PERSISTENCE OF FORM AND THE VALUE GROUP OF REDUCIBLE CUBICS

P. D. T. A. ELLIOTT

ABSTRACT. It is proved that the values of $x(x^2 + c)$, $c \neq 0$, at positive integers, multiplicatively generate the positive rationals. Analogs in rational function fields are obtained.

1. Let Q^* be the multiplicative group of positive rational numbers. Let r_1 , r_2, \ldots , be a sequence of positive rationals, and Γ the subgroup of Q^* which they generate. Let G be the quotient group Q^*/Γ . This group G reflects the extent to which an arbitrary positive integer has a multiplicative representation by the r_n . Since Q^* is freely generated by the positive prime numbers, G models an arbitrary denumerable abelian group, and an algorithm to determine its structure cannot be given. However, this situation could change if the r_n were given enough algebraic properties.

Let F(x) be a rational function P_1/P_2 , the P_i in Z[x] and having positive leading coefficients. Let θ be a nonnegative real number, and choose for the sequence of rationals r_n the positive values among the F(t) as t runs through the integers greater than θ . In my book [4] and paper [5] I made early versions of the following conjectures:

- (i) For all sufficiently large θ , G is independent of θ .
- (ii) If F is an irreducible polynomial, or more generally a squarefree rational function, then G is the direct sum of a free group and a finite group.

A consequence of these conjectures would be that those positive integers m which have representations of the form

$$m^k = \prod_{i=1}^d F(t_i)^{\varepsilon_i}, \qquad \varepsilon_i = \pm 1,$$

with positive integers t_i , would possess infinitely many of them. Moreover the same fixed value of k could be taken for all m. To some extent this is a multiplicative analogue of Waring's problem (cf. Vaughan [8]).

In an abuse of notation I shall write $Q^*/\Gamma(F(n))$ for G, notationally suppressing the possible dependence on θ .

I have verified these conjectures for the following classes of functions.

A. $F(x) = x^2 + bx + c$ for integers b, c with $b^2 \neq 4c$. Thus when $F(x) = x^2 + 1$, the group G is free with generators the $p \pmod{\Gamma}$ for primes $p \equiv 3 \pmod{4}$.

B. $F(x) = \prod_{j=1}^{k} (x - a_j)^{b_j}$ with distinct integers a_j , and integers b_j which have highest common factor 1. In this case G is trivial.

Received by the editors December 12, 1985.

1980 Mathematics Subject Classification (1985 Revision). Primary 10H99, 10K20, 10M05. Partially supported by NSF contract DMS-8500949.

In addition, I have verified conjecture (ii) when

C. F(x) = (ax+b)/(cx+d) where a > 0, c > 0, b, d are integers for which $ad \neq bc$. The free group then has finite rank, and the finite group can have arbitrarily large order.

Case B was established in [6]. A second presentation of the argument along with the (considerably complicated) consideration of C I included in my book [4]. I shall sketch a proof of case A below.

In this paper I consider the cases $F(x) = w(x) = x^k (bx^2 + a)^l$ where a and k are nonzero integers, b, l are positive integers. In particular I establish

THEOREM 1. Both conjectures are valid if F(x) has the form $x^{-1}(bx^2 + a)$ or $x(x^2 + a)$ for integers $a \neq 0$, b > 0.

2. Let $Q(x)^*$ be the multiplicative group generated by the rational functions P_1/P_2 in the previous section. For a given rational function S(x) in $Q(x)^*$ let $\Delta(S(x))$ be the subgroup of $Q(x)^*$ which is generated by the S(K(x)) where K(x) is a polynomial in Z[x] with positive leading coefficient. Define the quotient group $H(S(x)) = Q(x)^*/\Delta(S(x))$.

One might hope to determine the group $Q^*/\Gamma(F(n))$ by investigating its polynomial analogue H(F(x)), and in this way obtain parametrized product representations. In fact I shall establish

THEOREM 2. The group $H(x^{-1}(bx^2 + a))$ with $a \neq 0$, b > 0 is trivial, but $H(x(x^2 + a))$ is cyclic of order 3, generated by the image of x.

