DENSE IMBEDDING OF TEST FUNCTIONS IN CERTAIN FUNCTION SPACES

MICHAEL RENARDY

ABSTRACT. In a recent paper [1], J. U. Kim studies the Cauchy problem for the motion of a Bingham fluid in R^2 . He points out that the extension of his results to three dimensions depends on proving the denseness of C^{∞} -functions with compact support in certain spaces. In this note, such a result is proved.

Following Kim's notation [1], we define the following spaces:

$$\begin{split} \tilde{F}_{p}(R^{n}) &= \left\{ u \in W^{1,2}(R^{n}) \, | \, \nabla u \in \left(L^{p}(R^{n}) \right)^{n} \right\}, \\ F_{p}(R^{n}) &= \left\{ u \in \left(W^{1,2}(R^{n}) \right)^{n} \, | \, \nabla u \in \left(L^{p}(R^{n}) \right)^{n \times n}, \, \operatorname{div} u = 0 \right\}, \\ G_{p}(R^{n}) &= \left\{ u \in \left(W^{1,2}(R^{n}) \right)^{n} \, | \, \varepsilon(u) = \nabla u + \left(\nabla u \right)^{T} \in \left(L^{p}(R^{n}) \right)^{n \times n}, \, \operatorname{div} u = 0 \right\}, \\ S(R^{n}) &= \left\{ u \in \left(C_{0}^{\infty}(R^{n}) \right)^{n} \, | \, \operatorname{div} u = 0 \right\}. \end{split}$$

According to Kim's Lemma 1.7 [1], $F_p = G_p$ for 1 . The results, which will be presented in this paper, are the following.

THEOREM 1. Let n be arbitrary and $1 \le p < \infty$. Then $C_0^{\infty}(\mathbb{R}^n)$ is dense in $\tilde{F}_p(\mathbb{R}^n)$.

THEOREM 2. Let n=2 or n=3 and $1 \le p \le \infty$. Then $S(R^n)$ is dense in $F_p(R^n)$ and $G_p(R^n)$.

We remark that the case p=2 of Theorem 2 is well known, even in the context of general domains (see, for example, Heywood [2]). The proofs of both theorems will make use of the following lemma.

LEMMA. For $x \in \mathbb{R}^n$, let

$$\phi_N(x) = \begin{cases} \left(N^n \Omega_n\right)^{-1} & \text{if } |x| \leq N, \\ 0 & \text{if } |x| > N, \end{cases}$$

where Ω_n denotes the volume of the unit ball in R^n . Let $1 \le r < \infty$ and $v \in L^r(R^n)$; if r = 1, assume in addition that $\int_{R^n} v = 0$. Then $\phi_N * v \to 0$ in $L^r(R^n)$ as $N \to \infty$.

Received by the editors November 22, 1985.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46E35.

Key words and phrases. Sobolev spaces, approximation by test functions.

¹The author was sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and by the National Science Foundation under Grants No. MCS-8215064 and DMS-8451761.

PROOF OF THE LEMMA. Since $\|\phi_N\|_{L^1} = 1$, we have $\|\phi_N * v\|_{L^r} \leq \|v\|_{L^r}$, and hence it suffices to show that $\phi_N * v \to 0$ for v in a dense subset of L^r . If r > 1, take $v \in L^1 \cap L^r$. Then $\|\phi_N * v\|_{L^r} \leq \|\phi_N\|_{L^r} \|v\|_{L^1}$, which tends to zero as $N \to \infty$. For r = 1, let v have compact support, contained in, say, $\{|x| \leq R\}$, and assume $\int_{R^n} v = 0$. Then

$$\|\phi_{N} * v\|_{L^{1}} = \int_{R^{n}} \left| \int_{R^{n}} \phi_{N}(x - y)v(y) \, dy \right| dx$$

$$= \int_{N-R \leqslant |x| \leqslant N+R} \left| \int_{|y| \leqslant R} \phi_{N}(x - y)v(y) \, dy \right| dx$$

$$\leqslant \int_{N-R \leqslant |x| \leqslant N+R} \int_{|y| \leqslant R} \left| \phi_{N}(x - y) \right| \left| v(y) \right| dy \, dx$$

$$\leqslant \int_{N-2R \leqslant |z| \leqslant N} \left| \phi_{N}(z) \right| dz \cdot \int_{|y| \leqslant R} \left| v(y) \right| dy.$$

This tends to zero as $N \to \infty$.

PROOF OF THEOREM 1. Clearly it suffices to show that functions of compact support are dense, C^{∞} -regularity can easily be achieved by using a mollifier. If we know that $u \in L^p(R^n)$ or even that $u \in L^{p+\epsilon}(R^n)$ for small enough $\epsilon > 0$, then we can use the standard cut-off procedure to approximate u by functions of compact support, i.e., if we set $u_m(x) = u(x)\psi_m(x)$, where, for example,

$$\psi_m(x) = \begin{cases} 1 & \text{if } |x| \leq m, \\ 2 - |x|/m & \text{if } m \leq |x| \leq 2m, \\ 0 & \text{if } |x| \geqslant 2m, \end{cases}$$

then it is easy to show that $u_m \to u$ in \tilde{F}_p . Therefore, it suffices to show that $\tilde{F}_p \cap L^{p+\varepsilon}$ ($\varepsilon \ge 0$ small) is dense in \tilde{F}_p . If $p \ge 2$, then the Sobolev imbedding theorem can be used to show that $\tilde{F}_p \subset L^p$, and there is nothing left to prove.

