_m} \left\{ \deg A_{j_1 \cdots j_m}(z) \right\} \geqslant m^2 - m_{(m)}^2 - \cdots - m_{(1)} - \frac{1}{2}m(m-1),$$

$$\max_{j_1 < \cdots < j_m} \left\{ \deg A_{j_1 \cdots j_m}(z) \right\} \leqslant m^2 + m_{(m)} + \cdots + m_{(1)} - \frac{1}{2}m(m-1).$$

By Lemma 3.6, the equalities hold. Thus we see that

volume(
$$\chi$$
) = $4\pi(m_{(1)} + \cdots + m_{(m)})$.

It is easy to see that the regularity of ϕ_{m-1} is equivalent to

(3.7)
$$\frac{\left|\phi_{m-1} \wedge \phi'_{m-1}\right|^2}{\left|\phi_{m-1}\right|^4} \neq 0$$

(see, for example, [2]). By Lemma 3.6,

$$\phi_{m-1}(z) = (-\sqrt{2}i)^{m} A_{1} \cdots A_{m} (m_{(1)} - m_{(2)}) \cdots m_{(m)}$$

$$\times z^{m^{2} - m_{(1)} - \cdots - m_{(m)} - m(m-1)/2} e_{2} \wedge e_{4} \wedge \cdots \wedge e_{2k} \wedge \cdots \wedge e_{2m}$$

$$+ (-\sqrt{2}i)^{m-1} i \kappa A_{2} \cdots A_{m} (m_{(2)} - m_{(3)}) \cdots (m_{(2)} - m_{(m)}) m_{2}$$

$$(m_{(3)} - m_{(4)}) \cdots (m_{(3)} - m_{(m)}) m_{(3)} \cdots m_{(m)}$$

$$\times z^{m^{2} - m_{(2)} - \cdots - m_{(m)} - m(m-1)/2} e_{4} \wedge e_{6} \wedge \cdots \wedge e_{2k} \wedge \cdots \wedge e_{2m} \wedge e_{2m+1} + \cdots$$

Since we note that

$$\left|z^{-(m^2-m_{(1)}-\cdots-m_{(m)}-m(m-1)/2)}\phi_{m-1}(z)\right|\neq 0.$$

(3.7) is equivalent to

$$(3.8) z^{-2(m^2-m_{(1)}-\cdots-m_{(m)}-m(m-1)/2)}\phi_{m-1}(z) \wedge \phi'_{m-1}(z) \neq 0.$$

By the calculation of $\phi_{m-1}(z) \wedge \phi'_{m-1}(z)$, we see that ϕ_{m-1} is regular if and only if $m_{(1)} = 1$. That is, ϕ_{m-1} has two poles at 0 and ∞ of degree $m_{(1)}$.

THEOREM 3.1. Let χ be an equivariant generalized minimal immersion of S^2 fully into $S^{2m}(1)$ of type $(m_{(1)}, \ldots, m_{(m)})$. Then

(i) the directrix curve for χ is given by

$$\xi(z) = (\ldots, A_i z^{m-m_{(i)}} + B_i z^{m+m_{(i)}}, i A_i z^{m-m_{(i)}} - i B_i z^{m+m_{(i)}}, \ldots, i z^m),$$

where

$$A_{j}B_{j} = (-1)^{j-1} \times \frac{m_{(m)}^{2} \cdots m_{(j+1)}^{2} m_{(j-1)}^{2} \cdots m_{(1)}^{2}}{4(m_{(m)}^{2} - m_{(j)}^{2}) \cdots (m_{(j+1)}^{2} - m_{(j)}^{2})(m_{(j)}^{2} - m_{(j-1)}^{2}) \cdots (m_{(j)}^{2} - m_{(1)}^{2})},$$

- (ii) its volume is $4\pi(m_{(1)} + \cdots + m_{(m)})$,
- (iii) χ is an immersion if and only if $m_{(1)} = 1$.

REMARK. (1) In the case that $m_{(1)} = 1, \ldots, m_{(m-1)} = m-1, m_{(m)} = k$, Barbosa [2] shows that volume(χ) = $2\pi(2k + m(m-1))$ and χ is an immersion.

(2) The regularity condition $m_{(1)} = 1$ is proved in [16].

Let A be the element of SO(2m + 1, C) given by

$$\begin{pmatrix} \ddots & a_j, & b_j \\ -b_j, & a_j \end{pmatrix},$$

where $a_j^2 + b_j^2 = 1$. Then $A\xi(z)$ also gives a directrix curve of a certain minimal immersion of S^2 into $S^{2m}(1)$ [2]. Hence the coefficients A_j' , B_j' of $A\xi(z)$ are given by

$$A'_i = (a_i + ib_i)A_i, \qquad B'_i = (a_i - ib_i)B_i.$$

This implies that this action on equivariant minimal immersions of type $(m_{(1)}, \ldots, m_{(m)})$ is transitive and hence the class of equivariant minimal immersions of type $(m_{(1)}, \ldots, m_{(m)})$ is equal to $(R_+)^m$.

4. Minimal immersions of P^2 **into** $P^{2m}(1)$. The deck transformation of S^2 which gives P^2 is given by ω ,

$$\omega$$
: $z \rightarrow -1/\bar{z}$.