Following the proofs of these theorems I discuss related results, and give applications to the study of Dirichlet character values.

3. We say that a rational function F(x) has persistence of form if there are distinct polynomials $K_i(x)$ in Z[x], with positive leading coefficients, and integers d_i not all zero, so that

$$\prod_{i=1}^{r} F(K_i(x))^{d_i} = \text{constant}$$

holds identically. It is not clear which rational functions have persistence of form, nor how many such relations can exist for a given function F(x). Some pause is induced by noting that the composition of two irreducible polynomials can be reducible. If f(x) is in Z[x], then Taylor's theorem shows that f(f(x) + x) is divisible by f(x) in Z[x], and an example is furnished by $f(x) = x^2 + 1$.

In this section I consider the persistence of form of quadratic polynomials.

LEMMA 1. Let
$$h(t) = \alpha t^2 + \beta t + \gamma$$
, $\alpha \neq 0$. Then

$$h(M^{-1}h(t)+t) = M^{-2}\alpha h(t)h(t+M\alpha^{-1}).$$

PROOF. This identity, considered to hold between rational functions of t, α , β , γ and M, can be verified directly.

As an example in the application of Lemma 1, I establish the conjectures for the irreducible quadratic polynomials h(x) of the form $x^2 + bx + c$, $c \neq 0$.

Let ϕ denote the canonical map $Q^* \to Q^*/\Gamma(n^2+bn+c)$, for some fixed underlying $\theta > |c|$. Let \bar{r} denote the image of a rational number r under this map.

Let s be the product of the h(r) with integers r, $|r| \le b + \theta$. Let q be a prime, not dividing s, for which the Legendre symbol satisfies $((b^2 - 4c)/q) = 0$ or 1. The polynomial $x^2 + bx + c$ splits (mod q), say as (x - u)(x - v) where u, v can be represented by integers in the interval $[\theta + |b| + 1, q - |b| - 1]$. Since $u + v \equiv -b \pmod{q}$ and 0 < u + v + b < 2q, we have u + v = q - b. Without loss of generality we shall assume that 0 < u < (q + |b|)/2.

Under the map ϕ we obtain $\overline{q} = \phi(q^{-1}h(u))$ where $0 < q^{-1}h(u) < q$ for all large enough q. The subgroup G_1 of G which is generated by these \overline{q} is thus finitely generated.

Moreover, applying Lemma 1 with $\alpha = 1$, M = q, t = u we obtain $\overline{q}^2 = \overline{1}$. Thus G_1 is finite, of order k say.

Consider now a relation

$$\prod_{i=1}^I \overline{p}_i^{\lambda_i} \prod_{j=1}^J \overline{q}_j^{\mu_j} = \overline{1}$$

with integers λ_i , μ_j , primes p_i for which $((b^2 - 4c)/p_i) = -1$, and primes q_j for which this symbol has value 0 or 1. Raising everything to the kth power gives

$$\phi\left(\prod_{i=1}^{I} p_i^{\lambda_i k}\right) = \overline{1}.$$

A relation of this kind is possible only if each p_i divides $n_i^2 + bn_i + c$ for some integer n_i , and this the condition on the Legendre symbol rules out. Thus every $\lambda_i = 0$.

It is clear that G is the direct sum of a free group and of G_1 . The finite G_1 has order which is a power of 2.

Suppose now that Q(m) > 0 for all integers m > z. Since

$$Q(m) = Q(Q(m) + m)/Q(m+1)$$

we see that if the ratio of two rationals has a product representation in terms of $Q(n_i)$ with integers $n_i \geq \theta > z$, then it also has such a representation with the stronger requirement $n_i \geq \theta + 1$. For $\theta > z$ the groups G may thus be identified with each other.

In particular $Q^*/\Gamma(n^2+1)$ is free for all θ .

LEMMA 2. Let $Q(x) = bx^2 + a$ with integers b > 0 and $a \neq 0$. There are positive integers D_0, D, D_i , i = 1, 2, 3, so that

$$a^{2}Q(D_{0}xQ(Dx)) = Q(D_{1}x)Q(D_{2}x)Q(D_{3}x).$$

PROOF. The strategy behind this lemma is to compose a quadratic polynomial with a cubic polynomial in such a way that the resulting polynomial splits into three quadratics. Consideration of algebraic extensions of the rationals shows that the cubic must be reducible.

