FIXED SETS OF FRAMED G-MANIFOLDS

STEFAN WANER

ABSTRACT. This note describes restrictions on the framed bordism class of a framed manifold Y in order that it be the fixed set of some framed G-manifold M with G a finite group. These results follow from a recently proved generalization of the Segal conjecture, and imply, in particular, that if M is a framed G-manifold of sufficiently high dimension, and if G is a p-group, then the number of "noncancelling" fixed points is either zero or approaches infinity as the dimension of M goes to infinity. Conversely, we give sufficient conditions on the framed bordism class of a manifold Y that it be the fixed set of some framed G-manifold M of arbitrarily high dimension.

Introduction and statement of results. In this note, we show how the recently proved Segal conjecture on the stable cohomotopy of the classifying space BG of a finite group G turns out to place severe restrictions on the fixed-sets of framed G-manifolds of large dimension.

Conner and Floyd proved the following result in [CF, 40.1]. Let $G = \mathbf{Z}/p$ (p an odd prime), and let M be a smooth compact oriented G-manifold with fixed set Y of codimension n and framed in M. (That is, the normal bundle of Y in M is equivariantly framed.) Assume also that the local representation normal to Y is the same for all components of Y. Then, denoting oriented bordism by Ω_* , one has $[Y] \in p^{s(n)}\Omega_8$, where $s(n) \to \infty$ as $n \to \infty$. When Y is discrete, this means that the number of "noncancelling" fixed points is either zero or becomes large as the dimension of M increases.

Here, we examine this phenomenon in the context of framed G-manifolds, and give a direct generalization for arbitrary finite groups G. As alluded to above, our proof makes extensive use of the Segal conjecture proved by Carlsson [C1], or, more precisely, its generalization due to Adams, Haeberly, Jackowski, and May [A1]. This suggests that even the "stable" (high-dimensional) properties of fixed sets of G-manifolds are subtle, and that a generalization of the Conner-Floyd result to oriented G-manifold for arbitrary G might require some form of completion result for oriented bordism analogous to the Segal conjecture.

If M is a (smooth) framed G-manifold, then there exists an orthogonal G-module V such that M is "modelled locally on V" in the sense of Pulikowski $[\mathbf{P1}]$ and Kosniowski $[\mathbf{K1}]$. This means that if $x \in M$, then there is a neighborhood U of x which is G_x -diffeomorphic with $V|G_x$.

Our result is the following.

THEOREM A. Let G be a finite group, let V be an orthogonal G-module with $V^G = \{0\}$, and let $k \geq 0$. Then there exists an integer j as well as a sequence (s_n)

Received by the editors November 22, 1985. 1980 Mathematics Subject Classification. Primary 54H15. with $s_n \to \infty$ as $n \to \infty$, such that, if M is any framed G-manifold modelled locally on the representation $V^n \oplus \mathbf{R}^k$ with G-fixed set Y, one has $[Y] \in j^{s_n}\Omega_k^{\mathrm{fr}}$, where Ω_*^{fr} denotes nonequivariant framed bordism.

The integer j is determined by the isotropy subgroups of points in V and the algebra of the Burnside ring of G, and will be described fully in §1. When j > 1, the theorem implies that one cannot have a framed G-manifold modelled on V possessing a single fixed point (see §2, Corollary 2). If G is a p-group, it will turn out that j is always a power of p. When G has odd order and V is so large as to contain arbitrary G-orbits, then j > 1. On the other hand, if, for example, $G = \mathbf{Z}/p \times \mathbf{Z}/q$ with p and q distinct primes, then there exist V's such that j = 1. Theorem A has the following converse.

THEOREM B. Let G be a finite group, let V be an orthogonal G-module with $V^G = \{0\}$, and let $m, k \geq 0$. Then, with j as in Theorem A and Y an arbitrary framed manifold of dimension k, there exists an integer n and a framed G-manifold M modelled locally on $V^m \oplus \mathbb{R}^k$ with fixed set framed cobordant with j^nY .