Let $\tilde{\chi}$ be a minimal immersion of P^2 fully into $P^{2m}(1)$. Then there exists a minimal immersion χ of S^2 fully into $S^{2m}(1)$ such that

$$S^{2} \xrightarrow{\chi} S^{2m}(1)$$

$$\downarrow \pi \qquad \qquad \downarrow \pi$$

$$P^{2} \xrightarrow{\tilde{\chi}} P^{2m}(1)$$

is commutative and $\chi(\omega(z)) = \chi(z)$ or $-\chi(z)$.

Case 1: $\chi(\omega(z)) = \chi(z)$. This case implies that there exists a minimal immersion of P^2 into $S^{2m}(1)$.

By the same method as in (2.1), we construct vector-valued functions G_j and F_j from χ and $\chi \cdot \omega$, respectively. It is easy to show that

$$F_k(z) = \overline{G_k(-1/\overline{z})} / \overline{z}^{2k}.$$

It follows that $\xi = G_m/|G_m|^2$ satisfies

$$\xi(z) = z^{2m} \overline{\xi(-1/\overline{z})}.$$

Case 2: $\chi(\omega(z)) = -\chi(z)$. Similarly we obtain

(4.2)
$$\xi(z) = -z^{2m} \overline{\xi(-1/\bar{z})}.$$

In both cases, we get

$$\psi(z) = \xi(z) \wedge \cdots \wedge \xi^{m-1}(z) \wedge \overline{\xi(z)} \wedge \cdots \wedge \overline{\xi^{m-1}(z)}$$

$$= |z|^{4m^2} \overline{\xi(\omega)} \wedge \frac{1}{z^2} \overline{\xi'(\omega)} \wedge \cdots \wedge \frac{1}{z^2} \overline{\xi^{m-1}(\omega)} \wedge \xi(\omega)$$

$$\wedge \frac{1}{z^2} \xi'(\omega) \wedge \cdots \wedge \frac{1}{z^2} \xi^{m-1}(\omega)$$

$$= |z|^{4(m^2 - m + 1)} (-1)^{m^2} \xi(\omega) \wedge \cdots \wedge \xi^{m-1}(\omega) \wedge \overline{\xi(\omega)} \wedge \cdots \wedge \overline{\xi^{m-1}(\omega)}$$

$$= |z|^{4(m^2 - m + 1)} (-1)^{m^2} \psi(-\frac{1}{z}).$$

Using Proposition 2.1, we obtain $\chi(z) = -\chi(-1/\bar{z})$ if m is odd, $\chi(z) = \chi(-1/\bar{z})$ if m is even, which implies

PROPOSITION 4.1. Let $\tilde{\chi}$ be a minimal immersion of P^2 fully into $P^{2m}(1)$. Then Case 2 occurs if m is odd and Case 1 occurs if m is even.

Next we study equivariant minimal immersions of P^2 into $P^{2m}(1)$ of type $(m_{(1)}, \ldots, m_{(m)})$.

Case 1. By Theorem 3.1, we have $B_j = (-1)^{m-m_{(j)}} \overline{A_j}$ and hence $C_j = (-1)^{m+m_{(j)}} |A_j|^2$. Furthermore we see that if j is even, then so is $m+m_{(j)}$ and if j is odd, then so is $m+m_{(j)}$. Let $\bar{\chi}$ be another equivariant minimal immersion of type $(m_{(1)}, \ldots, m_{(m)})$ with the directrix curve given by $\tilde{\xi}$ whose coefficients are $\tilde{A_j}$ and $\tilde{B_j}$. By Theorem 3.1, there exist nonzero complex numbers α_j for $1 \le j \le m$ such that

$$\tilde{A}_j = \alpha_j A_j$$
 and $\tilde{B}_j = \frac{1}{\alpha_j} B_j$.

Since $\tilde{B}_j = (-1)^{m-m_{(j)}} \overline{\tilde{A}_j}$, we have $\alpha_j \overline{\alpha_j} = 1$, which together with Theorem 3.1 implies that $\bar{\chi}$ is congruent to χ .

Case 2. Similarly, we see that if j is even, then $m + m_{(j)}$ is odd, and if j is odd, then $m + m_{(j)}$ is even, and the same result holds as for Case 1.

PROPOSITION 4.2. Let χ be an equivariant minimal immersion of P^2 fully into $P^{2m}(1)$ of type $(m_{(1)}, \ldots, m_{(m)})$ with the directrix curve given by ξ as in Theorem 3.1.

If m is even, then

$$j: even \rightarrow m + m_{(j)}: even,$$

 $j: odd \rightarrow m + m_{(j)}: odd.$

Conversely, for $(m_{(1)}, \ldots, m_{(m)})$ as above, there exists a unique equivariant full minimal immersion of P^2 into $S^{2m}(1)$ and hence into $P^{2m}(1)$ of type $(m_{(1)}, \ldots, m_{(m)})$. If m is odd, then

$$j: even \rightarrow m + m_{(j)}: odd,$$

 $j: odd \rightarrow m + m_{(j)}: even.$

Conversely, for $(m_{(1)}, \ldots, m_{(m)})$ as above, there exists a unique equivariant full minimal immersion of P^2 into $P^{2m}(1)$ of type $(m_{(1)}, \ldots, m_{(m)})$.

By Calabi [6], the volume of P^2 minimally and fully immersed in $P^{2m}(1)$ exceeds $m(m+1)\pi$. Next we study a minimal immersion χ of P^2 into P^{2m} such that the volume is equal to $m(m+1)\pi$.