Consider $Q(M^{-1}x(bx^2+a)+x)$ where M may be thought of as a rational number. It has the alternative representation

$$M^{-2}Q(x)(b^2x^4 + bx^2[a+2M] + M^2).$$

The polynomial of degree 4, considered as a quadratic in bx^2 , is reducible if $(a+2M)^2-4M^2$ is a square. Choosing M to be of the form $a(\rho^2-1)/4$ for a rational ρ will ensure that this condition is satisfied, and the polynomial splits as

$$[bx^2 + a(\rho+1)^2/4][bx^2 + a(\rho-1)^2/4].$$

With this choice of M, $M+a=a(\rho^2+3)/4$. Here $\rho^2+3=y^2$ has only $\rho=\pm 1$, $y=\pm 2$ as integral solutions, but has infinitely many rational solutions given by $\rho=\frac{1}{2}(3t-1/t),\ y=\frac{1}{2}(3t+1/t)$. It is convenient to note that $\rho>0$ if $t>1/\sqrt{3}$; and that since $2t(\rho-1)=(3t+1)(t-1)$ for positive rational values of $t,\ \rho>1$ if and only if t>1.

Noting further that

$$bx^2 + a\left(\frac{\rho-1}{2}\right)^2 = \left(\frac{\rho-1}{2}\right)^2 Q\left(\frac{2x\operatorname{Sign} a}{\rho-1}\right)$$

where

$$\operatorname{Sign} a = \begin{cases} 1 & \text{if } a > 0, \\ -1 & \text{if } a < 0, \end{cases}$$

we obtain the identity

$$a^2Q\left(\frac{x(3t+1/t)^2}{4M}Q\left(\frac{2x}{3t+1/t}\right)\right)=Q(x)Q\left(\frac{2x}{\rho+1}\right)Q\left(\frac{2x\operatorname{Sign} a}{\rho-1}\right).$$

We set

$$x = (a/4)(\rho^2 - 1)(3t + 1/t)(2t)^r z$$

and fix r at a value sufficiently large that all the polynomials belong to Z[t,z]. If a>0, we choose t to be a rational number exceeding 1, if a<0, we choose t to be a rational number in the interval $1/\sqrt{3} < t < 1$. This ensures that both ρ and $a(\rho-1)$ are positive. Replacing z by D_4u for a suitably chosen positive integer D_4 we obtain the desired identity with u in place of x.

It is interesting that the constants D and D_i , i = 1, 2, are constant multiples of a, while D_3 is a constant multiple of |a|. D_0 is an absolute constant. They satisfy $|a|D_0D^2 = D_1D_2D_3$.

Other examples in the persistence of form of quadratic polynomials are given in [5].

4. Proof of Theorems 1 and 2 for $x^{-1}(bx^2 + a)$.

LEMMA 3. Let $g = k(k+2l)(k,l)^{-1}$. There are polynomials K_i in Z[x] with positive leading coefficients and of degree at most 3, so that

$$x^g = \prod_{i=1}^c w(K_i)^{arepsilon_i}, \quad arepsilon_i = \pm 1.$$

PROOF. Raising the identity of Lemma 2 to the lth power gives

$$x^{-3k}\prod_{i=1}^3 D_i^{-k}w(D_ix) = a^{2l}(D_0xQ(Dx))^{-k}w(D_0xQ(Dx)).$$

In turn we take $l(k, l)^{-1}$ powers in this equation and obtain a representation

$$x^g L = \prod_{i=1}^h w(J_i(x))^{arepsilon_i}$$

with a positive constant L and polynomials $J_i(x)$ in Z[x], of degree at most 3, with positive leading coefficients.

Employing this identity twice, once with x = 1, gives the desired identity of Lemma 3.

In the application of Lemma 3 it is sometimes convenient to be able to assert that all integer specializations of the polynomials K_i exceed a given constant. This may be obtained by replacing x in the above identity involving the $J_i(x)$ with Ex for a suitable integer E, or by also employing the identity with x everywhere replaced by x^2 .