The author is indebted to J. P. May for many stimulating conversations, and to Hofstra University for providing release time.

1. A consequence of the Segal conjecture. Let G be a finite group and let $\mathcal{U}=R^{\infty}$, where R denotes the real regular representation of G, endowed with its natural inner product. We shall write $V<\mathcal{U}$ to indicate that V is a finite-dimensional G-invariant subspace of \mathcal{U} . The one-point compactification of $V<\mathcal{U}$ will be denoted by S^V and, if X is a based G-space, the smash product $X \wedge S^V$ will be denoted by $\Sigma^V X$. The stable equivariant cohomotopy of X is given by

$$\omega_G^{\gamma}(X) = \underset{U < \mathcal{U}}{\operatorname{colim}} [\Sigma^{W \oplus U} X, S^{V \oplus U}]_G,$$

where $\gamma = [V - W] \in RO(G)$ and where $[-, -]_G$ denotes G-homotopy classes of based G-maps. Dually, the $-\gamma$ th stable equivariant homotopy group, $\omega_{-\gamma}^G(X)$, is given by

$$\omega_{-\gamma}^G(X) = \underset{U < \mathcal{U}}{\operatorname{colim}} [\Sigma^{W \oplus U}, \omega^{V \oplus U} X]_G.$$

We shall require the following result.

LEMMA 1.1. Let n > 0, $m \ge 0$, and $V < \mathcal{U}$ with $V^G = \{0\}$. Then ω_{mV+n}^G is finite.

PROOF. Consider first the case m=0. One has, by a result of Hauschild [H1],

$$\omega_n^G \cong \Sigma_{(H)} \pi_n^s (B(NH/H)_+)$$

for $n \geq 0$, where the sum is taken over a complete set of conjugacy classes (H) of subgroups of G. The subscript + denotes addition of a disjoint basepoint. If n > 0, then $\pi_n^s(B(NH/H)_+)$ is finite. Now let $m \geq 0$. Then

$$\omega_{mV+n}^G \cong [S^{mV}, \Omega^n Q_G S^0]_G,$$

where Q_GS^0 is the equivariant loop space $\operatorname{colim}_{W < \mathcal{U}} \Omega^W S^W$, $\Omega^W S^W$ denoting the G-space of self-maps of S^W (see, for example, [**H1** or **CW**]). Since $n \geq 0$, all the homotopy groups of all fixed sets of $\Omega^n Q_G S^0$ are finite by the case n = 0 applied

to the subgroups $H \subset G$. It now follows by induction over the skeleta of S^{mV} that ω_{mV+n}^G is finite. \square

Let $V < \mathcal{U}$ be any G-module with $V^G = \{0\}$. Define an associated family $\mathcal{F}(V)$ of subgroups of V by

$$\mathcal{F}(V) = \{ H \subset G \colon V^H \neq 0 \}.$$

One has a universal G-space $E\mathcal{F}(V)$ associated with $\mathcal{F}(V)$; $E\mathcal{F}(V)$ is the unique (up to G-homotopy) G-CW complex with $E\mathcal{F}(V)^H$ contractible for each $H \in \mathcal{F}(V)$ and empty otherwise. There is then a G-cofiber sequence

$$E\mathcal{F}(V)_+ \to S^0 \to E\mathcal{F}(V) \to \cdots$$

associated with the projection of $E\mathcal{F}(V)$ onto a point. Note that, with S(U) denoting the unit sphere in $U < \mathcal{U}$, one has

$$E\mathcal{F}(V) \simeq S(\infty V) = \underset{n}{\operatorname{colim}} S(nV),$$

while

$$\underline{E}\mathcal{F}(V) \simeq S^{\infty V} = \underset{n}{\operatorname{colim}} S^{nV},$$

both colimits being taken with respect to the natural inclusions. Passing to stable equivariant cohomotopy gives an exact sequence

