COUNTABLY GENERATED DOUGLAS ALGEBRAS

KEIJI IZUCHI

ABSTRACT. Under a certain assumption of f and g in L^{∞} which is considered by Sarason, a strong separation theorem is proved. This is available to study a Douglas algebra $[H^{\infty},f]$ generated by H^{∞} and f. It is proved that (1) ball $(B/H^{\infty}+C)$ does not have exposed points for every Douglas algebra B, (2) Sarason's three functions problem is solved affirmatively, (3) some characterization of f for which $[H^{\infty},f]$ is singly generated, and (4) the M-ideal conjecture for Douglas algebras is not true.

Let H^{∞} be the space of bounded analytic functions on the unit disk. A uniformly closed subalgebra between H^{∞} and L^{∞} is called a Douglas algebra. By Chang-Marshall's theorem [3, 19], a Douglas algebra is generated by H^{∞} and complex conjugates of some inner functions. A Douglas algebra is called singly (countably, respectively) generated if it is generated by H^{∞} and a complex conjugate of only one (countably many) inner function(s). In this paper, we investigate a Douglas algebra $[H^{\infty}, f]$ which is generated by H^{∞} and f in L^{∞} . By Chang-Marshall's theorem, it is easy to see that $[H^{\infty}, f]$ is countably generated. To study $[H^{\infty}, f]$, we have to study the behavior of f on $M(L^{\infty})$. Let N(f) equal the closure of

$$\bigcup \{\operatorname{supp} \mu_x; x \in M(H^{\infty} + C) \text{ and } f|\operatorname{supp} \mu_x \notin H^{\infty}|\operatorname{supp} \mu_x\};$$

roughly speaking N(f) is a subset of $M(L^{\infty})$ on which f is not analytic. Properties of N(f) play important roles in studying Douglas algebras. N(f), especially $N(\overline{I})$ where I is an inner function, is studied in [13].

The key theorem (Theorem 2.1 given in §2) is that if either $f|\operatorname{supp} \mu_x$ or $g|\operatorname{supp} \mu_x$ belongs to $H^{\infty}|\operatorname{supp} \mu_x$ for every $x \in M(H^{\infty} + C)$ then $N(f) \cap N(g) = \emptyset$. When f and g are inner functions, this fact is already proved in [13]. The above assumption is considered by Sarason [22], and he showed that either f|Q or g|Q belongs to $H^{\infty}|Q$ for every QC-level set Q under the above assumption. Our theorem with Corollary 2.1 gives more striking separation than Sarason's. Using our separation theorem, we study singly or countably generated Douglas algebras. In [14], the author showed that a Douglas algebra B is singly generated if and only if $\operatorname{ball}(B/H^{\infty} + C)$ has extreme points. In §3, we shall give also a geometrical characterization of countably generated Douglas algebras. And we shall show that $\operatorname{ball}(B/H^{\infty} + C)$ does not have exposed points for every Douglas algebra B. In [22, p. 471], Sarason proposed a problem that the above mentioned Sarason theorem is still true for three functions. In §4, we shall give an affirmative answer. In §5, we study a special sequence of QC-level sets which will be called strongly discrete. Using a property of such a sequence, given in Theorem 5.1, we shall prove

Received by the editors January 11, 1986.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 46J15, 46J30; Secondary 30H15, 46B20.

a theorem which is more precise than Gorkin's given in [8, Theorem 2.1]. In §6, we shall give equivalent conditions on f for which $[H^{\infty}, f]$ is singly generated. This answers Marshall's problem given in [19]. In §7, we shall give a negative answer of the M-ideal conjecture [18].

1. Preliminaries. Let A be a uniformly closed subalgebra of C(K), the space of continuous functions on a compact Hausdorff space K. We denote by M(A) the maximal ideal space of A equipped with the weak*-topology and by ∂A the Shilov boundary for A. For $f \in C(\partial A)$, ||f|| means the supremum norm of f and \bar{f} means the complex conjugate of f. A closed subset E of ∂A is called a peak set for A if there is a function f in A, which is called a peaking function for E, such that ||f|| = 1 and $E = \{x \in \partial A; |f(x)| = 1\} = \{x \in \partial A; f(x) = 1\}$. If E is an intersection of peak sets, it is called a weak peak set for A. A measure μ on ∂A is called an annihilating measure for A, $\mu \perp A$, if $\int_{\partial A} f \, d\mu = 0$ for every $f \in A$. Gamelin's book [4] is a good reference for uniform algebras.

Let D be the open unit disk. Let L^{∞} be the space of bounded measurable functions on ∂D with respect to the normalized Lebesgue measure $d\theta/2\pi$. We identify a function f in H^{∞} with its boundary function. Then H^{∞} is an essentially uniformly closed subalgebra of L^{∞} . $H^{\infty}+C$ is the smallest Douglas algebra which contains H^{∞} properly [21], where C is the space of continuous functions on ∂D . We put $X = M(L^{\infty})$, then X may be identified with ∂H^{∞} . We note that $M(H^{\infty}+C) = M(H^{\infty})\setminus D$, and D is weak*-dense in $M(H^{\infty})$ by the corona theorem (see [6]). For a subset E of $M(H^{\infty})$, we denote by cl E the weak*-closure of E in $M(H^{\infty})$. For a point E in $M(H^{\infty})$, we denote by E the unique representing measure on E for E and by supp E the closed support set for E in E supp E is a weak peak set for E in E supp E is a weak peak set for E in E supp E is a support set for E supp E is a weak peak set for E supp E supp E supp E does not contain any nonconstant real functions. By Sarason [20],

$$H^{\infty} + C = \{ f \in L^{\infty}; f | \operatorname{supp} \mu_x \in H^{\infty} | \operatorname{supp} \mu_x \text{ for every } x \in M(H^{\infty} + C) \}.$$

We use the notation m for the representing measure for the point 0 in D, that is, $\int_X f \, dm = \int_{\partial D} f \, d\theta/2\pi$ for every $f \in H^{\infty}$. For $f \in L^{\infty}$ and a Douglas algebra B, we put $||f + B|| = \inf\{||f + h||; h \in B\}$, the quotient norm of L^{∞}/B . For a subset E of L^{∞} , we denote by [E] the uniformly closed subalgebra generated by E.

Put
$$QC = (H^{\infty} + C) \cap \overline{(H^{\infty} + C)}$$
 and $QA = H^{\infty} \cap QC$. By [20],

$$QC = \{ f \in L^{\infty}; f | \text{supp } \mu_x \text{ is constant for every } x \in M(H^{\infty} + C) \}.$$

Then QC is a C^* -subalgebra of L^{∞} . Hence there is a continuous onto map $\pi: X \to M(QC)$; $f(\pi(x)) = f(x)$ for every $f \in QC$. A closed subset $\pi^{-1}(y)$, $y \in M(QC)$, is called a QC-level set. A QC-level set is a weak peak set for QA. For $x \in M(H^{\infty}+C)$, there is a unique QC-level set Q_x such that $Q_x \supset \sup p_x$. We denote by m_0 the probability measure on M(QC) such that $\int_{M(QC)} f \, dm_0 = \int_{\partial D} f \, d\theta/2\pi$ for every $f \in QA$. Then we have $m(\pi^{-1}(E)) = m_0(E)$ for measurable subsets E of M(QC).

For $f \in L^{\infty}$, we put

$$N(f) = \text{the closure of } \bigcup \{ \operatorname{supp} \mu_x; f | \operatorname{supp} \mu_x \not\in H^{\infty} | \operatorname{supp} \mu_x \},$$

and

$$Q(f) = \bigcup \{\pi^{-1}(y); f | \pi^{-1}(y) \not\in H^{\infty} | \pi^{-1}(y), \ y \in M(QC) \}.$$

Generally Q(f) is not a closed subset of X.

A Blaschke product with zeros $\{z_n\}_{n=1}^{\infty}$ in D is a function of the form

$$b(z) = \prod_{n=1}^{\infty} \frac{-\bar{z}_n}{|z_n|} \frac{z - z_n}{1 - \bar{z}_n z}$$

for $z \in D$, where $\sum_{n=1}^{\infty} 1 - |z_n| < \infty$. If $\{z_n\}_{n=1}^{\infty}$ satisfies moreover

$$\inf_{n} \prod_{m \neq n} \left| \frac{z_n - z_m}{1 - \bar{z}_m z_n} \right| > 0 \quad \left(\lim_{n \to \infty} \prod_{m \neq n} \left| \frac{z_n - z_m}{1 - \bar{z}_m z_n} \right| = 1 \text{ respectively} \right),$$

then $\{z_n\}_{n=1}^{\infty}$ is called interpolating (sparse), and b(z) is called an interpolating (sparse) Blaschke product. These Blaschke products are inner functions, where a function $I \in H^{\infty}$ with |I| = 1 on X is called inner. If I is an inner function, put $Z(I) = \{x \in M(H^{\infty} + C); I(x) = 0\}$. Then $N(\overline{I}) = Q(\overline{I}) = \bigcup \{Q_x; x \in Z(I)\}$ [13, Theorem 1]. If b is an interpolating Blaschke product with zeros $\{z_n\}_{n=1}^{\infty}$, then $\operatorname{cl}\{z_n\}_{n=1}^{\infty}$ is homeomorphic to the Stone-Čech compactification of $\{z_n\}_{n=1}^{\infty}$ and $Z(b) = \operatorname{cl}\{z_n\}_{n=1}^{\infty} \setminus \{z_n\}_{n=1}^{\infty}$ [10, p. 205].

Let Y be a Banach space. We denote by ball Y the closed unit ball of Y. A point y in ball Y is called extreme if $||y \pm x|| \le 1$, $x \in Y$, implies x = 0. A point y in ball Y is called exposed if there is a bounded linear functional ψ of Y such that $||\psi|| = 1$, $\psi(y) = 1$ and $\psi(x) \ne 1$ for every $x \in \text{ball } Y$ with $x \ne y$. We note that an exposed point is extreme. A closed subspace Z of Y is called an M-ideal of Y if there is a projection P from Y^* , the dual space of Y, onto the annihilating subspace of Z in Y^* , $\{f \in Y^*; f = 0 \text{ on } Z\}$, such that ||x|| = ||Px|| + ||x - Px|| for every x in Y^* .