The directrix curve Ξ of χ is given by the associated holomorphic map ξ :

$$\xi(z) = \begin{cases} z^{2m} \overline{\xi(-1/\overline{z})} & \text{if } m \text{ is even,} \\ -z^{2m} \overline{\xi(-1/\overline{z})} & \text{if } m \text{ is odd.} \end{cases}$$

 ξ is one expression of the directrix curve Ξ and it is a meromorphic function in C^{2m+1} . Following Barbosa [2], we have another expression η of Ξ such that

$$\eta(z) = a_0 + a_1 z + \cdots + a_{2m} z^{2m} \neq 0,$$

because the volume is equal to $m(m+1)\pi$. Then we note that $\eta(z)$ is proportional to $\overline{\eta(-1/\overline{z})}$ and hence there exists a nonzero constant δ such that

$$\delta(a_0 + a_1 z + \cdots + a_{2m} z^{2m}) = (-1)^{2m} \overline{a}_{2m} + \cdots + \overline{a}_0 z^{2m}.$$

Since η is totally isotropic, we get $(a_j, a_k) = (a_j, \overline{a_k})$ for j < k and j + k = 2m. Put

$$b_k = \frac{a_k + \overline{a_k}}{2}$$
, $c_k = \frac{a_k - \overline{a_k}}{2}$ and $d_m = \begin{cases} a_m & \text{if } m \text{ is even,} \\ -ia_m & \text{if } m \text{ is odd.} \end{cases}$

Then $\{b_1, \ldots, b_m, c_1, \ldots, c_m, d_m\}$ is a basis of R^{2m+1} and the planes spanned by $\{b_k, c_k\}$ and d_m are orthogonal to each other. Let e_1, \ldots, e_{2m+1} be an orthonormal basis of R^{2m+1} such that

$$b_k = \alpha_k e_{2k-1} + \beta_k e_{2k}, \quad c_k = \gamma_k e_{2k-1} + \delta_k e_{2k} \quad \text{and} \quad e_{2m+1} = d_m / |d_m|.$$

Therefore we get

$$\eta(z) = \sum_{k=1}^{m} \left\{ (\alpha_k + i\gamma_k) z^{k-1} + (-1)^{k-1} (\alpha_k - i\gamma_k) z^{2m-k-1} \right\} e_{2k-1}$$

$$+ \sum_{k=1}^{m} \left\{ (\beta_k + i\delta) z^{k-1} + (-1)^{k-1} (\beta_k - i\delta_k) z^{2m-k} \right\} e_{2k} + \lambda z^m e_{2m+1},$$

where $\lambda = |d_m|$ if m is even and $\lambda = i|d_m|$ if m is odd. Since $(\eta, \eta) = 0$, we get

$$(\alpha_k + i\delta_k)^2 + (\beta_k + i\gamma_k)^2 = 0.$$

We may assume $\beta_k + i\delta_k = i(\alpha_k + i\gamma_k)$ so that η gives an equivariant minimal immersion of S^2 into $S^{2m}(1)$ of type (1, 2, ..., m) by Theorem 3.1. It follows from Proposition 4.1 that χ is unique. It is clear that the standard minimal immersion of $P^2(2/m(m+1))$ into $P^{2m}(1)$ has volume $m(m+1)\pi$.

COROLLARY 4.1. Let χ be a full minimal immersion of P^2 into $P^{2m}(1)$ with volume $m(m+1)\pi$. Then χ is the standard minimal immersion.

P. Li and S. T. Yau prove the following

PROPOSITION A [12]. For any metric ds^2 on P^2 , $\lambda_1 \cdot \text{Vol} \leq 12\pi$, where λ_1 is the first eigenvalue of the Laplacian of ds^2 . Equality implies there exists a subspace of the first eigenspace of ds^2 which gives an isometric minimal immersion of P^2 into $S^4(1)$ if $\lambda_1 = 2$.

PROPOSITION B [12]. If M is a compact surface in R^n homeomorphic to P^2 , then $\int |H|^2 \ge 6\pi$, where H is the mean curvature vector of M. The equality holds only when M is the image of a stereographic projection of some minimal surface in $S^4(1)$ such that the first eigenvalue of the Laplacian of M is equal to 2.

Normalizing $\lambda_1 = 2$, we know that the volume $\leq 6\pi$. If the equality holds, then the metric is standard by Corollary 4.1, because the real projective space of volume $= 6\pi$ is minimally immersed in $S^4(1)$. Thus we get the following

COROLLARY 4.2. For P^2 , if $\lambda_1 \cdot volume = 12\pi$, then the metric is standard.

COROLLARY 4.3. If $\int |H|^2 = 6\pi$ holds for P^2 immersed in \mathbb{R}^n , then the surface is the image of a Veronese surface by a stereographic projection.

5. Minimal cones of minimal immersions of S^2 into $S^{2m}(1)$. Let χ be a full minimal immersion of S^2 into $S^{2m}(1)$. Then the cone $C\chi$ is given by

$$\{s\chi(x) \in R^{2m+1}: s \in [0,1] \text{ and } x \in S^2\}.$$

It is well known that $C\chi$ is minimal in R^{2m+1} and hence is called a *minimal cone*.