(1)
$$\cdots \to \omega_G^{\gamma}(\underline{E}\mathcal{F}(V)) \xrightarrow{\beta} \omega_G^{\gamma}(S^0) \xrightarrow{\alpha} \omega_G^{\gamma}(E\mathcal{F}(V)_+) \to \cdots$$

in which α is the Segal map in the generalized context of [A1]. In this setting, the Segal conjecture takes the following form. Let A(G) denote the Burnside ring of G, and let, for $H \subset G$,

$$d_H \colon A(G) \to \mathbf{Z}$$

be the homomorphism assigning to the virtual G-set s-t the integer $|s^H|-|t^H|$. Denote the ideal $\bigcap_{(H)\in\mathcal{F}(V)}\ker d_H$ by I(V), and I(V)-adic completion of the A(G)-module M by M. The conjecture as proved in $[\mathbf{A1}]$ then states that α induces an isomorphism

$$\alpha : (\omega_G^{\gamma}(S^0)) \to \omega_G^{\gamma}(E\mathcal{F}(V)_+)$$

for each $\gamma \in RO(G)$. (In particular, $\omega_G^{\gamma}(E\mathcal{F}(V)_+)$ is I(V)-adically complete.) Let $k \in \mathbf{Z}$. The exact sequence (1) is closely related to the exact sequence

(2)
$$\cdots \to \omega_{nV+k}^G(S^0) \stackrel{(\beta_n)}{\to} \omega_k^G(S^0) \stackrel{(\alpha_n)}{\to} \omega_{nV+k-1}^G(S(nV)_+) \to \cdots$$

is stable G-homotopy induced by the cofiber sequence

$$S(nV)_+ \to D(nV)_+ \to S^{nV} \to \Sigma S(nV)_+ \to \cdots$$

The sequence (2) gives rise to short exact sequences

(3)
$$0 \to \omega_k^G / \operatorname{Im} \beta_n \xrightarrow{\alpha_n} \omega_{nV+k-1}^G (S(nV)_+) \to \operatorname{coker} \alpha_n \to 0,$$

where $\omega_{\star}^{G} = \omega_{\star}^{G}(S^{0})$. One has natural homomorphisms

$$\gamma_* \colon \omega_{(n+1)V+k-1}^G(S(n+1)V_+) \to \omega_{nV+k-1}^G(SnV_+)$$

(omitting some parentheses), given as follows. Let $\nu: S(n+1)V_+ \to \Sigma^V SnV_+$ denote the natural quotient, obtained by collapsing about a tubular neighborhood of S(nV) in S((n+1)V), and define γ_* as the composite

$$\omega_{(n+1)V+k-1}^G(S(n+1)V_+) \stackrel{\nu_*}{\to} \omega_{(n+1)V+k-1}^G(\Sigma^V SnV_+) \cong \omega_{nV+k-1}^G(SnV_+).$$

It may be checked that, under Spanier Whitehead duality, the maps γ_* agree with the inverse system maps

$$\gamma^* : \omega_G^{-k}(S(n+1)V_+) \to \omega_G^{-k}(SnV_+)$$

induced by inclusion. One also has natural homomorphisms

$$\mu_* : \omega_{(n+1)V+k}^G(S^0) \to \omega_{nV+k}^G(S^0),$$

given by the composites

$$\omega_{(n+1)V+k}^G(S^0) \to \omega_{(n+1)V+k}^G(\Sigma^V S^0) \cong \omega_{nV+k}^G(S^0)$$

where the first map is induced by inclusion $S^0 \to S^V \cong \Sigma^V S^0$. The maps γ_* and μ_* commute the maps in the sequence (2), giving commutative diagrams:

Passing the sequences (3) to (inverse) limits gives an exact sequence

$$(4) 0 \to \lim_{n} \omega_{k}^{G} / \operatorname{Im} \beta_{n} \xrightarrow{\alpha} \lim_{n} \omega_{nV+k-1}^{G} (S(nV)_{+}) \to \lim_{n} \operatorname{coker} \alpha_{n} \to 0$$

since $\lim_{k \to \infty} \omega_k^G / \operatorname{Im} \beta_n = 0$, the bonding maps being surjections. The map $\alpha = \lim_{k \to \infty} \alpha_n$ is reminiscent of the Segal map α . Write the latter (dually) as

$$\widehat{\alpha}: \lim_{n} \omega_{k}^{G}/I(V)^{n} \omega_{k}^{G} \to \lim_{n} \omega_{nV+k-1}^{G}(S(nV)_{+}).$$

(The target is $\omega_G^{-k}(E\mathcal{F}(V)_+)$ by vanishing of the \lim^1 terms [A1].) Abbreviate $\lim_n \omega_k^G / \operatorname{Im} \beta_n$ as $(\omega_k^G)_{\widehat{\beta}}$. One then has

PROPOSITION 1.2. There exists a natural homomorphism

$$\psi \colon (\omega_k^G) \widehat{\longrightarrow} (\omega_k^G)_{\widehat{\beta}}$$

making the diagram

$$\begin{array}{ccc} (\omega_k^G) \hat{\longrightarrow} & \hat{\alpha_G^{-k}}(E\mathcal{F}(V)_+) \\ \psi \downarrow & & \\ (\omega_k^G) \hat{\beta} & & \\ \end{array}$$

commute. It now follows from injectivity of α (in (4)) that both α and ψ are isomorphisms.

PROOF. If k < 0, the conclusion is immediate since $\omega_k^G = 0$. Thus assume $k \ge 0$. It suffices to show that, for each $n \ge 0$, there exists an integer r(n) with

$$I(V)^{r(n)} \subset \operatorname{Im} \beta_n$$
.

(This will then technically define a pro-map from the one inverse system to the other.)

Let $x \in \omega_k^G$. Then x is represented by a G-map $S^{W+k} \to S^W$ for some $W < \mathcal{U}$. Our object is now to extend a representative of ρx over S^{W+k+nV} (stably) for arbitrary $\rho \in I(V)^{r(n)}$ with r(n) independent of x. Regard the pair (S^{nV}, S^0) as a relative G-CW complex with relative G-cells of the form $G/H \times D^i$ for $H \in \mathcal{F}(V)$ (which one may assume by the orbit structure of S^{nV}).

We define r(n) as the number of relative G-cells in (S^{nV}, S^0) . Assume, inductively over the skeleta of the pair, that for each $\rho \in I(V)^{s(p)}$, with s(p) the number of relative G-cells in the p-skeleton $((S^{nV})^p, S^0)$, one has a stably G-homotopy commutative diagram:

$$(S^{nV})^p \wedge S^{W+k} \stackrel{g_p}{\longrightarrow} S^W$$

$$j \uparrow \qquad \qquad ||$$

$$S^{W+k} \stackrel{f_p}{\longrightarrow} S^W$$

Here, f_p represents ρx and j is inclusion. The obstruction to extending g_p stably over a typical (p+1)-cell of the form $G/H \times D^{p+1}$ defines a stable H-equivariant map

$$\theta \colon S^p \wedge S^{W+k} \xrightarrow{c} (S^{nV})^p \wedge S^{W+k} \xrightarrow{g_p} S^W$$

where c is adjoint to the attaching map for that cell. If $k \in I(V)$, one may represent k by a stable G-map $\underline{k} \colon S^X \to S^X$ for suitable $X < \mathcal{U}$. Consider the diagram:

$$(S^{nV})^p \wedge S^{W+k} \wedge S^X \xrightarrow{g_p \wedge k} S^W \wedge S^X$$

$$j \uparrow \qquad \qquad ||$$

$$S^{W+k} \wedge S^X \xrightarrow{f_p \wedge k} S^W \wedge S^X$$

The obstruction to extending $g_p \wedge \underline{k}$ stably over this cell is now represented by $\theta \wedge \underline{k}$, regarded as an H-equivariant map. Since $k \in I(V)$ and $H \in \mathcal{F}(V)$, this is H-homotopy trivial. Thus one may extend $g_p \wedge \underline{k}$ stably over this cell. Note that $f_p \wedge \underline{k}$ represents $k \rho x$, so that one may continue this process over the relative (p+1)-cells and obtain the inductive step, and hence the result. \square

One has the following converse to Proposition 1.2.