2. The main theorem. In this section, we shall show the following theorem and give its applications.

THEOREM 2.1. Let f and g be functions in L^{∞} . If for every $x \in M(H^{\infty} + C)$ either $f|\sup \mu_x \in H^{\infty}|\sup \mu_x$ or $g|\sup \mu_x \in H^{\infty}|\sup \mu_x$, then $N(f) \cap N(g) = \emptyset$.

To show Theorem 2.1, we need some lemmas.

LEMMA 2.1 [24]. For an inner function I, there is an interpolating Blaschke product b such that $[H^{\infty}, \bar{b}] = [H^{\infty}, \bar{I}]$.

LEMMA 2.2. Let B be a Douglas algebra. Then the following assertions are equivalent.

- (i) There is a function f in L^{∞} with $B = [H^{\infty}, f]$.
- (ii) There is a sequence of interpolating Blaschke products $\{I_n\}_{n=1}^{\infty}$ with $B = [H^{\infty}, \{\overline{I}_n\}_{n=1}^{\infty}]$.

PROOF. Let $f \in L^{\infty}$ with $B = [H^{\infty}, f]$. By Chang-Marshall's theorem, there is a sequence of inner functions $\{I_n\}_{n=1}^{\infty}$ such that $\overline{I}_n \in [H^{\infty}, f]$ and $\|I_nf + H^{\infty}\| \to 0$ $(n \to \infty)$. Then $[H^{\infty}, f] \subset [H^{\infty}, \{\overline{I}_n\}_{n=1}^{\infty}] \subset [H^{\infty}, f]$, so $[H^{\infty}, f] = [H^{\infty}, \{\overline{I}_n\}_{n=1}^{\infty}]$. By Lemma 2.1, we may take I_n as an interpolating Blaschke product. Conversely suppose that $B = [H^{\infty}, \{\overline{I}_n\}_{n=1}^{\infty}]$ for a sequence of inner functions $\{I_n\}$. We put $f = \sum_{n=1}^{\infty} |I_n + 1|/3^n$. If $I_n |\sup \mu_x, x \in M(H^{\infty})$, is not constant, then

 $I_n(\operatorname{supp} \mu_x) = \partial D$. Hence $f|\operatorname{supp} \mu_x$ is constant if and only if $I_n|\operatorname{supp} \mu_x$ is constant for every n. Since real functions in $H^{\infty}|\operatorname{supp} \mu_x$ are constant functions for each $x \in M(H^{\infty})$, $M([H^{\infty}, f]) = M([H^{\infty}, \{\overline{I}_n\}_{n=1}^{\infty}])$. By Chang-Marshall's theorem, f is the desired function.

The following lemma is a special case of Theorem 2.1 proved in [13, Corollary 3].

LEMMA 2.3. Let I and J be inner functions. If for every point x in $M(H^{\infty}+C)$ either $\overline{I}|\sup \mu_x \in H^{\infty}|\sup \mu_x$ or $\overline{J}|\sup \mu_x \in H^{\infty}|\sup \mu_x$, then $N(\overline{I}) \cap N(\overline{J}) = \emptyset$.

LEMMA 2.4. Let I be an interpolating Blaschke product. Let E be a closed subset of D such that $\operatorname{cl} E \setminus E \subset \{x \in M(H^{\infty} + C); |I(x)| = 1\}$. Then for each ε with $0 < \varepsilon < 1$, there is an interpolating Blaschke product b satisfying that $I\bar{b}$ is a finite Blaschke product and $|b| \geq \varepsilon$ on E.

PROOF. Let $\{z_n\}_{n=1}^{\infty}$ be the zero sequence of I. We denote by I_k the interpolating Blaschke product with zeros $\{z_n\}_{n=k}^{\infty}$. By our assumption, there exists a constant r such that 0 < r < 1 and $|I| \ge \varepsilon$ on $\{z \in E; |z| > r\}$. Since $|I_k| \to 1$ $(k \to \infty)$ uniformly on each compact subset of D, $|I_k| \ge \varepsilon$ on $\{z \in E; |z| \le r\}$ for sufficiently large k. Put $b = I_k$, then b satisfies our assertion.

The following is a key lemma to prove Theorem 2.1.

LEMMA 2.5. Let $\{I_n\}_{n=1}^{\infty}$ be a sequence of interpolating Blaschke products such that $\prod_{n=1}^{\infty} I_n$ is a Blaschke product. Let g be a function in L^{∞} . Suppose that for every $x \in M(H^{\infty}+C)$ either $g|\sup \mu_x \in H^{\infty}|\sup \mu_x$ or $\overline{I}_n|\sup \mu_x \in H^{\infty}|\sup \mu_x$ for all n. Then there exists a Blaschke product I such that

- (i) $(\prod_{n=1}^{\infty} I_n) \overline{I} \in H^{\infty}$; consequently $N(\overline{I}) \subset N\left(\overline{\prod_{n=1}^{\infty} I_n}\right)$;
- (ii) either $\overline{I}|\operatorname{supp} \mu_x \in H^{\infty}|\operatorname{supp} \mu_x$ or $g|\operatorname{supp} \mu_x \in H^{\infty}|\operatorname{supp} \mu_x$ for every $x \in M(H^{\infty} + C)$; and
 - (iii) $N(\overline{I}_n) \subset N(\overline{I})$ for all n.

PROOF. By Lemma 2.2, there is a sequence of interpolating Blaschke products $\{J_m\}_{m=1}^{\infty}$ such that

$$[H^{\infty}, g] = [H^{\infty}, \{\overline{J}_m\}_{m=1}^{\infty}].$$

By our assumption, for every $x \in M(H^{\infty} + C)$, either $\overline{I}_n | \operatorname{supp} \mu_x \in H^{\infty} | \operatorname{supp} \mu_x$ for all n or $\overline{J}_m | \operatorname{supp} \mu_x \in H^{\infty} | \operatorname{supp} \mu_x$ for all m. By Lemma 2.3,

(2)
$$N(\overline{I}_n) \cap N(\overline{J}_m) = \emptyset$$
 for every n and m .

Let $\{z_{n,k}\}_{k=1}^{\infty}$ be the zero sequence of I_n . Put $I_0 = \prod_{n=1}^{\infty} I_n$. Since I_0 is a Blaschke product, we have

(3)
$$\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} (1 - |z_{n,k}|) < \infty.$$

For each m, we put

(4)
$$U_{m,i} = \{ z \in D; |J_m(z)| \le 1 - 1/i, |z| \ge 1 - 1/i \}$$

for $i = 1, 2, \ldots$ Then $U_{m,i}$ is a closed subset of D. By (2) and (4), $I_n (= I)$ and $U_{m,i} (= E)$ satisfy the assumptions of Lemma 2.4. Because, if there is x

in $\operatorname{cl} U_{m,i} \setminus U_{m,i}$ with $|I_n(x)| \neq 1$, then $|J_m(x)| \leq 1 - 1/i$, so we get $\sup \mu_x \subset N(\overline{I}_n) \cap N(\overline{J}_m)$.

First we shall work on J_1 , and we shall find a sequence of interpolating Blaschke products $\{b_{1,n}\}_{n=1}^{\infty}$ satisfying the following two conditions by induction.

- (5) $I_n \bar{b}_{1,n}$ is a finite Blaschke product, and
- (6) $\inf\{|(b_{1,i}b_{1,i+1}\cdots b_{1,n})(z)|; z\in U_{1,i}\}>1-1/i \text{ for } 1\leq i\leq n.$

Applying Lemma 2.4 for I_1 and $U_{1,1}$, there is an interpolating Blaschke product $b_{1,1}$ such that $I_1\bar{b}_{1,1}$ is a finite Blaschke product and $\inf\{|b_{1,1}(z)|; z \in U_{1,1}\} > 0$. Suppose that $\{b_{1,1}, b_{1,2}, \ldots, b_{1,N}\}$ satisfies (5) and (6) for $1 \leq i \leq N$. For $1 \leq i \leq N$, we put

(7)
$$c(N,i) = \inf\{|(b_{1,i}b_{1,i+1}\cdots b_{1,N})(z)|; z \in U_{1,i}\}.$$

By (6), c(N, i) > 1 - 1/i. Also we put

(8)
$$E = \bigcup \{U_{1,i}; 1 \le i \le N+1\},$$

then $I = I_{N+1}$ and E satisfy the assumptions of Lemma 2.4. Let ε be a constant satisfying

$$(9) \hspace{1cm} 1>\varepsilon>\max\left\{1-\frac{1}{N+1},\frac{1-1/i}{c(N,i)};1\leq i\leq N\right\}.$$

By Lemma 2.4, there is an interpolating Blaschke product $b_{1,N+1}$ such that $I_{N+1}\bar{b}_{1,N+1}$ is a finite Blaschke product and

$$(10) |b_{1,N+1}| \ge \varepsilon on E.$$

Thus we get the following inequalities.

For $1 \le i < N + 1$;

$$\begin{split} \inf\{|b_{1,i}b_{1,i+1}\cdots b_{1,N+1}(z)|; z \in U_{1,i}\} \\ & \geq \inf\{|b_{1,i}b_{1,i+1}\cdots b_{1,N}(z)|; z \in U_{1,i}\} \ \inf\{|b_{1,N+1}(z)|; z \in U_{1,i}\} \\ & > c(N,i)\varepsilon \quad \text{by (7), (8) and (10)} \\ & > 1 - 1/i \quad \text{by (9)}. \end{split}$$

For i = N + 1:

$$\inf\{|b_{1,N+1}(z)|; z \in U_{1,N+1}\} \ge \varepsilon > 1 - 1/N + 1$$
 by (8), (9) and (10).

Consequently $\{b_{1,1}, b_{1,2}, \dots, b_{1,N+1}\}$ satisfies (5) and (6). This completes the construction of $\{b_{1,n}\}_{n=1}^{\infty}$.