In the case -k = 1 = l we have g = 1, giving the triviality of $H(x^{-1}(bx^2 + a))$, and so that of $Q^*/\Gamma(n^{-1}(bn^2 + a))$ for all θ . For the cubics $x(x^2 + a)$ we obtain g = 3.

5. In this and all following sections the relation $g_1 \sim g_2$ between two members of a group G means that their ratio $g_1g_2^{-1}$ belongs to the kernel of a given group homomorphism $G \to H_1$, or of a composition of homomorphisms $G \to H_1 \to H_2 \to H_1$

We shall apply, many times, the identity

$$(1) B(B(x) + x) = B(x)B(x+1)$$

which is valid for all quadratic polynomials B(x) in Z[x] which are of the form $x^2 + \beta x + \gamma$. It is the case $\alpha = 1 = M$ of Lemma 1.

In this section and until further notice b = 1 so that $w(x) = x^k(x^2 + a)^l$.

LEMMA 4. Under the map $Q(x^*) \to H(w(x))$ we have $(x^2+a-1)^{kls} \sim (x^2-1)^{kls}$ with $s=(k,l)^{-1}$.

PROOF. Beginning with the relation $(x^2 + a)^l \sim x^{-k}$ we apply identity (1) with $B(x) = x^2 + a$ to obtain

$$(x^2 + x + a)^{-k} \sim (B(x^2 + x + a))^l \sim (x(x+1))^{-k}$$

Using the left and right ends of this expression and applying identity (1), this time with $B(x) = x^2 + x + a$, yield

$$((x+1)^2 + a - 1)^k ((x+1)^2 + a)^k \sim (x(x+1)^2 (x+2))^k$$

We replace x by x-1 and eliminate between the resulting expression and the first relation to obtain

$$(x^2+a-1)^{kls} \sim (x^2-1)^{kls} x^{ks(k+2l)}.$$

An application of Lemma 3 now gives the desired result.

LEMMA 5. Let $\beta = kl(k,l)^{-1}$. Under the composition of maps $Q(x)^* \to H(w(x)) \to \beta H(w(x))$ we have

(2)
$$x^2 + x + a - m^2 + m \sim (x - m + 1)(x + m),$$

(3)
$$x^2 + a - m^2 \sim (x - m)(x + m)$$

for m = 1, 2,

The second homomorphism in this sequence raises elements to their β th power. PROOF. The proof goes by induction, following the procedure (3) for m implies (2) for m+1 implies (3) for m+1.

For m = 1 the assertion is guaranteed by Lemma 4.

Suppose now that (2), (3) hold for an $m \ge 2$. Applying the identity (1) with $B(x) = x^2 + a - m^2$ we have

$$(x^2 + x + a - m^2 - m)(x^2 + x + a - m^2 + m) = (B(x) + x - m)(B(x) + x + m)$$
$$\sim B(B(x) + x) = B(x)B(x + 1) \sim (x - m)(x + m)(x + 1 - m)(x + 1 + m).$$

This together with the induction hypotheses (2) for m shows that

$$x^{2} + x + a - m^{2} - m \sim (x - m)(x + 1 + m),$$

which is (2) for m+1.

To continue, apply identity (1) with B(x) the polynomial on the left side of this relation. Then

$$(x-m)(x+1+m)(x+1-m)(x+2+m) \sim B(x)B(x+1)$$

$$= B(B(x)+x) \sim (B(x)+x-m)(B(x)+x+1+m)$$

$$= ((x+1)^2 + a - (m+1)^2)((x+1)^2 + a - m^2),$$

and (3) for m + 1 follows if we replace x by x - 1 and apply (3) for m. The proof of Lemma 5 is complete.

LEMMA 6. Let the situation of Lemma 5 be in force. Then there are integers b_j , $j=1,\ldots,4$, so that $(x-b_1)(x-b_3)/(x-b_2)(x-b_4)\sim 1$, where the rational function is not identically 1.