PROPOSITION 1.3. Let $k \in \mathbb{Z}$. Then there exists a sequence $s(n) \to \infty$ as $n \to \infty$ such that $\operatorname{Im} \beta_n \subset I(V)^{s(n)} \omega_k^G$ for each n sufficiently large.

PROOF. Define a preliminary sequence r(n) by

$$r(n) = \min\{n, \max\{j \in \mathbf{N} \colon \operatorname{Im} \beta_n \subset I(V)^j \omega_k^G\}\}.$$

(Note that one must allow $\max\{j\in \mathbf{N}\colon \mathrm{Im}\,\beta_n\subset I(V)^j\omega_k^G\}=\infty$.) Then, by definition, $\mathrm{Im}\,\beta_n\subset I(V)^{r(n)}\omega_k^G$. To prove the proposition, it suffices to show that there exists a subsequence q(n) of r(n) with $q(n)\to\infty$ as $n\to\infty$. Assume that no such subsequence exists. Then there exists an integer $j\in \mathbf{N}$ and a subsequence t(n) of the natural numbers with

$$\operatorname{Im} \beta_{t(n)} \subset I(V)^j \omega_k^G \quad \text{and} \quad \operatorname{Im} \beta_{t(n)} \not\subset I(V)^{j+1} \omega_k^G.$$

It follows that there is a sequence of stable G-maps

$$x_{t(n)} \colon S^{nV+W+k} \to S^W$$

with the composite

$$y_{t(n)} \colon S^{W+k} \to S^{nV+W+k} \to S^W$$

defining a class $[y_{t(n)}] \in I(V)^j \omega_k^G - I(V)^{j+1} \omega_k^G$ for each n.

If k > 0, then, by Lemma 1.1, ω_k^G and ω_{k+nV}^G are finite. Since the maps β_n define a map β into the constant system $\{\omega_k^G\}$, it now follows that there exists an element $z = ([z_n]) \in \lim_n \omega_{k+nV}^G$, obtained from the $[x_{t(n)}]$ by application of the bonding homomorphisms, with

$$\beta_n([z_n]) \in I(V)^j \omega_k^G - I(V)^{j+1} \omega_k^G$$

for each $n \geq 0$. However, $\beta_n([z_n]) = \beta(z)$ is now independent of n, since it is in a constant system, and $\beta(z) \in \bigcap_n \operatorname{Im} \beta_n$, by construction. Thus the completion

$$\omega_k^G \to (\omega_k^G)_{\beta}$$

maps $\beta(z)$ to zero. Thus, by Proposition 1.2, I(V)-adic completion $\omega_k^G \to (\omega_k^G)^{\widehat{}}$ maps $\beta(z)$ to zero as well. It now follows that $\beta(z) \in \bigcap_n I(V)^n \omega_k^G$, by definition of I(V)-adic completion. But $\beta(z) \in I(V)^j \omega_k^G - I(V)^{j+1} \omega_k^G$, a contradiction.