In the above proof, we use only the fact $N(\overline{J}_1) \cap N(\overline{I}_n) = \emptyset$ for $n = 1, 2, \ldots$ By (2) and (5), we have $N(\overline{J}_2) \cap N(\overline{b}_{1,n}) = \emptyset$. So we can repeat the above argument for J_2 and $\{b_{1,n}\}_{n=2}^{\infty}$, we remark that n starts from 2. Then there is a sequence of interpolating Blaschke products $\{b_{2,n}\}_{n=2}^{\infty}$ such that $b_{1,n}\overline{b}_{2,n}$ is a finite Blaschke product for $n \geq 2$ and

$$\inf\{|b_{2,i}b_{2,i+1}\cdots b_{2,n}(z)|; z\in U_{2,i}\} > 1-1/i \text{ for } 2\leq i\leq n.$$

Repeating the above argument several times, for each m there is a sequence of interpolating Blaschke products $\{b_{m,n}\}_{n=m}^{\infty}$ such that

(11)
$$b_{m,n}\bar{b}_{m+1,n}$$
 is a finite Blaschke product for $m+1 \le n$,

and

(12)
$$\inf\{|b_{m,i}b_{m,i+1}\cdots b_{m,n}(z)|; z\in U_{m,i}\} > 1-1/i \text{ for } m\leq i\leq n.$$

We put $I = \prod_{n=1}^{\infty} b_{n,n}$. By (3) and (11), I is a Blaschke product and $I_0 \bar{I} \in H^{\infty}$, so we get (i). We shall prove that I satisfies (ii) and (iii).

To prove (ii), let $x \in M(H^{\infty} + C)$ with $g|\sup \mu_x \notin H^{\infty}|\sup \mu_x$. We shall prove $\overline{I}|\sup \mu_x \in H^{\infty}|\sup \mu_x$. By (1), there is an integer m such that $\overline{J}_m|\sup \mu_x \notin H^{\infty}|\sup \mu_x$, that is, $|J_m(x)| < 1$. Take a positive integer i_0 with $m \leq i_0$ and

$$|J_m(x)| < 1 - 1/i_0.$$

Let $i \geq i_0$. By (4), (13) and the corona theorem, $x \in \operatorname{cl} U_{m,i_0} \setminus U_{m,i_0}$. Since $|b_{m,n}| \leq |b_{n,n}|$ on D for $m \leq n$ by (11), we have

$$\inf \left\{ \left| \prod_{n=i}^{\infty} b_{n,n}(z) \right| ; z \in U_{m,i} \right\} \ge \inf \left\{ \left| \prod_{n=i}^{\infty} b_{m,n}(z) \right| ; z \in U_{m,i} \right\}$$

$$\ge 1 - 1/i \quad \text{by (12)}.$$

Then

$$\left|\prod_{n=i}^{\infty} b_{n,n}\right| \geq 1 - \frac{1}{i} \quad \text{on } \operatorname{cl} U_{m,i} \setminus U_{m,i}.$$

By (5) and (11), $|I_n| = |b_{n,n}|$ on $M(H^{\infty} + C)$ for n = 1, 2, ... By (2) and (4), $|I_n| = 1$ on $cl U_{m,i} \setminus U_{m,i}$ for n = 1, 2, ... Thus

$$|I| = \left|\prod_{n=1}^{\infty} b_{n,n} \right| \ge 1 - rac{1}{i} \quad ext{on } \operatorname{cl} U_{m,i} \backslash U_{m,i}.$$

Since $\operatorname{cl} U_{m,i} \setminus U_{m,i} \subset \operatorname{cl} U_{m,j} \setminus U_{m,j}$ for $i \leq j$ by (4), we get

$$|I| \ge 1 - 1/i$$
 on cl $U_{m,i_0} \setminus U_{m,i_0}$ for every $i \ge i_0$.

Thus |I| = 1 on $\operatorname{cl} U_{m,i_0} \setminus U_{m,i_0}$. Since $x \in \operatorname{cl} U_{m,i_0} \setminus U_{m,i_0}$, |I(x)| = 1. Hence I is constant on $\operatorname{supp} \mu_x$, and $\overline{I}|\operatorname{supp} \mu_x \in H^{\infty}|\operatorname{supp} \mu_x$. This completes the proof of (ii).

Since $|I_n| = |b_{n,n}|$ on $M(H^{\infty} + C)$ for each n,

$$|I| = \left|\prod_{n=1}^{\infty} b_{n,n}\right| \le |b_{n,n}| = |I_n| \quad \text{on } M(H^{\infty} + C).$$

Thus we get $N(\overline{I}) \supset N(\overline{I}_n)$. This completes the proof.

PROOF OF THEOREM 2.1. Let f and g be functions in L^{∞} such that for every $x \in M(H^{\infty} + C)$ either $f|\sup \mu_x \in H^{\infty}|\sup \mu_x$ or $g|\sup \mu_x \in H^{\infty}|\sup \mu_x$. We shall show the existence of a Blaschke product I such that

- (a) either $\overline{I}|\operatorname{supp} \mu_x \in H^{\infty}|\operatorname{supp} \mu_x$ or $g|\operatorname{supp} \mu_x \in H^{\infty}|\operatorname{supp} \mu_x$ for every $x \in M(H^{\infty} + C)$, and
 - (b) $N(\overline{I}) \supset N(f)$.

If the above fact is proved, applying it again, we get a Blaschke product J such that

- (a') $\overline{J}|\operatorname{supp} \mu_x \in H^{\infty}|\operatorname{supp} \mu_x \text{ or } \overline{I}|\operatorname{supp} \mu_x \in H^{\infty}|\operatorname{supp} \mu_x \text{ for every } x \in M(H^{\infty} + C), \text{ and }$
 - (b') $N(\overline{J}) \supset N(g)$.

Then by Lemma 2.3, $N(\overline{I}) \cap N(\overline{J}) = \emptyset$, so we get our assertion.

Using Lemma 2.5, we shall show the existence of a Blaschke product I satisfying (a) and (b). By Lemma 2.2, there is a sequence of interpolating Blaschke products $\{I_n\}_{n=1}^{\infty}$ such that

$$[H^{\infty}, f] = [H^{\infty}, {\{\overline{I}_n\}_{n=1}^{\infty}}].$$

We note that if $f|\operatorname{supp} \mu_x \in H^{\infty}|\operatorname{supp} \mu_x$ for some $x \in M(H^{\infty} + C)$, then we get $\overline{I}_n|\operatorname{supp} \mu_x \in H^{\infty}|\operatorname{supp} \mu_x$ for all n. Let $\{z_{n,k}\}_{k=1}^{\infty}$ be the zero sequence of I_n . Replacing I_n by I'_n such that $I_n\overline{I}'_n$ is a finite Blaschke product, we may assume that

$$\sum_{n=1}^{\infty}\sum_{k=1}^{\infty}(1-|z_{n,k}|)<\infty.$$

Then $\prod_{n=1}^{\infty} I_n$ is a Blaschke product. By our assumption, $\{I_n\}_{n=1}^{\infty}$ and g satisfy the assumptions of Lemma 2.5. Hence there is a Blaschke product I satisfying (a) and $N(\overline{I}) \supset N(\overline{I}_n)$ for all n. Since N(f) coincides with the closure of $\bigcup \{N(\overline{I}_n); n = 1, 2, \ldots\}$, we get (b). This completes the proof.

To prove the corollaries, we give two lemmas.

LEMMA 2.6 (Sarason's unpublished result, see [8, Theorem 2.8]). Let $f \in L^{\infty}$ with $f^2 = f$, and let Q be a QC-level set. If $f|Q \in H^{\infty}|Q$, then f|Q is a constant.

LEMMA 2.7. Let b be a sparse Blaschke product with zeros $\{w_n\}_{n=1}^{\infty}$ and I be an inner function. Then $N(\bar{b}) \cap N(\bar{I}) = \emptyset$ if and only if $|I(w_n)| \to 1$ $(n \to \infty)$.

PROOF. Suppose $N(\bar{b}) \cap N(\bar{I}) = \emptyset$. Then |I| = 1 on Z(b). Since $Z(b) = \operatorname{cl}\{w_n\}_{n=1}^{\infty} \setminus \{w_n\}_{n=1}^{\infty}, \ |I(w_n)| \to 1 \ (n \to \infty)$. Next suppose that $|I(w_n)| \to 1 \ (n \to \infty)$. Then |I| = 1 on Z(b). Let $x \in M(H^{\infty} + C)$ with |b(x)| < 1. Then there is a point x_0 in Z(b) with supp $\mu_{x_0} = \sup \mu_x$ by the proof of Lemma 1 in [9]. Since $|I(x_0)| = 1$, we have |I(x)| = 1. Thus

$${x \in M(H^{\infty} + C); |I(x)| < 1} \cap {y \in M(H^{\infty} + C); |b(y)| < 1} = \varnothing.$$

By Lemma 2.3, we have $N(\bar{b}) \cap N(\bar{I}) = \emptyset$.

The following corollary shows that N(f) consists of QC-level sets, which is a generalization of Theorem 1 in [13].

COROLLARY 2.1. For $f \in L^{\infty}$, $N(f) = \pi^{-1}(\pi(N(f)))$ and N(f) is a weak peak set for QA.

PROOF. The inclusion $N(f) \subset \pi^{-1}(\pi(N(f)))$ is trivial. Suppose that $N(f) \subsetneq \pi^{-1}(\pi(N(f)))$. Then there is a QC-level set Q with $N(f) \cap Q \neq \emptyset$ and $Q \not\subset N(f)$. Take an open and closed subset U of X with $U \cap N(f) = \emptyset$ and $U \cap Q \neq \emptyset$. Then f and χ_U , the characteristic function of U, satisfy the assumption of Theorem 2.1. Thus $N(f) \cap N(\chi_U) = \emptyset$. By Lemma 2.6, $\chi_U | Q \not\in H^{\infty} | Q$. Since Q is a weak peak set for H^{∞} , there is $x \in M(H^{\infty} + C)$ such that supp $\mu_x \subset Q$ and $\chi_U | \sup \mu_x \not\in H^{\infty} | \sup \mu_x$. Thus $N(\chi_U) \cap Q \neq \emptyset$. But this contradicts $N(f) \cap Q \neq \emptyset$ and $N(f) \cap N(\chi_U) = \emptyset$. Thus $N(f) = \pi^{-1}(\pi(N(f)))$. By Wolff's theorem [23, Theorem 1 and Lemma 2.3] as the proof of Theorem 1 in [13], N(f) is a weak peak set for QA.

The following follows Corollary 2.1.

COROLLARY 2.2. For $f \in L^{\infty}$, $Q(f) \subset N(f)$ and $\operatorname{cl} Q(f) = N(f)$.