Using the fact [8] that the first eigenvalue of the Jacobi operator of minimal immersions of S^2 fully into $S^{2m}(1)$ is equal to -2, by the method of J. Simons [15], we see that $C\chi$ is stable for variations which fix the boundary of $C\chi$.

It is interesting to consider whether $C\chi$ is homologically volume minimizing. With respect to this problem, an interesting result is known that the cones of the holomorphic curves in S^6 with the almost complex structure constructed by Cayley numbers are homologically volume minimizing. The proof is given as follows.

Let $(S^6(1), J, \langle , \rangle)$ be the Tachibana space (nearly Kaehler manifold) constructed by using Cayley numbers and $\omega(X, Y, Z)$ the parallel 3-form defined by $\langle X, Y \cdot Z \rangle$ on R^7 , where \cdot is the product on R^7 defined by Cayley numbers. Then

$$\omega$$
 (any 3-plane) ≤ 1

holds. For the cone $C\chi$ of a holomorphic curve S^2 in $S^6(1)$, we get $\omega(T(C\chi)) = 1$, where $T(C\chi)$ is the tangent bundle (see, for example, [4, 13]). It follows from Stokes' formula that $C\chi$ is homologically area minimizing. It is known that there exist many holomorphic curves of S^2 in $S^6(1)$ [4, 14].

Therefore it is natural to pose a problem:

Classify minimal immersions of S^2 into $S^{2m}(1)$ with the property such that there exist a parallel 3-form W which satisfies

$$(5.1) W(T(C\chi)) = 1 and W(any 3-plane) \leq 1.$$

We give the answer to this problem.

THEOREM 5.1. A full minimal immersion of S^2 into $S^{2m}(1)$ satisfies (5.1) if and only if m=3 and $\kappa_2=\frac{1}{2}$. If this is the case, there is an orthogonal transformation T of R^7 such that $T \cdot \chi$ is a holomorphic curve and W is $T^*\omega$.

PROOF. We use the notations in §2. Let $\{x, e_1, e_2, \dots, e_{2m-1}, e_{2m}\}$ be an orthogonal basis. Then $\{x, e_1, e_2\}$ spans the tangent space of $C\chi$. Since ω attains its maximum at $\{x, e_1, e_2\}$, that is, $W(x, e_1, e_2) = 1$ and $W(\text{any 3-plane}) \leq 1$, we obtain

$$W(e_{\alpha}, e_{1}, e_{2}) = 0$$
, $W(x, e_{1}, e_{\alpha}) = 0$ and $W(x, e_{\alpha}, e_{2}) = 0$ for $\alpha \ge 3$.

We rewrite these in terms of x, E_j , \overline{E}_k , etc., as follows:

$$(5.2) W(x, E_1, \overline{E}_1) = -2i,$$

(5.3)
$$W(E_{\alpha}, E_1, \overline{E}_1) = 0 \quad \text{for } \alpha \geqslant 2,$$

$$(5.4) W(\chi, E_1, E_\alpha) = 0 \text{for } \alpha \geqslant 2,$$

(5.5)
$$W(x, E_1, \overline{E}_\alpha) = 0 \quad \text{for } \alpha > 2.$$

Differentiating (5.3) by E_1 , E_1 and using (2.1), we obtain

(5.6)
$$W(E_2, \overline{E}_1, E_\alpha) = 0 \quad \text{for } \alpha \geqslant 2,$$

(5.7)
$$W(E_1, \overline{E}_2, E_\alpha) = 0 \quad \text{for } \alpha \geqslant 2.$$

For (5.4), we have

$$(5.8) W(x, E_2, E_\alpha) = 0 for \alpha \ge 2.$$

Differentiating (5.5) by \overline{E}_1 and using (2.1), we have

$$(5.9) W(x, E_2, \overline{E}_2) = -2i,$$

(5.10)
$$W(x, E_2, \overline{E}_{\alpha}) = 0 \quad \text{for } \alpha \geqslant 3.$$

For (5.6), we get

(5.11)
$$W(E_3, \overline{E}_1, E_\alpha) = 0 \text{ for } \alpha \geqslant 2,$$

(5.12)
$$W(E_2, \overline{E}_2, E_\alpha) = 0 \quad \text{for } \alpha \geqslant 2.$$

Differentiating (5.7) by \overline{E}_1 , we obtain

(5.13)
$$W(E_1, E_3, E_2) = 2i/\kappa_2,$$

(5.14)
$$W(E_1, \overline{E}_3, E_\alpha) = 0 \quad \text{for } \alpha \geqslant 3.$$

If m = 2, (5.13) implies that there exists no W which satisfies (5.1). Hence assume that $m \ge 3$. Differentiating (5.8) by E_1 , we get

(5.15)
$$W(E_1, E_2, E_{\alpha}) + 2\kappa_2 W(\chi, E_3, E_{\alpha}) = 0 \text{ for } \alpha \geqslant 3.$$

For (5.10) differentiated by E_1 , the case $\alpha = 3$ implies

(5.16)
$$W(\chi, E_3, E_3) = i/(\kappa_2)^2 - 2i.$$

Differentiating (5.11) by E_1 , we obtain

$$(5.17) W(\overline{E}_2, E_3, E_\alpha) = 0 \text{for } \alpha \geqslant 4,$$

$$(5.18) - W(\chi, E_3, E_\alpha) + \kappa_3 W(\overline{E}_1, E_4, E_\alpha) = 0 \text{for } \alpha \geqslant 3.$$