We now consider the case k=0. Here, by definition of the x_n , one has $\beta_n(x_n) \in I(V)\omega_0^G = I(V)$, since $\omega_0^G \cong A(G)$. However, $I(V)/I(V)^m$ is finite for each $m \geq 1$, so that there exists a sequence $([z_n])$ with

$$z_n: S^{nV+W} \to S^W$$

such that $\beta_n[z_n] \in I(V)^{j} - I(V)^{j+1}$ and such that $([z_n])$ maps under the natural quotient

$$\prod_{n} \omega_{nV}^{G} \to \prod_{n} A(G)/I(V)^{n}$$

to an element $\underline{a} = ([a_n])$ of $\lim_n A(G)/I(V)^n = A(G)$. Thus if $a_n \in A(G)$ represents $[a_n]$, one has $a_n - \beta_n[z_n] \in I(V)^n$. Consider $\psi(\underline{a}) \in A(G)_{\widehat{\beta}}$. By the construction of ψ , there is a sequence q(n) with $q(n) \leq n$ and $q(n) \to \infty$ such that

$$a_n - \beta_n[z_n] \in \operatorname{Im} \beta_{q(n)}.$$

It now follows that $\psi(\underline{a}) = 0$, whence $\underline{a} = 0$. But $a_n = \beta_n[z_n] \in I(V)^j - I(V)^{j+1}$, which is again a contradiction.

When k < 0, $\omega_k^G = 0$, so the conclusion is automatic in this case. \square

2. Application to framed G-manifolds. Fix $V < \mathcal{U}$, and let M be a smooth G-manifold. Then M is said to have equivariant dimension V (or to be a V-manifold) if, for each $x \in \text{Int } M$, there is a smooth G_x -equivariant diffeomorphism $i \colon V \to M$, taking 0 to x. More generally, M is a (V - W)-manifold for V and $W < \mathcal{U}$ if $M \times D(W)$ is a V-manifold. This notion is due originally to Pulikowski $[\mathbf{P1}]$ and Kosniowski $[\mathbf{K1}]$, but we shall not be requiring such generalizations here. We shall refer to a G-manifold of dimension $V^n \pm \mathbf{R}^k$ (where \mathbf{R}^k is given the trivial G-action) as an $(nV \pm k)$ -manifold, and all G-manifolds considered will be assumed compact.

The normal bundle of a G-manifold with equivariant dimension V has fibers similarly modelled on a fixed representation W in the sense that the fiber over a

typical point x is G_x -isomorphic with W. Such G-bundles are discussed in [W1 and W2]. M is equivariantly framed if its normal bundle μ_M with respect to a smooth embedding in some (large) finite-dimensional G-module U is a product, $\mu_M \cong \mathcal{E}_M(W)$, where $\mathcal{E}_M(W)$ is the product G-bundle $M \times W \to M$, and where $V \oplus W \cong U$, as a G-module.

REMARK 2.1. This last condition, that $V \oplus W \cong U$, is necessary to obtain a well-defined homomorphism from framed G-bordism into equivariant stable homotopy. For example, if $G = \mathbf{Z}/p$ (p prime) and V is any nontrivial irreducible G-module, then the unit sphere S(V) is equivariantly framed, and may be viewed as either a (V-1)-manifold or a (v-1)-manifold, where $v = \dim V$. However, it is not equivariantly framed, in the above sense, as a (v-1)-manifold.

LEMMA 2.2. Let V be such that $V^G = \{0\}$, and let n be a nonnegative integer. Then there exists a nonnegative integer N = N(n,V) such that, if M is any framed (nV+k)-manifold with n>N, then the normal bundle γ_G of M^G in M is a product G-bundle.

PROOF. Embed M equivariantly in the (large) G-module U and choose a trivialization, $\mu_M \cong \mathcal{E}_M(W)$, of the normal bundle of M. Write

$$U = W \oplus V^n \oplus \mathbf{R}^n \cong U_0 \oplus V^r \oplus V^n \oplus \mathbf{R}^k,$$

where U_0 has no summands isomorphic with a summand of V. Then $\gamma_G \oplus \mathcal{E}(V^r)$ has fiber dimension (n+r)V, and is canonically a product G-bundle. The G-bundle γ_G is classified by the space $BO_G(nV)$, where $O_G(jV)$ is the group of equivariant orthogonal isomorphisms of $jV = V^j$. The composite

$$M^G \to BO_G(nV) \to \operatornamewithlimits{colim}_i BO_G(jV)$$

of the natural inclusion with a classifying map is therefore null-homotopic. Since the second arrow is an n-equivalence for sufficiently large m (depending only on n and V), the result now follows. \square

It follows from the lemma that the fixed-sets of framed G-manifolds admit stable framings, given sufficiently large "codimension" n. The above argument may easily be elaborated to show that, for each $H \subset G$, M^H is equivariantly framed as an NH/H-manifold.