For $f \in L^{\infty}$, we put $Q_0(f) = \bigcup \{\pi^{-1}(y); y \in M(QC) \text{ and } f | \pi^{-1}(y) \text{ is not constant} \}$.

COROLLARY 2.3. For $f \in L^{\infty}$, $Q(f) \cup Q(\bar{f}) \subset Q_0(f) \subset N(f) \cup N(\bar{f})$.

PROOF. By the definitions, $Q(f) \cup Q(\bar{f}) \subset Q_0(f)$. Suppose that $Q_0(f) \not\subset N(f) \cup N(\bar{f})$. By Corollary 2.1, there is a QC-level set Q with $Q \cap (N(f) \cup N(\bar{f})) = \emptyset$ and $Q \subset Q_0(f)$. Take a function q in QC such that q = 1 on Q and q = 0 on $N(f) \cup N(\bar{f})$. By $[\mathbf{20}]$, $fq \in QC$, so fq is constant on Q. Thus f is constant on Q. This fact contradicts $Q \subset Q_0(f)$.

REMARK. In §6, we will prove that Q(f) = N(f) if and only if $[H^{\infty}, f]$ is singly generated. If $f \in H^{\infty}$, $Q(\bar{f}) \subset Q_0(\bar{f}) \subset N(\bar{f})$ by Corollary 2.3. Moreover if there is a QC-level set Q such that f|Q is real nonconstant, then $Q(\bar{f}) \subsetneq Q_0(\bar{f})$, and $[H^{\infty}, \bar{f}]$ is not singly generated.

COROLLARY 2.4. Let $f \in L^{\infty}$. If I is an interpolating Blaschke product with $N(\overline{I}) \subset N(f)$, then $\overline{I} \in [H^{\infty}, f]$.

PROOF. Suppose $\bar{I} \not\in [H^{\infty}, f]$. Then there is a point x_0 in $M([H^{\infty}, f])$ with $I(x_0) = 0$. Let $\{w_k\}_{k=1}^{\infty}$ be the zero sequence of I. Then $x_0 \in \operatorname{cl}\{w_k\}_{k=1}^{\infty}$. By Lemma 2.2, $[H^{\infty}, f] = [H^{\infty}, \{\bar{I}_n\}_{n=1}^{\infty}]$ for some sequence of interpolating Blaschke products $\{I_n\}_{n=1}^{\infty}$. Since $|I_n(x_0)| = 1$, there is a subsequence $\{w_{j_k}\}_{k=1}^{\infty}$ of $\{w_k\}_{k=1}^{\infty}$ such that $|I_n(w_{j_k})| \to 1$ $(k \to \infty)$ for every n. Taking again its subsequence, we may assume that $\{w_{j_k}\}_{k=1}^{\infty}$ is a sparse sequence. Let b be the sparse Blaschke product with zeros $\{w_{j_k}\}_{k=1}^{\infty}$. By Lemma 2.7, $N(\bar{b}) \cap N(\bar{I}_n) = \emptyset$ for every n. Hence \bar{b} and f satisfy the assumption of Theorem 2.1. Then $N(\bar{b}) \cap N(f) = \emptyset$. This contradicts $N(\bar{I}) \subset N(f)$, because $N(\bar{b}) \subset N(\bar{I})$.

COROLLARY 2.5 (Cf. [13, COROLLARY 5]). Let f and g be functions in L^{∞} . Then $N(f) \subset N(g)$ if and only if $[H^{\infty}, f] \subset [H^{\infty}, g]$.

PROOF. Suppose $N(f)\subset N(g)$. Let I be an interpolating Blaschke product with $\overline{I}\in [H^\infty,f]$. Then $N(\overline{I})\subset N(f)\subset N(g)$. By Corollary 2.4, we have $\overline{I}\in [H^\infty,g]$. By Chang-Marshall's theorem, $[H^\infty,f]\subset [H^\infty,g]$. The converse assertion is trivial. For a Douglas algebra B, let N(B) equal the closure of

$$\bigcup \{\operatorname{supp} \mu_x; x \in M(H^{\infty} + C) \backslash M(B)\}.$$

We note that $N([H^{\infty}, f]) = N(f)$.

COROLLARY 2.6 (Cf. [13, COROLLARIES 4 AND 6]). Let B be a Douglas algebra.

- (i) If $f \in L^{\infty}$ satisfies $N(B) \subset N(f)$, then $B \subset [H^{\infty}, f]$.
- (ii) Let $f \in B$. Then N(f) = N(B) if and only if $B = [H^{\infty}, f]$. Consequently B is countably generated if and only if there is f in B with N(f) = N(B).

PROOF. (i) Let I be an inner function with $\overline{I} \in B$. Then $N(\overline{I}) \subset N(B) \subset N(f)$. By Corollary 2.4, $\overline{I} \in [H^{\infty}, f]$. Thus $B \subset [H^{\infty}, f]$.

(ii) By (i),

$$N(f) = N(B) \Leftrightarrow B \subset [H^{\infty}, f] \subset B \Leftrightarrow B = [H^{\infty}, f].$$

3. Geometrical properties of quotient spaces of Douglas algebras. In [14], the author showed that a Douglas algebra B is singly generated if and only if $\operatorname{ball}(B/H^\infty+C)$ has extreme points. In this section, we shall prove two theorems as applications of §2. The first one, Theorem 3.1, is a geometrical characterization of countably generated Douglas algebras. In Theorem 3.2, we shall show that there are no exposed points in $\operatorname{ball}(B/H^\infty+C)$. This is already proved in [15, Theorem 4] for $B=[H^\infty,\bar{b}]$, where b is a sparse Blaschke product. To state Theorem 3.1, we define an extreme family.

Let Y be a Banach space. If a subset E of ball Y satisfies the following conditions, we shall call it an *extreme family*;

- (a) ||y|| = 1 for every $y \in E$, and
- (b) if a point y_0 in Y satisfies $||y \pm y_0|| \le 1$ for every $y \in E$, then $y_0 = 0$.

By our definition, an extreme family consisting of only one element is an extreme point of ball Y.

THEOREM 3.1. Let B be a Douglas algebra with $B \supseteq H^{\infty} + C$. Then B is countably generated if and only if $B/H^{\infty} + C$ has an extreme family consisting of countably many elements.

LEMMA 3.1 [13, THEOREM 1]. For an inner function I, we have $N(\overline{I}) = Q(\overline{I}) = \bigcup \{Q_x; x \in Z(I)\}.$

PROOF OF THEOREM 3.1. First, suppose that $B = [H^{\infty}, \{\overline{I}_n\}_{n=1}^{\infty}]$ for a sequence of interpolating Blaschke products $\{I_n\}_{n=1}^{\infty}$. It is easy to see

$$\|\overline{I}_n + H^{\infty} + C\| = 1.$$

We shall show that $\{\overline{I}_n + H^{\infty} + C\}_{n=1}^{\infty}$ is an extreme family of ball $(B/H^{\infty} + C)$. Let $g \in B$ with

(1)
$$\|\overline{I}_n \pm g + H^{\infty} + C\| \le 1 \text{ for every } n.$$

By Corollary 2.1 (or see [13, Theorem 1]), $N(\overline{I}_n)$ is a weak peak set for QA. Then $B_n = \{f \in L^{\infty}; f | N(\overline{I}_n) \in H^{\infty} | N(\overline{I}_n) \}$ is a Douglas algebra. By (1), we have $\|\overline{I}_n \pm g + B_n\| \le 1$. By [13, Theorem 3], $\overline{I}_n + B_n$ is an extreme point of ball (L^{∞}/B_n) . Thus $g \in B_n$, that is,

$$(2) \hspace{1cm} g|N(\overline{I}_n)\in H^{\infty}|N(\overline{I}_n) \ \ \, \text{for each } n.$$

To show $g \in H^{\infty}+C$, let $x \in M(H^{\infty}+C)$. If $|I_n(x)|=1$ for every n, then $x \in M(B)$ and $g|\sup \mu_x \in H^{\infty}|\sup \mu_x$. If $|I_n(x)|<1$ for some n, then $\sup \mu_x \subset N(\overline{I}_n)$. By (2), $g|\sup \mu_x \in H^{\infty}|\sup \mu_x$. By [20], we get $g \in H^{\infty}+C$. Thus $\{\overline{I}_n+H^{\infty}+C\}_{n=1}^{\infty}$ is an extreme family.

Next suppose that B is not countably generated. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence in B with $||f_n + H^{\infty} + C|| = 1$. Since $H^{\infty} + C$ has the best approximation property [2], we may assume $||f_n|| = 1$. By Lemma 2.2, there is a function F in L^{∞} such that

$$[H^{\infty}, \{f_n\}_{n=1}^{\infty}] = [H^{\infty}, F] \subset B.$$

Since $[H^{\infty}, F]$ is countably generated by Lemma 2.2, there is an interpolating Blaschke product I with $\overline{I} \in B$ and $\overline{I} \notin [H^{\infty}, F]$. By Corollary 2.4, we have

 $N(\overline{I}) \not\subset N(F)$. By Corollary 2.1, there is a QC-level set Q such that $Q \cap N(F) = \emptyset$ and $Q \subset N(\overline{I})$. Then there is a function q in QC such that

$$(4) 0 \le q \le 1 \quad \text{and} \quad q = 1 \quad \text{on } Q,$$

(5)
$$q = 0 \quad \text{on } N(F).$$

By Lemma 3.1, we get $\overline{I}q \in B$ and $\overline{I}q \notin H^{\infty} + C$. By (3) and (5), $qf_n \in H^{\infty} + C$. Then

$$||f_n \pm \overline{I}q + H^{\infty} + C|| \le ||f_n \pm \overline{I}q - qf_n||$$

 $\le ||I - q| + |q|| = 1$ by $||f_n|| = 1$ and (4).

Thus $\{f_n + H^{\infty} + C\}$ is not an extreme family, and this completes the proof. To prove Theorem 3.2, we need lemmas.

LEMMA 3.2. Let $f \in L^{\infty}$ and $f \notin H^{\infty} + C$. Then N(f) contains uncountably many QC-level sets.