PROOF. We may clearly assume that -1 is not a square. Suppose first that a is odd or divisible by 4. We can write it in the form $r^2 - s^2$ using r = (a+1)/2, s = (a-1)/2; or r = (a+4)/4, s = (a-4)/4 respectively. From relation (3) of Lemma 5 with $m = |r| \ge 1$ we obtain

$$(x-|s|)(x+|s|)/(|x-|r|)(x+|r|) \sim 1$$

since then $x^2 + a - m^2 = x^2 - s^2$ is reducible.

If a is even but only divisible by 2, it can be expressed in the form a = (c - k)(c + k - 1). One such representation is given by

$$a = a_1 a_2$$
, $c = (a_1 + a_2 + 1)/2$, $k = (a_2 - a_1 + 1)/2$

provided that a_1, a_2 have different parity. Then $4a = (2c-1)^2 - (2k-1)^2$ and the quadratic polynomial $x^2 + x + a - c^2 + c$ is reducible since its discriminant is $(2k-1)^2$. With $a_1 = |a|$, $a_2 = \text{Sign } a$ we obtain from Lemma 5(2)

$$(x+k)(x-k+1)/(x+c)(x-c+1) \sim 1.$$

This completes the proof of Lemma 6.

6. In this section I show that for squarefree g one can simplify the relation in Lemma 5 by acting upon a distinguished subgroup of H(w(x)) with a suitable ring of operators. The procedure is somewhat general.

Let r be a positive integer, and let M be the subgroup of $Q(x)^*$ generated by the first r integers and the polynomials w(P), where P belongs to Z[x] and has positive leading coefficient. Thus M is possibly a little large than $\Delta(w(x))$. Let H_1 be the quotient group $Q(x)^*/M$, and let τ be the canonical homomorphism $Q(x)^* \to H_1$.

Let Y be the subgroup of Q(x) generated by the positive integers and the rational functions of the form

$$\psi(x) = \prod_{i=1}^k (x + c_i)^{d_i}$$

with integers c_i, d_i . Note that for any integer l, the operation $\psi(x) \mapsto \psi(x+l)$ takes Y into itself. In this section $\tau(Y)$ will be written additively.

We introduce a shift operator E to act on $\tau(Y)$ by $E^t\tau(x+b) = \tau(x+b+t)$, and by linearity extend the definition so that the polynomial ring $F_g[E]$ acts upon $\tau(Y)$, where F_g is the residue class ring Z/gZ. The g-torsion derived in Lemma 3 ensures that this action is well defined.

If, in the notation of Lemma 6, $b = \max |b_i|$, $1 \le i \le 4$, then we have

(4)
$$\sum_{i=1}^{4} (-1)^{i+1} E^{b-b_i} \tau(x) = 0.$$

LEMMA 7. Assume that g is squarefree. If r is fixed at a large enough value, then there is an integer t so that $(E-1)^t \tau(x) = 0$.

PROOF. To begin with assume that g is a prime, so that $F = F_g$ is a field. Those operators in F(E) which annihilate $\tau(x)$ form an ideal, nontrivial because it contains the polynomial at (4). Since F is a field, this ideal is principal, generated by $\phi(E)$ say. We factorize this generator in a suitable algebraic extension of F,

$$\phi(z) = \prod_{i=1}^{s} (z - \omega_i)^{r_i},$$

with distinct roots ω_i .

For each positive integer d define

$$\phi_d(z) = \prod_{i=1}^s (z - \omega_i^d)^{r_i}.$$

Since the coefficients of this polynomial are symmetric functions of the ω_i , they are functions of the coefficients of $\phi(z)$. Thus $\phi_d(z)$ belong to F[z]. Moreover, for each value of i

$$\frac{z^d - \omega_i^d}{z - \omega_i} = z^{d-1} + z^{d-2}\omega_i + \dots + \omega_i^{d-1},$$

so that $\phi_d(z^d)/\phi_d(z)$ is a polynomial with coefficients in an extension field of F. It is clear that these coefficients must actually belong to F. It follows that

(5)
$$\phi_d(E^d)\tau(x) = 0.$$

Let

$$\phi_d(z) = \sum_{m=0}^k b_m z^m.$$

Then replacing x in (5) by dx gives (assuming that $d \leq r$)

$$\phi_d(E^d)\tau|\,dx = \sum_{m=0}^k b\tau(dx+md) = \sum_{m=0}^k b_m\tau(x+m),$$

since τ is a homomorphism. In other words, $\phi_d(E)$ also annihilates $\tau(x)$.