For p < 2, let ϕ_N be as in the lemma above. For $u \in \tilde{F}_p$, let $u_N = u - \phi_N * u$. We have $\nabla u_N = \nabla u - \phi_N * \nabla u$, and, if p = 1, then $\int_{R^n} \nabla u = 0$, since $u \in L^2$. Therefore, the lemma implies that $u_N \to u$ as $N \to \infty$ in the norm of \tilde{F}_p . It is therefore enough to show that u_N lies in $L^{p+\varepsilon}$ for small $\varepsilon > 0$. Let g denote the fundamental solution for Laplace's equation,

$$g(x) = \begin{cases} -|x|^{2-n}/\omega_n(n-2) & \text{if } n \geqslant 3, \\ \ln|x|/2\pi & \text{if } n = 2, \end{cases}$$

where ω_n denotes the surface measure of the unit sphere in R^n . In any dimension, g and its first derivatives are in $L_{loc}^{1+\delta}$ for sufficiently small $\delta \ge 0$. We want to consider the behavior of $g - \phi_N * g$ at infinity. We have

$$g(x) - \phi_N * g(x) = g(x) - \int_{|y-x| < N} \frac{g(y)}{N^n \Omega_n} dy.$$

By expanding the integrand in a Taylor series about x, we find that this can be bounded by a constant times

$$N^2 \max_{|y-x| \leq N} \max_{i,j} \left| \frac{\partial^2 g(y)}{\partial x_i \partial x_j} \right|.$$

Since second derivatives of g decay like $|x|^{-n}$ at infinity, it follows that $g - \phi_N * g$ is in $L^{1+\delta}$ at infinity for any positive δ , and so are derivatives of g by the same argument. Hence we conclude that, for small enough $\delta > 0$, $g - \phi_N * g$ lies in $L^{1+\delta}$. It follows that $\omega_N = g * \nabla u_N = (g - \phi_N * g) * \nabla u$ lies in $L^{p+\epsilon}$ for small positive ϵ , and so do its first derivatives. Since $\operatorname{div} \omega_N = u_N$, this completes the proof.

PROOF OF THEOREM 2. For p>1, the arguments used by Kim [1] show that Theorem 2 follows from Theorem 1. We may hence concentrate on the case p=1. For $u\in F_1$ or G_1 , let $u_N=u-\phi_N*u$ with ϕ_N as before. As in the proof of Theorem 1, it can be shown that $u_N\to u$ in F_1 or G_1 , respectively. Moreover, let $a_N=g*{\rm curl}\,u_N=(g-\phi_N*g)*{\rm curl}\,u$. The convolution $g*{\rm curl}\,u_N$ makes sense because G_1 and F_1 are contained in F_p for $1< p\leqslant 2$, hence the same argument as in the proof of Theorem 1 shows that ${\rm curl}\,u_N$ as well as u_N are in L^p for $p\in (1,2]$. Moreover, g is integrable at the origin, and its derivative has some power that is integrable at infinity. We can thus decompose g in the form $g=g_1+g_2$, where $g_1\in L^1$ and $\nabla g_2\in L^q$ for some $q<\infty$. Clearly $g_1*{\rm curl}\,u_N$ is defined, and $g_2*{\rm curl}\,u_N$ can be defined by transferring the derivative onto g_2 . We have $\Delta a_N={\rm curl}\,u_N$ and ${\rm curl}\,a_N=g*{\rm curl}\,{\rm curl}\,u_N=g*(-\Delta u_N)=-u_N$. Since G_1 and F_1 are contained in F_p for every $p\in (1,2]$, ${\rm curl}\,u$ lies in $L^{1+\varepsilon}$ for $0<\varepsilon\leqslant 1$, and we can conclude as in the proof of Theorem 1 that

$$a_N = (g - \phi_N * g) * \operatorname{curl} u \in L^{1+\varepsilon}.$$

Since Δa_N is also in $L^{1+\epsilon}$, it follows that $a_N \in W^{2,1+\epsilon}$.

It thus remains to show that every $u \in G_1$ or F_1 which has the form u = curl a with $a \in W^{2,1+\epsilon}$ can be approximated by functions with compact support. This can easily be achieved by multiplying a with a suitable cut-off function.

REFERENCES

- 1. J. U. Kim, On the Cauchy problem associated with the motion of a Bingham fluid in the plane, Trans. Amer. Math. Soc. (to appear).
 - 2. J. G. Heywood, On uniqueness questions in the theory of viscous flow, Acta Math. 136 (1976), 61-102.

DEPARTMENT OF MATHEMATICS AND MATHEMATICS RESEARCH CENTER, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706

Current address: Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061