PROOF. By Chang-Marshall's theorem, there is an interpolating Blaschke product I with $\overline{I} \in [H^{\infty}, f]$. Then $N(\overline{I}) \subset N(f)$. Let $\{z_n\}_{n=1}^{\infty}$ be the zero sequence of I. Take a sparse subsequence $\{w_n\}_{n=1}^{\infty}$ of $\{z_n\}_{n=1}^{\infty}$, and let b be the sparse Blaschke product with zeros $\{w_n\}_{n=1}^{\infty}$. Then $Z(b) \subset Z(I)$. By [13, Lemma 5], $Q_x \neq Q_y$ for $x, y \in Z(I)$ and $x \neq y$. Since $Z(b) = \operatorname{cl}\{w_n\}_{n=1}^{\infty} \setminus \{w_n\}_{n=1}^{\infty}$ and $\operatorname{cl}\{w_n\}_{n=1}^{\infty}$ is homeomorphic to the Stone-Čech compactification of $\{w_n\}_{n=1}^{\infty}$, Z(b) is an uncountable set.

The following lemma is a key to prove Theorem 3.2.

LEMMA 3.3. Let I be an interpolating Blaschke product. Let μ be a probability measure on $N(\overline{I})$. Then $\operatorname{supp} \mu \subsetneq N(\overline{I})$, and there is a sparse Blaschke product b such that $I\bar{b} \in H^{\infty}$ and $N(\bar{b}) \subset N(\overline{I}) \setminus \operatorname{supp} \mu$.

PROOF. By Lemma 3.2, $N(\overline{I})$ contains uncountably many QC-level sets. Then there is a QC-level set Q such that $Q \subset N(\overline{I})$ and $\mu(Q) = 0$. Since Q is a weak peak set for QA, there is a peak set E for QA such that

(1)
$$Q \subset E \subset X$$
 and $\mu(E) = 0$.

Let f be a peaking function in QA for E, that is,

(2)
$$f = 1$$
 on E and $|f| < 1$ on $X \setminus E$.

We put

(3)
$$K_n = \{x \in X; |f(x)| \le 1 - 1/n\}.$$

Then

(4)
$$\mu(K_n \cap N(\overline{I})) = \mu(K_n) \to 1 \qquad (n \to \infty).$$

By Lemma 3.1, there is a point $x_0 \in Z(I)$ such that $Q = Q_{x_0}$. Take an open and closed subset U_n of Z(I) such that

$${x \in Z(I); |f(x)| \le 1 - 1/n} \subset U_n \subset {x \in Z(I); |f(x)| \le 1 - 1/n + 1}.$$

Then $\bigcup \{Q_x; x \in U_n\} \subset K_{n+1}$, because $f \in QA$ is constant on each QC-level set. Since U_n is an open and closed subset of Z(I), there is an interpolating Blaschke product I_n with $I\overline{I}_n \in H^{\infty}$ and $Z(I_n) = U_n$ [12, Corollary 1]. By Lemma 3.1,

$$(5) N(\overline{I}_n) \subset K_{n+1}.$$

Moreover we have

(6)
$$K_n \cap N(\overline{I}) \subset N(\overline{I}_n).$$

To show (6), let $y \in K_n \cap N(\overline{I})$. By Lemma 3.1, there is a point $x_1 \in Z(I)$ such that $y \in Q_{x_1}$. Since $|f(y)| \le 1 - 1/n$, $|f(x_1)| \le 1 - 1/n$. Thus $x_1 \in U_n$ and $y \in N(\overline{I}_n)$. Since $Q_{x_0} \cap N(\overline{I}_n) = \emptyset$ by (1), (2), (3) and (5), we have $|I_n(x_0)| = 1$. Since $I(x_0) = 0$, $\overline{I} \notin [H^{\infty}, {\overline{I}_n}_{n=1}^{\infty}]$. By the proof of Corollary 2.4, there is a sparse Blaschke product b such that

$$Iar{b}\in H^\infty \quad ext{and} \quad N(ar{b})\cap \operatorname{cl}\left(igcup \{N(\overline{I}_n); n=1,2,\ldots\}
ight)=arnothing.$$

Since $I\bar{b} \in H^{\infty}$, $N(\bar{b}) \subset N(\bar{I})$. By equations (4) and (6), we have supp $\mu \subset cl(\bigcup\{N(\bar{I}_n); n=1,2,\ldots\})$. Thus we get our assertions.

THEOREM 3.2. Let B be a Douglas algebra with $B \supseteq H^{\infty} + C$. Then there are no exposed points in ball $(B/H^{\infty} + C)$.

PROOF. By [14] and Lemma 2.1, we may assume $B = [H^{\infty}, \overline{I}]$ for some interpolating Blaschke product I. Let $f \in B$ with $||f + H^{\infty} + C|| = 1$. Since $H^{\infty} + C$ has the best approximation property [2], we may assume ||f|| = 1. Let μ be a measure on X such that $||\mu|| = 1$, $\mu \perp H^{\infty} + C$, and $\int_X f d\mu = 1$. By [13, Lemma 9], supp $\mu \subset N(\overline{I})$. By Lemmas 3.1 and 3.3, there is a QC-level set Q with $Q \subset N(\overline{I})$ and $Q \cap \text{supp } \mu = \emptyset$. This fact is the key point to prove a special case of Theorem 3.2 [13, Theorem 3]. We can go the same way as in [13], and we can show the existence of g in B such that $||g + H^{\infty} + C|| = 1$, $\int_X g d\mu = 1$ and $f + H^{\infty} + C \neq g + H^{\infty} + C$. This completes the proof.

4. Sarason's three functions problem. In [22], Sarason showed that if f and g in L^{∞} satisfy $f|\sup \mu_x \in H^{\infty}|\sup \mu_x$ or $g|\sup \mu_x \in H^{\infty}|\sup \mu_x$ for every $x \in M(H^{\infty}+C)$, then $f|Q \in H^{\infty}|Q$ or $g|Q \in H^{\infty}|Q$ for every QC-level set Q. The following problem occurs from the above fact [22]; is it still true for three functions in L^{∞} ? In this section, we shall show

THEOREM 4.1. Let $\{f_n\}_{n=1}^N$ be a finite subset of L^{∞} . Suppose that for each point $x \in M(H^{\infty} + C)$, there exists n such that $f_n|\operatorname{supp} \mu_x \in H^{\infty}|\operatorname{supp} \mu_x$. Then $\bigcap_{n=1}^N N(f_n) = \emptyset$.

We note that Corollary 2.1 and Theorem 4.1 give an affirmative answer for the above problem. To show Theorem 4.1, we need some lemmas.

LEMMA 4.1. Let B be a Douglas algebra. Then B is countably generated if and only if M(B) is a G_{δ} -subset of $M(H^{\infty})$.

PROOF. Let $B=[H^{\infty},\{\overline{I}_n\}_{n=1}^{\infty}]$ for a sequence of inner functions $\{I_n\}_{n=1}^{\infty}$. Then

$$M(B) = \{x \in M(H^{\infty}); |I_n(x)| = 1 \text{ for every } n\}$$

= $\bigcap_{n=1}^{\infty} \{x \in M(H^{\infty}); |I_n(x)| = 1\}.$

It is easy to see that M(B) is a G_{δ} -subset of $M(H^{\infty})$.

Suppose that M(B) is a G_{δ} -subset of $M(H^{\infty})$. Then there is a sequence of open subsets $\{U_n\}_{n=1}^{\infty}$ of $M(H^{\infty})$ with $\bigcap_{n=1}^{\infty} U_n = M(B) = \bigcap_{\overline{I} \in B} \{x \in M(H^{\infty}); |I(x)| = 1\}$, where I runs through all inner functions with $\overline{I} \in B$. Since $U_n^c \subset M(H^{\infty}) \setminus M(B)$ and U_n^c is a compact subset of $M(H^{\infty})$, there is an inner function I_n such that $\overline{I}_n \in B$ and $U_n^c \subset \{x \in M(B); |I_n(x)| < 1\}$. Then $M(B) = M([H^{\infty}, \{\overline{I}_n\}_{n=1}^{\infty}]$. By Chang-Marshall's theorem, we obtain $B = [H^{\infty}, \{\overline{I}_n\}_{n=1}^{\infty}]$.

LEMMA 4.2 (Sarason's unpublished result, see [7, Theorem 3.4]). Let $\{B_{\alpha}\}_{{\alpha}\in\Lambda}$ be a family of Douglas algebras. Then $M\left(\bigcap_{{\alpha}\in\Lambda}B_{\alpha}\right)$ coincides with the closure of $\bigcup_{{\alpha}\in\Lambda}M(B_{\alpha})$ in $M(H^{\infty})$.

LEMMA 4.3. For functions f and g in L^{∞} , there is a function h in L^{∞} with $[H^{\infty}, h] = [H^{\infty}, f] \cap [H^{\infty}, g]$.

PROOF. By Lemma 4.2,

$$M([H^{\infty}, f] \cap [H^{\infty}, g]) = M([H^{\infty}, f]) \cup M([H^{\infty}, g]).$$

By Lemma 2.2 and 4.1, $M([H^{\infty}, f]) \cup M([H^{\infty}, g])$ is a G_{δ} -subset of $M(H^{\infty})$, so is $M([H^{\infty}, f] \cap [H^{\infty}, g])$. By Lemmas 2.2 and 4.1 again, there is $h \in L^{\infty}$ with $[H^{\infty}, h] = [H^{\infty}, f] \cap [H^{\infty}, g]$.

LEMMA 4.4. Let f, g and h be functions in L^{∞} with $[H^{\infty}, h] = [H^{\infty}, f] \cap [H^{\infty}, g]$. Then $N(h) = N(f) \cap N(g)$.

PROOF. By our assumption, we have easily $N(h) \subset N(f) \cap N(g)$. Suppose that $N(h) \subseteq N(f) \cap N(g)$. By Corollary 2.1, there is a QC-level set Q with $Q \subset N(f) \cap N(g)$ and $Q \cap N(h) = \emptyset$. Take a function q in QC such that

- (1) 0 < q < 1 on X and q = 0 on N(h), and
- (2) q = 1 on some open neighborhood of Q. By Lemma 4.2,

$$M([H^{\infty},h]) = M([H^{\infty},f]) \cup M([H^{\infty},g]).$$

By (1) and (3), we have $fq|\sup \mu_x \in H^{\infty}|\sup \mu_x$ or $gq|\sup \mu_x \in H^{\infty}|\sup \mu_x$ for every $x \in M(H^{\infty} + C)$. By Theorem 2.1, we get $N(fq) \cap N(gq) = \emptyset$. By (2), $Q \cap N(f(1-q)) = \emptyset$. Since $N(f) = N(fq) \cup N(f(1-q))$, $Q \subset N(fq)$. Also we obtain $Q \subset N(gq)$. These contradict $N(fq) \cap N(gq) = \emptyset$.