Since $\phi(E)$ is of minimal degree in the annihilating ideal, it must coincide with $\phi_d(E)$. In particular, the map $\omega \mapsto \omega^d$ permutes the roots of $\phi(z)$. Let

$$\omega_i \mapsto \sigma \omega_i \mapsto \sigma^2 \omega_i \mapsto \cdots \mapsto \sigma^h \omega_i = \omega_i$$

be a cycle in the permutation. Then $\omega_i^{d^h-1}=1$. We can do this for each root, and obtain an integer δ so that every $\omega_i^{\delta}=1$.

If $\delta \leq r$, then $\phi_{\delta}(E)$ annihilates $\tau(x)$, and $\phi_{\delta}(E) = (E-1)^v$ with $v = r_1 + \dots + r_s$. Suppose now that g is squarefree, with prime-divisors p_i , $i = 1, \dots, l$. The canonical homomorphisms $H_1 \to H_1/p_iH_1$ show that H_1 is isomorphic to a direct sum of the H_1/p_iH_1 , $i = 1, \dots, l$. For each prime p_i we may prolong τ to the composition $\tau_i \colon Q(x)^* \to H_1 \to H_1/p_iH_1$, and, with $F_{p_i}(E)$ acting on $\tau_i(Y)$, obtain an integer t_i for which $(E-1)^{t_i}\tau_i(x) = 0$. With $t = \max t_i$, $1 \leq i \leq l$, $(E-1)^t\tau(x)$ projects onto zero in each H_1/p_iH_1 , $i = 1, \dots, l$.

The assertion of the lemma is justified.

LEMMA 8. Under the conditions of Lemma 7, t = 1 may be taken.

PROOF. Let p be a prime. Iterations of the map $\mu: m \mapsto (m+p-u)/p$ when $m \equiv u \pmod{p}$, $0 \le u \le p-1$, take every positive integer ultimately to 1. Note that $p\mu(m) > m$.

Suppose that, in the notation of Lemma 7, $(E-1)^m \tau_i(x) = 0$. By introducing extra factors E-1 we reach $(E-1)^{p_i\mu(m)}\tau_i(x) = 0$, from which $(E^{p_i}-1)^{\mu(m)}\tau_i(x) = 0$ may be deduced by applying the p_i torsion of H_1/p_iH_1 . Replacing x by p_ix , and arguing as in the earlier part of the proof of Lemma 7, gives $(E-1)^{\mu(m)}\tau(x) = 0$. Thus the m in our hypothesis can be replaced by $\mu(m)$ and, after enough iterations of μ , by 1.

The projection of $(E-1)\tau(x)$ onto each H_1/p_iH_1 is trivial, and the proof of Lemma 8 is complete.

REMARK. In order to obtain analogues of the results of this section when g is not squarefree, it would be necessary to examine the nature of the annihilating polynomial at (4) when viewed over the rings $Z/p_i^{\alpha_i}Z$, where $p_i^{\alpha_i}$ runs through the exact prime-power divisors of g.

7. Proof of Theorems 1 and 2 for $x(x^2+a)$. In this section $w(x)=x(x^2+a)$. From Lemma 6 there is a representation

$$R(x) = \frac{(x - b_1)(x - b_3)}{(x - b_2)(x - b_4)} = \prod_{i=1}^{j} w(P_i)^{\varepsilon_i}$$

where the rational function R(x) is nontrivial, and the polynomials P_i in Z[x] have positive leading coefficients. Note that here $\beta = 1$.

As mentioned in §1, the group $Q^*/\Gamma(R(n))$ is trivial for all θ , and from this the triviality of $Q^*/\Gamma(n(n^2+a))$ may now be deduced. However, we shall argue via the group $H(x(x^2+1))$.