Denote by Ω_{fr} nonequivariant framed bordism (stable homotopy). If $H \subset G$, then let $J(H) \subset \mathbf{Z}$ be the ideal

$$J(H) = \operatorname{Im} d_H \colon I(V) \to \mathbf{Z}.$$

We reformulate Theorem A, including a description of the integer j.

THEOREM A. Let G be a finite group, let V be any orthogonal G-module with $V^G = \{0\}$, and let $k \geq 0$. Let $H \subset G$ be such that $V^H = 0$. Then there exists a sequence (s_n) with $s_n \to \infty$ as $n \to \infty$ such that, if M is any framed (nV + k)-manifold with H-fixed set Y^k , one has $[Y] \in J(H)^{s_n}\Omega_k^{f_n}$.

COROLLARY 1. Let G be a p-group, let V be any orthogonal G-module with $V^G = \{0\}$, and let $k \geq 0$. Let $H \subset G$ be such that $V^H = \{0\}$. Then there exists a sequence (s_n) with $s_n \to \infty$ as $n \to \infty$ such that, if M is any framed (nV + k)-manifold with H-fixed set Y^k , one has $[Y] \in p^{s_n}\Omega^{\mathrm{fr}}_k$.

PROOF. This is now an immediate consequence of the fact that, for a p-group, $J(H) \subset p\mathbb{Z}$. \square

COROLLARY 2. If G is any p-group, there does not exist any framed V-manifold possessing a single fixed point.

PROOF. If M were a framed V-manifold with a single fixed point, then the sequence $M_n = (M \times M \times \cdots \times M)$ (n times) is a sequence of framed nV-manifolds each possessing a single fixed point, contradicting Corollary 1. \square

REMARK 2.3. Corollary 2 fails if G is not a p-group. For example, let $G = \mathbf{Z}/p \times \mathbf{Z}/q$, with p and q distinct primes. Choose integers m and n with mp+nq=1, and let $V=\rho$, any one-dimensional semifree irreducible complex \mathbf{Z}/pq -module. The element $a=[1-m\mathbf{Z}/p-n\mathbf{Z}/q]\in A(\mathbf{Z}/pq)$ lies in I(V), since $\mathcal{F}(V)=\{1\}$ (where 1 is the trivial subgroup). By the proof of Proposition 1.1, there exists an integer r(n) with $I(V)^{r(n)}\subset \operatorname{Im}\beta_n$ for any $n\geq 0$. Choose any such n, and let $f_n\colon S^{nV+W}\to S^W$ be such that $\beta_n[f_n]=a^n$. One may G-homotope f to a G-map transverse to $0\in S^W$, so that $f_n^{-1}(0)$ is a framed nV-manifold, M. The fixed-set of M corresponds to the class of $f_n^G\colon (S^W)^G\to (S^W)^G\in \pi_0^s\cong \mathbf{Z}$. By definition of f_n , however, one has

$$\deg f_n^G = d_G(a^n) = 1,$$

so that M possesses only a single "essential" (noncancelling) fixed point in the sense of $[\mathbf{K2}]$. One can thus attach copies of $S(V) \times I$ to M to obtain a framed G-manifold of dimension nV possessing a single fixed point.