PROOF OF THEOREM 4.1. By Lemmas 4.3 and 4.4, there is $F \in L^{\infty}$ such that $[H^{\infty}, F] = \bigcap_{n=1}^{N} [H^{\infty}, f_n]$ and $N(F) = \bigcap_{n=1}^{N} N(f_n)$. By Lemma 4.2 and our assumption, $F \in H^{\infty} + C$. Thus $N(F) = \emptyset$. This completes the proof.

We note that there is a sequence of functions $\{f_n\}_{n=1}^{\infty}$ in L^{∞} such that

- (a) for each x in $M(H^{\infty}+C)$, there exists n such that $f_n|\operatorname{supp} \mu_x \in H^{\infty}|\operatorname{supp} \mu_x$, and
 - (b) $\bigcap_{n=1}^{\infty} N(f_n) \neq \emptyset$.

EXAMPLE. Let $\lambda_n \in \partial D$ with $\lambda_n \to 1$ $(n \to \infty)$, and let S_n be the singular inner function associated with the singular measure $\sum_{k=n}^{\infty} (1/2)^k \delta_{\lambda_k}$. We put $f_n = (z-1)S_n$, then $\{f_n\}_{n=1}^{\infty}$ satisfies (a). Since $N(f_n) \supset N(f_{n+1})$, we get $\bigcap_{n=1}^{\infty} N(f_n) \neq \emptyset$. We note that if $Q \subset \bigcap_{n=1}^{\infty} N(f_n)$ then $f_n|Q \in H^{\infty}|Q$ for every n, hence for each QC-level set Q there is n such that $f_n|Q \in H^{\infty}|Q$.

In the last part of this section, we give a result which relates to Corollary 2.6.

PROPOSITION 4.1. For every $f \in L^{\infty}$ with $N(f) \neq \emptyset$, there is a Douglas algebra B such that

- (i) N(B) = N(f), and
- (ii) B is not countably generated.

PROOF. Let Q be a QC-level set with $f|Q \notin H^{\infty}|Q$. Put

 $B=[H^{\infty},\ \overline{I};\ I \text{ is an inner function with } \overline{I}\in [H^{\infty},f] \text{ and } \overline{I}|Q\in H^{\infty}|Q].$ Then $B\subset [H^{\infty},f]$, so $N(B)\subset N(f)$.

CLAIM. Put $E = \bigcup \{ \sup \mu_x ; x \in M(H^{\infty} + C), f | \sup \mu_x \notin H^{\infty} | \sup \mu_x \text{ and } \sup \mu_x \cap Q = \emptyset \}$. Then E is dense in N(f).

To show our claim, suppose not. Then cl $E \not\supset \operatorname{supp} \mu_y$ for some $y \in M(H^\infty + C)$ with $f|\operatorname{supp} \mu_y \not\in H^\infty|\operatorname{supp} \mu_y$ and $\operatorname{supp} \mu_y \subset Q$. Hence there is an open and closed subset U of X such that $E \cap U = \varnothing$, $\operatorname{supp} \mu_y \cap U \neq \varnothing$ and $\operatorname{supp} \mu_y \not\subset U$. By Lemma 2.6, $Q_y \subset N(\chi_U)$. Thus $N(f) \cap N(\chi_U) \neq \varnothing$. By Lemma 4.3, there is $h \in L^\infty$ such that $[H^\infty, h] = [H^\infty, f] \cap [H^\infty, \chi_U]$. By Lemma 4.4, $h \not\in H^\infty + C$. By Lemma 3.2, there is $g \in M(H^\infty + C)$ with $g \in H^\infty|\operatorname{supp} \mu_g \cap H^\infty|$ and $g \in H^\infty|\operatorname{supp} \mu_g \cap H^\infty|$ and $g \in H^\infty|\operatorname{supp} \mu_g \cap H^\infty|$ are not contained in $g \in H^\infty|\operatorname{supp} \mu_g \cap H^\infty|$. This contradicts the definitions of $g \in H^\infty$. Hence we get our claim.

To show (i), it is sufficient to prove $E \subset N(B)$ by our claim. To prove this, let $x \in M(H^{\infty} + C)$ such that $f|\operatorname{supp} \mu_x \notin H^{\infty}|\operatorname{supp} \mu_x$ and $\operatorname{supp} \mu_x \cap Q = \emptyset$. Take a function q in QC with q = 0 on Q and q = 1 on $\operatorname{supp} \mu_x$. Then $[H^{\infty}, fq] \subset B$. Since $fq|\operatorname{supp} \mu_x \notin H^{\infty}|\operatorname{supp} \mu_x, \ x \notin M(B)$. Hence $\operatorname{supp} \mu_x \subset N(B)$, so $E \subset N(B)$.

To show (ii), suppose not. Then $B=[H^{\infty},F]$ for some $F\in [H^{\infty},f]$. By Corollary 2.6, $[H^{\infty},F]=[H^{\infty},f]$. Since $F|Q\in H^{\infty}|Q,\ f|Q\in H^{\infty}|Q$. But this is a contradiction.

5. Discrete sequences in M(QC). A sequence $\{y_n\}_{n=1}^{\infty}$ in a topological space Y is called discrete if there is a sequence of open subsets $\{V_n\}_{n=1}^{\infty}$ of Y such that $Y_n \in V_n$ and $V_n \cap \operatorname{cl}\left(\bigcup_{m \neq n} V_n\right) = \emptyset$. In this section, we study discrete sequences in M(QC) and show three theorems as applications of §2. The first one, Theorem 5.1, gives properties of a sequence of QC-level sets. In Theorem 5.2, we shall show the existence of a certain function in H^{∞} , which is motivated by [11]. Using them, we shall prove a theorem which is more precise than the one proved in [8, Theorem 2.1].

A QC-level set is called simple if it consists of only one point. It is not known whether there is a simple QC-level set or not. It is easy to see that a QC-level set Q is not simple if and only if there is $x \in M(H^{\infty} + C) \setminus X$ such that supp $\mu_x \subset Q$. We note that every QC-level set in N(f), $f \in L^{\infty}$, is not simple. Because, for a given $f \in L^{\infty}$, there is an inner function I such that $N(f) \subset N(\overline{I})$ (see the proof of Corollary 7 in [13]). By Lemma 3.1, $N(\overline{I})$ does not contain any simple QC-level sets.

A discrete sequence $\{y_n\}_{n=1}^{\infty}$ in M(QC) is called *strongly discrete* if each $\pi^{-1}(y_n)$ is not simple.

THEOREM 5.1. Let $\{y_n\}_{n=1}^{\infty}$ be a strongly discrete sequence in M(QC), and let $y_0 \in M(QC)$ be its cluster point. Then

- (i) $\pi^{-1}(y_0)$ is not simple.
- (ii) $\pi^{-1}(y_0) \subset \operatorname{cl}\left(\bigcup_{n=1}^{\infty} \pi^{-1}(y_n)\right)$.

(iii) If $\{a_n\}_{n=1}^{\infty}$ is a bounded sequence of complex numbers, there is h in QA such that $h(y_n) = a_n$ for every n.

PROOF. By our assumption, there is a sequence of open subsets $\{V_n\}_{n=1}^{\infty}$ of M(QC) satisfying $y_n \in V_n$ and

$$(1) V_n \cap \operatorname{cl}\left(\bigcup_{m \neq n} V_m\right) = \varnothing.$$

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in $M(H^{\infty}+C)\backslash X$ with supp $\mu_{x_n}\subset \pi^{-1}(y_n)$. By [10, p. 177], there is an inner function I_n with

$$(2) |I_n(x_n)| < 1.$$

Take a function q_n in QC such that $||q_n|| = 1$,

(3)
$$q_n(y_n) = 1$$
 and $q_n = 0$ on $M(QC) \setminus V_n$.

Put $F = \sum_{n=1}^{\infty} (1/2)^n \overline{I}_n q_n$. Then $F \in L^{\infty}$. By (1), (2) and (3), $F | \operatorname{supp} \mu_{x_n} \notin H^{\infty} | \operatorname{supp} \mu_{x_n}$. Hence $\operatorname{supp} \mu_{x_n} \subset N(F)$, so $y_n \in \pi(N(F))$ for every n. Thus $\operatorname{cl}\{y_n\}_{n=1}^{\infty} \subset \pi(N(F))$. Since $\pi(N(F))$ is a compact subset of M(QC), $y_0 \in \pi(N(F))$. By Corollary 2.1, $\pi^{-1}(y_0) \subset N(F)$. By the remark before Theorem 5.1, we get (i).

To show (ii), suppose that $\pi^{-1}(y_0) \not\subset \operatorname{cl}\left(\bigcup_{n=1}^{\infty} \pi^{-1}(y_n)\right)$. There is an open and closed subset U of X such that $U \cap \operatorname{cl}\left(\bigcup_{n=1}^{\infty} \pi^{-1}(y_n)\right) = \emptyset$ and $U \cap \pi^{-1}(y_0) \neq \emptyset$. Hence we may take a sequence of open subsets $\{V_n\}_{n=1}^{\infty}$ satisfying moreover

$$(4) \pi^{-1}(U) \cap V_n = \emptyset.$$

By the same way as (i), we have a function $F = \sum_{n=1}^{\infty} (1/2)^n \overline{I}_n q_n$. Let $x \in M(H^{\infty} + C)$ with $F | \operatorname{supp} \mu_x \notin H^{\infty} | \operatorname{supp} \mu_x$. Then $\overline{I}_n q_n | \operatorname{supp} \mu_x \notin H^{\infty} | \operatorname{supp} \mu_x$ for some n. By (3), $\operatorname{supp} \mu_x \subset \pi^{-1}(V_n)$. By (4), $\operatorname{supp} \mu_x \subset X \setminus U$. Hence we have $N(F) \subset X \setminus U$. Since $\pi^{-1}(y_0) \subset N(F)$ by the proof of (i), we get $\pi^{-1}(y_0) \cap U = \emptyset$. But this is a contradiction, so we get (ii).