In the present circumstances g=3, is squarefree. From Lemma 8 we obtain a representation

$$\frac{x-1}{x} = \lambda \prod_{i=1}^{k} w(F_i)^{\varepsilon_i}$$

with $F_i = F_i(x)$ in Z[x], and some rational number λ . Without loss of generality we may assume that no F_i is a constant. Replacing x by x^2 and forming the ratio of the two relations gives another of the form,

(6)
$$\frac{x+1}{x} = \prod_{i=1}^{s} w(G_i)^{\varepsilon_i},$$

with G_i in Z[x] and of positive degree.

For each integer n there is a least integer b so that n+b is a cube. We may apply the representation (6) with $x=n,n+1,\ldots,n+b-1$ in turn, and then employ Lemma 3, to obtain both the independence of $Q^*/\Gamma(n(n^2+a))$ of θ , and its triviality.

For any polynomial P(x) in $Q(x)^*$ relation (6) shows that with respect to the canonical map $Q(x)^* \to H(x(x^2+a))$ we have $P(x) \sim P(x) - 1$. Proceeding by induction we obtain $P(x) \sim P(x) - P(0)$, the latter being a polynomial which has a factor x. Thus $P(x) \sim \gamma x^s$ for some constant γ and integer s, $0 \le s \le 2$. From the triviality of $Q^*/\Gamma(n(n^2+a))$ we have $\gamma \sim 1$, and $H(x(x^2+a))$ is clearly cyclic of order 3, generated by the image of x.

8. $G_k = Q^*/\Gamma(n^k(n^2+1))$, and other groups. As a result of my earlier work with the groups $Q^*/\Gamma(F(n))$ I had postulated that such groups might satisfy the conjecture (ii) so long as F(x) were not the power of another rational polynomial. (See Elliott [4, in particular Problem 12 on p. 419].) After a lecture on this subject matter which I gave at Oberwolfach, Germany, in October 1984, Lenstra (with a modification of my argument establishing the freedom of $Q^*/\Gamma(n^2+1)$ when $\theta=0$) and Schinzel showed that the group here denoted by G_2 contains infinitely many independent torsion elements.

Using the above result I here completely determine the groups G_k , |k| > 1. In this case Lemma 6, with $\beta = k$, shows that

$$R(x)^{k} = \left(\frac{(x-b_1)(x-b_3)^{k}}{(x-b_2)(x-b_4)}\right)^{k}$$

has a product representation by the $w(P_i)$ with $w(z)=z^k(z^2+a)$, P_i in $Q(x)^*$. From the triviality of $Q^*/\Gamma(R(n))$ we see that with respect to the canonical map $Q^*\to G_k$ we have $m^k\sim 1$ for every positive integer m. Since trivially $m^k(m^2+1)\sim 1$, we also have $m^2+1\sim 1$ for all m.

The primes 2 and p, $p \equiv 1 \pmod{4}$ have product representations by the $m^2 + 1$, and are thus equivalent to 1. The primes q, $q \equiv 3 \pmod{4}$ satisfy $q^k \sim 1$. Suppose now that a selection of them satisfy

$$\prod_{i=1}^s q_i^{lpha_i} = \prod_{j=1}^r (n_j^k(n_j^2+1))^{arepsilon_j}$$

for positive integers n_j , and integers α_i , $0 \le \alpha_i \le k-1$. Here each q_i must divide a factor n_i^k on the right side, and so α_i must be a multiple of k. This forces $\alpha_i = 0$.

It is clear that G_k is a direct sum of cyclic groups of order k, one generated by the image of each prime q, $q \equiv 3 \pmod{4}$. An elaboration of the argument given for $Q^*/\Gamma(n^2 + bn + c)$ shows that the groups G_k are independent of θ .

Similar arguments show that all the groups $Q^*/\Gamma(x(x^2+a)^l)$ are trivial.

Perhaps analogues of conjectures (i) and (ii) hold when F(x) is replaced by (say) an absolutely irreducible polynomial in several variables, and Γ is the subgroup generated by its values at suitably restricted points with integer coordinates.