3. Proof of Theorems A and B. We first prove Theorem A. If M_n is a framed G-manifold of dimension nV + k, then the Pontryagin-Thom construction defines a G-map

$$f_n: S^{nV+k+W} \to S^W$$

for some W. Let s(n) be the sequence obtained in Proposition 1.2. Then the composite

$$S^{k+W} \to S^{nV+k+W} \to S^W$$

of f_n with inclusion defines a class $x \in I(V)^{s(n)}\omega_k^G$. Let H be such that $V^H = \{0\}$. Then restriction of a G-map to the H-fixed subset defines a homomorphism $\omega_k^G \to \pi_k^s$ such that, if $a \in A(G)$, then $\varphi(ay) = d_H(a)\varphi(y)$, where $\varphi \colon A(G) \to A(H)$ is the forgetful homomorphism. This may be seen directly from the definition of the A(G)-action on ω_k^G . Thus

$$\varphi(x) = \varphi(ay) = d_H(a)\varphi(y)$$

for some $a \in I(V)^n$, where $d_H(I(V)^n) \subset J(H)^n$. Since the H-fixed set of M corresponds to the class $\varphi(x)$, the result now follows. \square

REMARKS 3.1. If $H \in \mathcal{F}(V)$, then all information on the H-fixed set is lost upon application of β_n , so no analogous result can be drawn.

Turning to the proof of Theorem B, and with j a generator of the ideal J(G), let $[Y] \in \pi_k^s$ be the stable homotopy class determined by the framed manifold Y. Then, under the natural map $\pi_k^s \to \omega_k^G$, [Y] determines a stable homotopy class of G-maps $\varsigma \colon S^{U+k} \to S^U$ with $U < \mathcal{U}$. Following the proof of Proposition 1.2, one extends $\rho^n \varsigma$ (stably) to a G-map

$$\zeta' \colon S^{U+mV+k} \to S^U$$

for suitable n and arbitrary $\rho \in I(V)$. Now G-homotope ς' to a G-map $\underline{\varsigma}$ transverse to $0 \in S^U$, and let M be the framed G-manifold $\underline{\varsigma}^{-1}(0)$. Then M has dimension

mV+k, and its G-fixed set Z is the preimage of $(S^U)^G$ under the restriction $\underline{\varsigma}|(S^{U+mV+k})^G=\underline{\varsigma}|(S^{U+k})^G$, since $V^G=\{0\}$. Since $\underline{\varsigma}$ is stably G-homotopic to an extension of $\rho^n\varsigma$, restricting to the G-fixed set gives a framed cobordism of Z with $d_G(\rho)^nY$. The theorem now follows by choosing $\rho\in d_G^{-1}(j)$. \square

BIBLIOGRAPHY

- [A1] J. F. Adams, J. P. Haeberly, S. Jackowski and J. P. May, A generalization of the Segal conjecture, Preprint, Univ. of Chicago, 1985.
- [C1] G. Carlsson, Equivariant stable homotopy and Segal's Burnside ring conjecture, Ann. of Math. 120 (1984), 189-224.
- [CF] P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Math., N.F., Vol. 33, Academic Press, New York; Springer, Berlin, 1964.
- [CW] J. Caruso and S. Waner, An approximation theorem for equivariant loop spaces in the compact Lie case, Pacific J. Math. 117 (1985), 27-49.
- [H1] H. Hauschild, Zerspaltung äquivariante homotopiemengen, Math. Ann. 230 (1977), 279–292.
- [K1] C. Kosniowski, A note on RO(G)-graded G-bordism theory, Quart. J. Math. Oxford Ser. 26 (1975), 411-419.
- [P1] W. Pulikowski, RO(G)-graded G-bordism theory, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys. 21 (1973), 991-995.
- [W1] S. Waner, Classification of oriented equivariant spherical fibrations, Trans. Amer. Math. Soc. 271 (1982), 313-323.
- [W2] W. Waner, Equivariant RO(G)-graded bordism theories, Topology Appl. 17 (1984), 1-26.
- [W3] A. G. Wasserman, Equivariant differential topology, Topology 8 (1969), 127-150.

DEPARTMENT OF MATHEMATICS, HOFSTRA UNIVERSITY, HEMPSTEAD, NEW YORK 11550