Differentiating (5.12) and (5.13) by \overline{E}_1 , we have

$$(5.19) W(E_2, \overline{E}_3, E_\alpha) = 0 for \alpha \ge 3,$$

$$\frac{2i}{\left(\kappa_{3}\right)^{2}}\overline{E}_{1}\kappa_{2} = \frac{2}{\kappa_{2}}\left(\omega_{5,6}(\overline{E}_{1}) - \omega_{3,4}(\overline{E}_{1}) - \omega_{1,2}(\overline{E}_{1})\right) + 2\kappa_{3}W(E_{1}, E_{2}, \overline{E}_{4}).$$

Since, by (2.1), we have $\omega_{56} - \omega_{34} - \omega_{12} = d^c \log \kappa_2$,

$$(5.20) W(E_1, E_2, \overline{E}_4) = 2i\overline{E}_1 \kappa_2 / (\kappa_2)^2 \kappa_3$$

holds. Differentiating (5.4) by \overline{E}_1 , we get

(5.21)
$$W(E_1, E_4, E_3) = \left(-i/(\kappa_2)^2 + 4i\right)/\kappa_3,$$

$$(5.22) - W(\chi, \overline{E}_3, E_\alpha) + \kappa_3 W(E_1, \overline{E}_4, E_\alpha) = 0 \text{for } \alpha \ge 4.$$

Differentiate (5.16) by E_1 and (5.17) by E_1 , \overline{E}_1 , respectively. Then we get

$$(5.23) W(\chi, E_4, \overline{E}_3) = -\frac{i}{(\kappa_2)^2 \kappa_2} (E_1 \kappa_2),$$

(5.24)
$$W(\overline{E}_3, E_3, E_\alpha) = 0 \text{ for } \alpha \geqslant 4,$$

$$(5.25) W(\overline{E}_2, E_4, E_\alpha) = 0 \text{for } \alpha \geqslant 4.$$

Differentiating (5.19) by \overline{E}_1 , we have

(5.26)
$$W(E_2, \overline{E}_4, E_\alpha) = 0 \quad \text{for } \alpha \geqslant 3.$$

When we differentiate (5.21) by E_1 , using (5.26), we get

$$E_{1}\left(\frac{1}{\kappa_{3}}\left(-\frac{i}{(\kappa_{2})^{2}}+4i\right)\right)=i\left\{\omega_{7,8}(E_{1})-\omega_{5,6}(E_{1})-\omega_{12}(E_{1})\right\}$$

$$\times\left\{\frac{1}{\kappa_{3}}\left(-\frac{i}{(\kappa_{2})^{2}}+4i\right)\right\}+2\kappa_{3}W(E_{1},\overline{E}_{4},E_{4}),$$

which, together with (2.1), implies

$$E_{1}\left(\frac{1}{\kappa_{3}}\left(-\frac{i}{(\kappa_{2})^{2}}+4i\right)\right)=i\left\{\omega_{1,2}(E_{1})+iE_{1}\log\kappa_{3}\right\}$$

$$\times\left\langle\frac{1}{\kappa_{3}}\left(-\frac{i}{(\kappa_{2})^{2}}+4i\right)\right\rangle+2\kappa_{3}W(E_{1},\overline{E}_{4},E_{4}).$$

If $L = (-i/(\kappa_2)^2 + 4i)/\kappa_3 = 0$, then

$$\omega_{1,2}(E_1) = \frac{1}{iL} \left\{ E_1 L - 2\kappa_3 W(E_1, \overline{E}_4, E_4) \right\} + iL E_1 \log \kappa_3.$$

The right-hand side is determined by the value of E_1 , E_4 at each point. Let \tilde{e}_1 , \tilde{e}_2 be other orthonormal vector fields tangent to S^2 such that $e_j(x) = \tilde{e}_j(x)$ at a fixed point x. Then we obtain

$$\langle \nabla_X e_1, e_2 \rangle = \langle \nabla_X \tilde{e}, \tilde{e}_2 \rangle$$
 at x

and hence $\omega_{1,2}=0$. This implies that S^2 is flat, which contradicts (2.2) or [7]. Thus we obtain L=0. If $m \ge 4$, then $k_2=\frac{1}{2}$. Differentiating (5.20) by E_1 , we get $\kappa_3=0$, which contradicts the fact that the immersion is full. Therefore m=3, and (5.21) implies $\kappa_2=\frac{1}{2}$. Furthermore, we know values of W for a basis $\{\chi,e_1,\ldots,e_6\}$, i.e.,

$$W(\chi, e_1, e_2) = W(\chi, e_3, e_4) = W(\chi, e_6, e_5) = W(e_1, e_3, e_6)$$
$$= W(e_1, e_5, e_4) = W(e_2, e_5, e_3) = W(e_2, e_6, e_4) = 1$$

and other values are zero. For $x \in S^2$, $T_x(R^7)$ has a product defined by (5.27)

	x	e_1	e_2	e_3	e_4	e_5	e_6
x	0	e_2	$-e_1$	e_4	$-e_3$	$-e_6$	e_5
e_1	$-e_2$	0	x	e_6	$-e_5$	e_4	$-e_3$
e_2	e_1	-x	0	$-e_5$	$-e_6$	e_3	e_4
e_3	$-e_4$	$-e_6$	e_5	0	x	$-e_2$	e_1
e_4	e_3	e_5	e_6	-x	0	$-e_1$	$-e_2$
e_5	e_6	$-e_4$	$-e_3$	e_2	e_1	0	-x
e_6	$-e_5$	e_3	$-e_4$	$-e_1$	e_2	х	0

This product is the same as the product "·". Under an appropriate orthogonal transformation, the two products are equal. Consequently we obtain $W = \langle , \cdot \rangle$ at x. Since W is parallel, $W = \langle , \cdot \rangle$ on S^2 .