(iii) Let F be a function in the proof of (i). By [23, Lemmas 2.2 and 2.3], $m_0(\pi(N(F))) = 0$ and $\pi(N(F))$ is an interpolation set for QA, that is, $QA|\pi(N(F)) = C(\pi(N(F)))$. Since $\operatorname{cl}\{y_n\}_{n=1}^{\infty} \subset \pi(N(F))$, $\operatorname{cl}\{y_n\}_{n=1}^{\infty}$ is an interpolation set for QA. To prove (iii), it is sufficient to show that $\operatorname{cl}\{y_n\}_{k=1}^{\infty} \cap \operatorname{cl}(\{y_n\}_{n=1}^{\infty} \setminus \{y_{n_k}\}_{k=1}^{\infty}) = \emptyset$ for every subset $\{y_{n_k}\}_{k=1}^{\infty}$ of $\{y_n\}_{n=1}^{\infty}$ (see [10, p. 205]). To show this, put $G = \sum_{k=1}^{\infty} (1/2)^k \overline{I}_{n_k} q_{n_k}$ and H = F - G. By our construction, G and G satisfy the assumption of Theorem 2.1, so we get G so we get G so G since G since G since G since G so we have

$$\begin{aligned} \operatorname{cl}\{y_{n_k}\}_{k=1}^{\infty} \cap \operatorname{cl}(\{y_n\}_{n=1}^{\infty} \setminus \{y_{n_k}\}_{k=1}^{\infty}) &\subset \pi(N(G)) \cap \pi(N(H)) \\ &= \pi(N(G) \cap N(H)) \quad \text{by Corollary 2.1} \\ &= \varnothing. \end{aligned}$$

This completes the proof.

In [11], Hoffman showed that a discrete sequence $\{y_n\}_{n=1}^{\infty}$ in X is an l^{∞} -interpolation set for H^{∞} , that is, for every bounded sequence of complex numbers $\{a_n\}_{n=1}^{\infty}$ there is $h \in H^{\infty}$ such that $h(y_n) = a_n$ for $n = 1, 2, \ldots$ Using his technique, we shall show the existence of a certain function in H^{∞} .

LEMMA 5.1 [11]. Let K be a closed subset of X with m(K) = 0. Let g be a bounded continuous function on $X \setminus K$. Suppose that there is a bounded sequence $\{f_n\}_{n=1}^{\infty}$ in H^{∞} such that f_n converges to g uniformly on each compact subset of $X \setminus K$. Then there is $f \in H^{\infty}$ with $f|X \setminus K = g$.

THEOREM 5.2. Let $\{y_n\}_{n=1}^{\infty}$ be a strongly discrete sequence in M(QC). Let $\{h_n\}_{n=1}^{\infty}$ be a bounded sequence in $H^{\infty} + C$. Then there exists a function F in H^{∞} such that $F = h_n$ on $\pi^{-1}(y_n)$ for every n.

PROOF. Suppose that $||h_n|| < M$, where M is an absolute constant. Since $\pi^{-1}(y_n)$ is a weak peak set for H^{∞} and $H^{\infty} + C|\pi^{-1}(y_n) = H^{\infty}|\pi^{-1}(y_n)$, there is $f_n \in H^{\infty}$ such that $f_n|\pi^{-1}(y_n) = h_n|\pi^{-1}(y_n)$ and $||f_n|| < M$. Let $\{V_n\}_{n=1}^{\infty}$ be a sequence of open subsets of M(QC) such that $y_n \in V_n$ and $V_n \cap \operatorname{cl}\left(\bigcup_{m \neq n} V_m\right) = \emptyset$. Let W_0 be the interior of $\pi^{-1}\left(M(QC)\setminus\bigcup_{n=1}^{\infty} V_n\right)$. By [4, p. 18], $m(W_0) = m(\pi^{-1}(M(QC)\setminus\bigcup_{n=1}^{\infty} V_n))$. Put $K = (X\setminus W_0)\setminus\bigcup_{n=1}^{\infty} \pi^{-1}(V_n)$. Then K is a compact subset of X and m(K) = 0, because

$$\begin{split} m(K) &= 1 - m(W_0) - m\left(\bigcup_{n=1}^{\infty} \pi^{-1}(V_n)\right) \\ &= 1 - m\left(\pi^{-1}\left(M(QC) \setminus \bigcup_{n=1}^{\infty} V_n\right)\right) - m\left(\pi^{-1}\left(\bigcup_{n=1}^{\infty} V_n\right)\right) \\ &= 1 - m_0\left(M(QC) \setminus \bigcup_{n=1}^{\infty} V_n\right) - m_0\left(\pi^{-1}\left(\bigcup_{n=1}^{\infty} V_n\right)\right) = 0. \end{split}$$

We may take a function q_n in QA satisfying

(1) $||q_n|| = 1$, $q_n(y_n) = 1$ and $|q_n| < (1/2)^n$ on $M(QC) \setminus V_n$.

By (iii) of Theorem 5.1, we may assume that

(2) $q_m(y_n) = 0 \text{ if } m \neq n.$

Put $G_N = \sum_{k=1}^N f_k q_k$. Then $G_N \in H^{\infty}$. We shall show that $\{G_N\}_{N=1}^{\infty}$ satisfies the assumption of Lemma 5.1 for K. By (1), we have

on
$$\pi^{-1}(V_n)$$
, $|G_N| \le |f_n| + \sum_{k \ne n} |f_k| |q_k|$
 $\le M \left(1 + \sum_{k=1}^{\infty} \left(\frac{1}{2}\right)^k\right) \le 2M$,
on $(X \setminus K) \setminus \bigcup_{n=1}^{\infty} \pi^{-1}(V_n)$, $|G_N| \le M \sum_{k=1}^{\infty} \left(\frac{1}{2}\right)^k \le M$.

Hence $\{G_N\}_{N=1}^{\infty}$ is a bounded sequence in H^{∞} . Let E be a compact subset of $X \setminus K$. Then $K \subset W_0 \cup \bigcup_{k=1}^{n_0} \pi^{-1}(V_k)$ for some n_0 . For $n_0 \leq i < j$, we have

$$|G_j - G_i| = \left| \sum_{k=i+1}^j f_k q_k \right|$$

$$\leq M \sum_{k=i+1}^j \left(\frac{1}{2}\right)^k \leq M \left(\frac{1}{2}\right)^i \quad \text{on } W_0 \cup \bigcup_{k=1}^{n_0} \pi^{-1}(V_k).$$

Hence $\{G_N\}_{N=1}^{\infty}$ converges to $\sum_{k=1}^{\infty} f_k q_k$ uniformly on E. By Lemma 5.1, there is a function G in H^{∞} such that $F = \sum_{k=1}^{\infty} f_k q_k$ on $X \setminus K$. By (1) and (2), we get $F|\pi^{-1}(y_n) = f_n|\pi^{-1}(y_n) = h_n|\pi^{-1}(y_n)$.

A closed subset E of X is called antisymmetric for H^{∞} if $H^{\infty}|E$ does not contain any nonconstant real functions. An antisymmetric set is called maximal if there are no antisymmetric sets which contain E properly.

THEOREM 5.3 (Cf. [8, Theorem 2.1]). Let $\{y_n\}_{n=1}^{\infty}$ be a strongly discrete sequence in M(QC). Let $\{\lambda_n\}_{n=1}^{\infty}$ be a sequence in X with $\lambda_n \in \pi^{-1}(y_n)$. If λ_0 is a cluster point of $\{\lambda_n\}_{n=1}^{\infty}$ in X, then $\{\lambda_0\}$ is a maximal antisymmetric set for H^{∞} and it is not a QC-level set.

PROOF. Let λ_0 be a cluster point of $\{\lambda_n\}_{n=1}^{\infty}$ with $\lambda_n \in \pi^{-1}(y_n)$. There is a QC-level set Q_0 with $Q_0 \ni \lambda_0$. Since $\pi(Q_0) \in \operatorname{cl}\{y_n\}_{n=1}^{\infty}$, there is y_0 in $\operatorname{cl}\{y_n\}_{n=1}^{\infty}$ such that $Q_0 = \pi^{-1}(y_0)$. By Theorem 5.1(i), Q_0 is not simple. We note that the maximal antisymmetric set containing y_0 is contained in Q_0 . To show our assertion, let E be a closed subset with $\{y_0\} \subsetneq E \subset Q_0$. We shall show that E is not antisymmetric. Take an open and closed subset U of X satisfying $\lambda_0 \in U$ and $E \not\subset U$. By [1], there is $h \in H^{\infty} + C$ such that $|h| = \chi_U$ on X. Using a function h, we shall construct a function F in H^{∞} such that

- (1) F = 1 on $U \cap \{\lambda_n\}_{n=1}^{\infty}$,
- (2) F = 0 on $U^c \cap \pi^{-1}\{y_n\}$ for every n, and
- (3) the sequence of ranges $F(\pi^{-1}(y_n))$ converges in [-1,1], that is, for every open subset W in the complex plane with $[-1,1] \subset W$ there is n_0 such that $F(\pi^{-1}(y_n)) \subset W$ for every $n \geq n_0$.

We let D_n denote the open ellipse with major axis [-1,1] and minor axis [-i/n,i/n]. Let ψ_n be a conformal mapping of D onto D_n such that $\psi_n(0)=0$ and $\psi_n(h(\lambda_n))=1$ for every n with $|h(\lambda_n)|=1$. We note that $\psi_n\circ h\in H^\infty+C$ and $||\psi_n\circ h||=1$ for every n. By Theorem 5.2, there exists a function F in H^∞ such that $F|\pi^{-1}(y_n)=\psi_n\circ h|\pi^{-1}(y_n)$. It is easy to see that F satisfies (1) and (2) and (3). Since $\lambda_0\in \mathrm{cl}\{\lambda_n\}_{n=1}^\infty$, $F(\lambda_0)=1$ by (1). By Theorem 5.1(ii) and (2), F=0 on $U^c\cap\pi^{-1}\{y_0\}$. Also by Theorem 5.1(ii) and (3), F is a real function on $\pi^{-1}(y_0)$. Thus $F|E\in H^\infty|E$ is not a nonconstant real function. Hence E is not antisymmetric.