9. Some applications. Suppose that χ is a noncubic, nonprincipal Dirichlet character, defined to some prime modulus p, which satisfies $\chi(n(bn^2+a))=0$ or 1 for $n \leq M < p$. Applying Lemma 3 with k=l=1 we see that the nonprincipal character χ^3 has value 1 on the positive integers not exceeding $c_2M^{1/3}$ for some positive constant c_2 which depends at most upon a, b. A device of Vinogradov (see Burgess [1]) in combination with the character sum estimate

$$\left| \sum_{m \le H} \chi(m) \right| \le d_r H^{1 - 1/(r + 1)} p^{1/4r} \log p, \qquad r = 1, 2, \dots,$$

of Burgess [2] now shows that $c_2 M^{1/3} > p^{\tau}$ with a fixed $\tau > (4\sqrt{e})^{-1}$ cannot hold for all large primes p.

If $\lambda > 3(4\sqrt{e})^{-1}$ and the constant c is chosen suitably depending only upon a, b and λ , then the interval $[1, cp^{\lambda}]$ contains an integer n for which $\chi(n(bn^2+a)) \neq 0, 1$. Since $3(4\sqrt{e})^{-1} = .456...$ this restriction on λ improves upon the condition $\lambda > 1/2$ which may be deduced from a straightforward application of Weil's estimate for

$$\sum_{n=0}^{p-1} \chi(n(bn^2+a)) \exp(2\pi i nkp^{-1}).$$

This improves upon a result of Burgess [3] except when χ is a cubic character or w(x) has the particular form $x(x^2 - s(s+1))$ for some integer s.

Let $w(x) = x(x^2 + a)$, $a \neq 0$. It follows from (6) in §7 that for every pair of positive integers m, k, there is a representation of the form

$$m = \prod_i w(n_i)^{\varepsilon_i}, \qquad \varepsilon_i = \pm 1,$$

with $k < n_i \le cm^d$, for certain constants d (depending upon a) and c (depending upon a and k). Suppose now that $\psi(p)$ for a prime p denotes the least positive integer n for which a fixed nonprincipal character χ (cubic or not) satisfies $\chi(n(n^2+a)) \ne 0, 1$. Then this product representation together with Theorem 3 of my paper [7] show that as $y \to \infty$

$$\frac{\log y}{y} \sum_{p < y} \psi(p) \to \mu$$

for some constant μ . By a fixed character (mod p) is meant a Dirichlet character which is defined in terms of power-residue symbols (cf. Elliott [7]). An example is the Legendre symbol $\frac{n}{n}$.

Similar results may be obtained involving the rational function $x^{-1}(bx^2 + a)$. Thus if $\lambda > 3(4\sqrt{3})^{-1}$ and the constant c_3 is chosen suitably, every interval $[1, c_3 p^{\lambda}]$ contains an integer n at which a nonprincipal character $\chi \pmod{p}$ satisfies $\chi(bn + a\overline{n}) \neq 0, 1$, where $n\overline{n} \equiv 1 \pmod{p}$.

REFERENCES

- 1. D. A. Burgess, The distribution of quadratic residues and non-residues, Mathematika 4 (1957), 106-112.
- 2. ____, On character sums and primitive roots, Proc. London Math. Soc. 12 (1962), 179-192.
- 3. _____, Dirichlet characters and polynomials, Proc. Internat. Conf. in Number Theory (Moscow, 14-18 Sept. 1971), Trudy Mat. Inst. Steklov 132 (1973), 203-205.
- 4. P. D. T. A. Elliott, Arithmetic functions and integer products, Grundlehren Math. Wiss., Springer-Verlag, New York and Berlin, 1984.
- 5. ____, The value distribution of reducible cubics, Canad. Math. Bull. 28 (1986), 328-336.
- 6. ____, On representing integers as products of integers of a prescribed type, J. Austral. Math. Soc. (Ser. A) 35 (1983), 143-161.
- 7. ____, On the mean value of f(p), Proc. London Math. Soc. 21 (1970), 28-96.
- 8. R. C. Vaughan, The Hardy-Littlewood method, Cambridge Univ. Press, London, 1981.

Department of Mathematics, University of Colorado, Boulder, Colorado 80309