Conversely let χ be a minimal immersion of S^2 into $S^6(1)$ with $\kappa_2 = \frac{1}{2}$. For $x \in S^2$, there is a 3-form W on $T_x(R^7)$ which satisfies (5.27). (2.1) implies that W is a parallel form on S^2 and hence we may consider $W = \langle , \cdot \rangle$ and that S^2 is a holomorphic curve in $S^6(1)$. Q.E.D.

6. Equivariant minimal immersions of S^2 **into** $S^6(1)$ **with** $\kappa_2 = \frac{1}{2}$. Let χ be an equivariant minimal immersion of S^2 into $S^6(1)$ of type (m_1, m_2, m_3) and $\xi = G_3/|G_3|^2$ which gives the directrix curve of χ . Then by the definition of G_1 , G_2 , G_3 , E_1 , E_2 , E_3 , we have

$$G_1 = \frac{\lambda}{2} E_1, \quad G_2 = \frac{\lambda^2}{2} \kappa_1 E_2, \quad G_3 = \frac{\lambda^3}{2} \kappa_1 \kappa_2 E_3$$

and hence

$$\frac{\left(G_3, \overline{G_3}\right)}{\left(G_2, \overline{G_2}\right)} = \lambda^2 \kappa_2^2.$$

Since $\xi = G_3/|G_3|^2$, we get

$$|\xi|^2 |G_3|^2 = 1$$
 and $|\partial G_3|^2 = \frac{1}{|\xi|^6} (|\xi|^2 |\partial \xi|^2 - |(\partial \xi, \bar{\xi})|^2).$

It follows from Lemma 2.1 that $\partial G_3 = -|G_3|^2 G_2/|G_2|^2$ and hence $|\partial G_3|^2 = |G_3|^4/|G_2|^2$. Consequently we obtain

$$\lambda^{2} \kappa_{2}^{2} = \frac{1}{|\xi|^{4}} \left(\left| \xi \right|^{2} \left| \partial \xi \right|^{2} - \left| \left(\partial \xi, \overline{\xi} \right) \right|^{2} \right) = \partial \overline{\partial} \log \left| \xi \right|^{2}.$$

On the other hand, Proposition 2.1 yields $\lambda^2 = 2\partial \overline{\partial} \log |\xi_2|^2$. Thus

(6.1)
$$\kappa_2 = \frac{1}{2} \quad \text{if and only if} \quad \partial \overline{\partial} \log |\xi|^4 = \partial \overline{\partial} \log |\xi_2|^2.$$

Note that $|\xi|^4 = |\phi|^4$ and $|\xi_2|^2 = |\phi_2|^2$ for ϕ constructed in §3. By a simple calculation, we get

$$|\phi|^{2} = 2|A_{1}|^{2}|z|^{6-2m_{(1)}} + 2|B_{1}|^{2}|z|^{6+2m_{(1)}}$$

$$+2|A_{3}|^{2}|z|^{6-2m_{(2)}} + 2|B_{3}|^{2}|z|^{6+2m_{(2)}}$$

$$+2|A_{5}|^{2}|z|^{6-2m_{(3)}} + 2|B_{5}|^{2}|z|^{6+2m_{(3)}} + |\kappa|^{2}|z|^{6}.$$

By using Lemma 3.6, the coefficients A_{jkl} of (3.6) are functions of $|z|^2$. Furthermore we have

$$\min_{j < k < l} \left\{ \deg A_{jkl} \text{ with respect to } |z| \right\} = 6 - m_{(1)} - m_{(2)} - m_{(3)},$$

$$\max_{j < k < l} \left\{ \deg A_{jkl} \text{ with respect to } |z| \right\} = 6 + m_{(1)} + m_{(2)} + m_{(3)}.$$

Comparing $|\phi|^4$ with $|\phi_2|^2$ for degrees of $|z|^2$ and using (6.1) and Liouville's theorem for harmonic functions on a complex plane, we get

$$(6.3) m_{(3)} = m_{(1)} + m_{(2)}$$

and hence a positive real number ε such that

$$(6.4) \qquad \qquad \varepsilon |\phi|^4 = |\phi_2|^2.$$

By a simple but long calculation, we see that (6.4) is equivalent to

$$\frac{|B_1|^2|B_2|^2}{|B_3|^2} = \frac{|A_1|^2|A_2|^2}{|A_3|^2},$$

$$\frac{1}{4}|\kappa|^2 m_{(3)}^2 = \frac{|B_1|^2|B_2|^2}{|B_3|^2} (m_{(1)} - m_{(2)})^2,$$

$$\frac{1}{4}|\kappa|^2 m_{(2)}^2 = \frac{|A_1|^2|B_3|^2}{|B_2|^2} (m_{(1)} + m_{(3)})^2,$$

$$\frac{1}{4}|\kappa|^2 m_{(1)}^2 = \frac{|A_2|^2|B_3|^2}{|B_1|^2} (m_{(2)} + m_{(3)})^2,$$

which gives the following

THEOREM 6.1. Let χ be an equivariant minimal immersion of S^2 fully into $S^6(1)$ of type $(m_{(1)}, m_{(2)}, m_{(3)})$. Then $\kappa_2 = \frac{1}{2}$ is equivalent to the following:

- $(1) \ m_{(3)} = m_{(1)} + m_{(2)},$
- (2) there exist real numbers $\alpha > 0$, $\beta < 0$, $\gamma > 0$ such that $\alpha \cdot \beta = -\gamma$ and

$$\begin{aligned} \left|A_{1}\right|^{2} &= \frac{\kappa^{2} m_{(2)} m_{(3)}}{4\alpha (m_{(2)} - m_{(1)}) (m_{(1)} + m_{(3)})}, \\ \left|A_{2}\right|^{2} &= -\frac{\kappa^{2} m_{(1)} m_{(3)}}{4\beta (m_{(2)} - m_{(1)}) (m_{(2)} + m_{(3)})}, \\ \left|A_{3}\right|^{2} &= \frac{\kappa^{2} m_{(1)} m_{(2)}}{4\gamma (m_{(1)} + m_{(3)}) (m_{(2)} + m_{(3)})}. \end{aligned}$$

PROOF. Setting $B_1 = \alpha \overline{A_1}$, $B_2 = \beta \overline{A_2}$ and $B_3 = \gamma \overline{A_3}$ for complex numbers α , β , and γ , we have Theorem 6.1. Q.E.D.

COROLLARY 6.1. For positive integers $m_{(1)} < m_{(2)}$, there exists an equivariant holomorphic immersion of S^2 fully into $S^6(1)$ of type $(m_{(1)}, m_{(2)}, m_{(1)} + m_{(2)})$.

7. Totally real submanifolds in $S^6(1)$. Let χ be a full holomorphic immersion of S^2 into $S^6(1)$. Note that the first and normal bundles are well defined on S^2 . Therefore we can construct the tubes of radius γ ($0 < \gamma < \pi$) in the direction of the first and normal bundles. Except at isolated points of S^2 where an s_0 exists such that $l_{s_0} = 0$, points of S^2 each have an open neighborhood U where an orthonormal basis e_1, \ldots, e_6 can be constructed by the method described in §2. Using this basis, the tube of radius γ ($0 < \gamma < \pi$) in the direction of the second normal bundle on U is given by

$$F_{\gamma} \colon U \times S^{1}(1) \to S^{6}(1),$$

$$(x, \theta) \to (\cos \gamma)\chi(x) + (\sin \gamma)((\cos \theta)e_{5} + (\sin \theta)e_{6}).$$

By (2.1), we obtain

$$F_{\gamma^*}(e_1) = (\cos \gamma)e_1 - \kappa_2(\sin \gamma)(\cos \theta)e_3 - \kappa_2(\sin \gamma)(\sin \theta)e_4$$
$$-(\sin \gamma)(\sin \theta)\omega_{56}(e_1)e_5 + (\sin \gamma)(\cos \theta)\omega_{56}(e_1)e_6,$$

and $F_{\gamma^*}(e_2) = \cdots$, $F_{\gamma^*}(\partial/\partial\theta) = \cdots$. It follows from (5.27) that

$$JF_{\gamma^*}(e_1) = F \cdot F_{\gamma^*}(e_1)$$

$$= -(\sin \gamma)^2 \omega_{56}(e_1) \chi + \left[(\cos \gamma)^2 - \kappa_2 (\sin \gamma)^2 \right] e_2$$

$$+ (\kappa_2 + 1)(\sin \gamma)(\cos \gamma)(\sin \theta) e_3$$

$$- (\kappa_2 + 1)(\sin \gamma)(\cos \gamma)(\cos \theta) e_4$$

$$+ (\sin \gamma)(\cos \gamma)(\cos \theta) \omega_{56}(e_1) e_5$$

$$+ (\sin \gamma)(\cos \gamma)(\sin \theta) \omega_{56}(e_1) e_6, \quad \text{etc.}$$

The condition that F_{γ} gives a totally real submanifold is equivalent to $(\tan \gamma)^2 = \frac{4}{5}$, because $\kappa_2 = \frac{1}{2}$.

Next, let χ be the holomorphic immersion of $S^2(\frac{1}{6})$ into $S^6(1)$. Then $\kappa_1 = \sqrt{5/12}$. By the same calculation, we see that the tube of radius γ in the direction of the first normal space of χ gives a totally real submanifold if and only if γ satisfies

$$(7.1) 27(\cos \gamma)^3 + 5(\cos \gamma)^2 - 15(\cos \gamma) - 5 = 0.$$

Consequently we obtain

THEOREM 7.1. Let χ be a full holomorphic immersion of S^2 into $S^6(1)$. Then the tube of radius γ such that $(\tan \gamma)^2 = \frac{4}{5}$ in the direction of the second normal space of χ gives a totally real submanifold in $S^6(1)$.

THEOREM 7.2. Let χ be the holomorphic immersion of $S^2(\frac{1}{6})$ into $S^6(1)$. Then the tube of radius γ which satisfies (7.1) in the direction of the first normal space of χ gives a totally real submanifold $S^6(1)$.

We can calculate the Chern number c_1 of the second normal bundle of a full holomorphic immersion of S^2 into $S^6(1)$. By (2.1),

$$d\omega_{5,6} = 3d\omega_{1,2} + d\theta_2$$
 and $d\theta_2 = \Delta(\log \kappa_1)\omega_1 \wedge \omega_2$.

Therefore the curvature of the second normal bundle of χ is given by $\frac{1}{2}$ which implies

$$c_1 = \frac{1}{4\pi} \text{ volume}(S^2).$$

Using Corollary 6.1 and Theorem 3.1, we obtain a full holomorphic immersion S^2 into $S^6(1)$ with $c_1 = 2k$ for a positive integer $k \ge 3$. Similarly, we see that the Chern number of the first normal bundle of $S^2(\frac{1}{6}) \to S^6(1)$ is 4.

COROLLARY 7.1. There exists a minimal (totally real) immersion of the circle bundle of S^2 with positive even Chern number ≥ 4 into $S^6(1)$.

Bryant [4] gives a holomorphic map of any Riemann surface into $S^6(1)$. Since they have the same properties as a full holomorphic map of S^2 into $S^6(1)$, we obtain many 3-dimensional totally real submanifolds in $S^6(1)$ with singularities.

In [8], we construct the totally real (minimal) immersion of $S^6(\frac{1}{16})$ into $S^6(1)$. Calculating the curvature tensor of the tube in the direction of the second normal bundle of the holomorphic immersion of $S^2(\frac{1}{6})$ into $S^6(1)$, we obtain the minimal immersion $S^3(\frac{1}{16})$ into $S^6(1)$.

REMARK. Let T_{γ} be the tube of radius γ $(0 < \gamma < \pi)$ in the direction of the second normal bundle of a full holomorphic immersion of S^2 into $S^6(1)$. We denote by \mathcal{T}_{γ} the mean curvature vector of T_{γ} . Then we easily see

(1) $\left| \mathcal{J}_{\gamma} \right| = \frac{(\sin \gamma)(\cos \gamma) \left((\cot \alpha \gamma)^{2} - 5/4 \right)}{(\cos \gamma)^{2} + (\sin \gamma)^{2}/4}.$

(2) \mathscr{T}_{γ} is not parallel for the normal connection.

- (3) \mathcal{T}_{γ} is the scalar multiple of the variation vector field in the direction of γ .
- (4) T_{ν} (not minimal) are Chen submanifolds [17] in $S^{6}(1)$.
- (5) Let V be the 4-dimensional submanifold defined by attaching the totally geodesic submanifold $S^2(1)$ for each point of the holomorphic immersion of S^2 into $S^6(1)$, where the tangent space of $S^2(1)$ is spanned by the second normal space of the holomorphic immersion. Then V is minimal in $S^6(1)$ and contains T_{∞} .
- (6) We obtain the analogous result for some holomorphic curve in the 3-dimensional complex projective space (in preparation).

REFERENCES

- 1. O. Borůvka, Sur les surfaces représentées par les fonctions sphériques de prèmiere espèce, J. Math. Pures Appl. 12 (1933), 337-383.
- 2. J. L. M. Barbosa, On minimal immersions of S^2 into S^{2m} , Trans. Amer. Math. Soc. 210 (1975), 75–106.
- 3. _____, An extrinsic rigidity theorem for minimal immersions from S^2 into S^n , J. Differential Geom. 14 (1979), 355–368.
- 4. R. L. Bryant, Submanifolds and special structures on the octonions, J. Differential Geom. 17 (1982), 185-232
- 5. _____, Conformal and minimal immersions of compact surfaces into the 4-sphere, J. Differential Geom. 17 (1982), 455-473.
- 6. E. Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differential Geom. 1 (1967), 111-125.
- 7. S. S. Chern, On the minimal immersions of the two sphere in a space of constant curvature, Problem in Analysis, Princeton Univ. Press, Princeton, N. J., 1970, pp. 27-40.
 - 8. N. Ejiri, Totally real submanifolds in a 6-sphere, Proc. Amer. Math. Soc. 83 (1981), 759-763.
 - 9. _____, The index of minimal immersions of S^2 into S^{2n} , Math. Z. 184 (1983), 127-132.
- 10. J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differential Geom. 5 (1971), 333-340.
 - 11. R. Harvey and H. B. Lawson, Jr., Calibrated geometries, Acta Math. 148 (1982), 47-157.
- 12. P. Li and S. T. Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surface, Invent. Math. 69 (1982), 269-291.
 - 13. K. Mashimo, Minimal immersions of 3-dimensional sphere into sphere (preprint).
- 14. K. Sekigawa, Almost complex submanifolds of a 6-dimensional sphere, Kodai Math. J. 6 (1983), 174-185.
 - 15. J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. (2) 88 (1969), 62-105.
- 16. K. Uhlenbeck, Equivariant harmonic maps into spheres, Proc. Tulane Conf. on Harmonic Maps, 1981, Lecture Notes in Math., vol. 949, Springer-Verlag, Berlin and New York, 1981, pp. 146-158.
- 17. L. Gheysens, P. Verheyen and Leopold Verstraelen, Characterization and examples of Chen submanifolds, J. Geom. 20 (1983), 47-62.

Department of Mathematics, Tokyo Metropolitan University, Fukazawa, Setagaya, Tokyo 158, Japan