REMARK. It is not true that a cluster point of discrete sequence $\{\lambda_n\}_{n=1}^{\infty}$ in X is a maximal antisymmetric set for H^{∞} . For, let $x \in M(H^{\infty} + C) \setminus X$, then supp μ_x is an antisymmetric set for H^{∞} . We may choose a sequence $\{\lambda_n\}_{n=1}^{\infty}$ in supp μ_x which is discrete in X. Then a cluster point of $\{\lambda_n\}_{n=1}^{\infty}$ is continued in supp μ_x .

6. Singly generated Douglas algebras. In this section, we answer the following problem given in [6, 19]; when is $[H^{\infty}, f]$, $f \in L^{\infty}$, singly generated? The characterization of singly generated Douglas algebras in [14] does not answer the above problem explicitly. We want to know conditions on f satisfying that $[H^{\infty}, f]$ is singly generated.

For a point y in M(QC) and $f \in L^{\infty}$, we put

$$||f + H^{\infty}||_{y} = \inf_{h \in H^{\infty}} \{ \sup |f(x) + h(x)|; x \in \pi^{-1}(y) \}.$$

By [23], the set $\{\|f + H^{\infty}\|_{y}; y \in M(QC)\}$ contains 0. First we shall prove the following proposition, which is interesting in its own right.

PROPOSITION 6.1. For a given $f \in L^{\infty}$, the map $QC \ni y \to ||f + H^{\infty}||_y$ is upper semicontinuous.

PROOF. Let r be a real number. Let $\{y_{\alpha}\}_{{\alpha}\in\Lambda}$ be a net in M(QC) such that

$$(1) y_{\alpha} \to y_0 \in M(QC),$$

(2)
$$||f + H^{\infty}||_{y_{\alpha}} \ge r \text{ for every } \alpha \in \Lambda.$$

We shall show that $||f + H^{\infty}||_{y_0} \ge r$. Since $\pi^{-1}(y_{\alpha})$ is a weak peak set for H^{∞} , by (2) there is a measure μ_{α} such that

(3)
$$\|\mu_{\alpha}\| = 1 \quad \text{and} \quad \operatorname{supp} \mu_{\alpha} \subset \pi^{-1}(y_{\alpha}),$$

(4)
$$\int_X f \, d\mu_\alpha = \|f + H^\infty\|_{y_\alpha} \quad \text{and} \quad \mu_\alpha \perp H^\infty.$$

Let μ_0 be a weak*-cluster point of $\{\mu_{\alpha}\}_{{\alpha}\in\Lambda}$, that is, $\int_X g \, d\mu_{\alpha} \to \int_X g \, d\mu_0$ for every $g \in C(X)$. Then $\|\mu_0\| \leq 1$. By (2) and (4), we have

$$\int_X f \, d\mu_0 \ge \inf_{\alpha} \int_X f \, d\mu_{\alpha} = \inf_{\alpha} \|f + H^{\infty}\|_{y_{\alpha}} \ge r.$$

We note that $\pi^{-1}(y_0)$ is also a weak peak set for QA. Let $h \in QA$ be any peaking function such that $\pi^{-1}(y_0) \subset \{x \in X; h(x) = 1\}$. Since h is constant on each QC-level set, we have $\int_X fh \, d\mu_\alpha = h(y_\alpha) \int_X f \, d\mu_\alpha$ by (3). Thus

$$\int_X fh \, d\mu_0 = \lim_\alpha h(y_\alpha) \int_X f \, d\mu_\alpha = \int_X f \, d\mu_0 \quad \text{by (1)}.$$

This shows that $\int_{\pi^{-1}(y_0)} f d\mu_0 = \int_X f d\mu_0 \ge r$. By [4, p. 58] and (4), we have $\mu_0|\pi^{-1}(y_0) \perp H^{\infty}$. Since $\|\mu_0\| \le 1$, $\|f + H^{\infty}\|_{y_0} \ge r$. This completes the proof. Our theorem is

THEOREM 6.1. Let $f \in L^{\infty}$. Then the following assertions are equivalent.

- (i) $[H^{\infty}, f]$ is singly generated.
- (ii) Q(f) is a closed subset of X, consequently Q(f) = N(f).
- (iii) In the set $\{\|f + H^{\infty}\|_{y}; y \in M(QC)\}$, 0 is an isolated point.

PROOF. (i) \Rightarrow (ii) follows from Lemma 3.1.

(ii) \Rightarrow (iii) Suppose that 0 is not isolated in the set $\{\|f + H^{\infty}\|_{y}; y \in M(QC)\}$. Then there is a sequence $\{y_{n}\}_{n=1}^{\infty}$ in M(QC) such that $0 < \|f + H^{\infty}\|_{y_{n}} < 1/n$ for $n = 1, 2, \ldots$ Taking a subsequence, we may assume that $\{y_{n}\}_{n=1}^{\infty}$ is discrete in M(QC). Since $0 < \|f + H^{\infty}\|_{y_{n}}$, $\pi^{-1}(y_{n})$ is not simple. Thus $\{y_{n}\}_{n=1}^{\infty}$ is strongly discrete. Let $h_{n} \in H^{\infty}$ with

(1)
$$\sup\{|(f+h_n)(x)|; x \in \pi^{-1}(y_n)\} < 1/n.$$

Since $\pi^{-1}(y_n)$ is a weak peak set for H^{∞} , we may assume that $\{h_n\}_{n=1}^{\infty}$ is a bounded sequence in H^{∞} . By Theorem 5.2, there is $F \in H^{\infty}$ such that $F = h_n$ on $\pi^{-1}(y_n)$. By (1),

(2)
$$\sup\{|(f+F)(x)|; x \in \pi^{-1}(y_n)\} < 1/n.$$

Let $y_0 \in M(QC)$ be a cluster point of $\{y_n\}_{n=1}^{\infty}$. By Theorem 5.1, $\pi^{-1}(y_0) \subset \text{cl}\left(\bigcup_{n=1}^{\infty} \pi^{-1}(y_n)\right) \subset N(f)$. By (2), (f+F)(x)=0 for $x \in \pi^{-1}(y_0)$. Thus $f|\pi^{-1}(y_0) \in H^{\infty}|\pi^{-1}(y_0)$, so $Q(f) \subsetneq N(f)$.

(iii) \Rightarrow (i) Suppose that 0 is isolated in the set $\{\|f + H^{\infty}\|_{y}; y \in M(QC)\}$. Then there is $\varepsilon > 0$ such that

$${y \in M(QC); ||f + H^{\infty}||_{y} \neq 0} = {y \in M(QC); ||f + H^{\infty}||_{y} \geq \varepsilon}.$$

By Proposition 6.1, $\{y \in M(QC); \|f + H^{\infty}\|_{y} \neq 0\}$ is a closed subset of M(QC). Hence $\pi^{-1}\{y \in M(QC); \|f + H^{\infty}\|_{y} \neq 0\} = N(f)$ by Corollary 2.1. Let I be an inner function such that $\overline{I} \in [H^{\infty}, f]$ and $\|If + H^{\infty}\| < \varepsilon$. We note that if $y \in M(QC)$ satisfies $\|f + H^{\infty}\|_{y} \neq 0$, then $\pi^{-1}(y) \subset N(\overline{I})$. For, if $\pi^{-1}(y) \cap N(\overline{I}) = \emptyset$ then $\varepsilon \leq \|f + H^{\infty}\|_{y} = \|If + H^{\infty}\|_{y} < \varepsilon$. Hence $N(f) \subset N(\overline{I})$. By Corollary 2.5, we get $[H^{\infty}, f] \subset [H^{\infty}, \overline{I}] \subset [H^{\infty}, f]$.

The following corollary was proved by Marshall [19].

COROLLARY 6.1. $[H^{\infty}, \chi_U]$ is singly generated for every open and closed subset U of X.

PROOF. We shall show that for $y \in M(QC)$ either $\|\chi_U + H^\infty\|_y = 1/2$ or $\|\chi_U + H^\infty\|_y = 0$. It is easy to see that $\|\chi_U + H^\infty\|_y \le 1/2$. Suppose $\|\chi_U + H^\infty\|_y < 1/2$. There is $h \in H^\infty$ such that $\sup_{x \in \pi^{-1}(y)} |\chi_U(x) + h(x)| < 1/2$. Then there is a sequence of analytic polynomials $\{p_n\}_{n=1}^\infty$ such that $p_n \circ h \to \chi_U$ uniformly on $\pi^{-1}(y)$. Thus $\|\chi_U + H^\infty\|_y = 0$. By Theorem 6.1, we get our assertion.

We shall give an example concerning countable valued functions.

EXAMPLE. There exist two functions f and g in L^{∞} such that

- (a) $f(X) = g(X) = \{0, 1/n; n = 1, 2, \ldots\},\$
- (b) $[H^{\infty}, g]$ is not singly generated, and
- (c) $[H^{\infty}, f]$ is singly generated.

PROOF. Let $\{O_n\}_{n=1}^{\infty}$ be a sequence of open arcs such that $O_n = \{e^{i\theta}; 1/n+1 < \theta < 1/n\}$. Put $U_n = \{x \in X; \chi_{O_n}(x) = 1\}$. Then U_n is an open and closed subset of X. Put

$$g = \begin{cases} \sum_{n=1}^{\infty} \frac{1}{n} \chi_{O_n} & \text{on } \bigcup_{n=1}^{\infty} O_n, \\ 0 & \text{on } \partial D \setminus \bigcup_{n=1}^{\infty} O_n. \end{cases}$$

By the same way as the proof of Corollary 6.1,

$$\{\|g+H^\infty\|_y;y\in M(QC)\}=\{0,1/2\}\cup\{(1/n-1/n+1)/2;n=1,2,\ldots\}.$$

By Theorem 6.1, q satisfies (a) and (b). Put

$$f = \begin{cases} \sum_{n=1}^{\infty} \frac{1}{n} \chi_{O_{2n}} & \text{on } \bigcup_{n=1}^{\infty} O_{2n} \\ 1 & \text{on } \partial D \backslash \bigcup_{n=1}^{\infty} O_{2n}. \end{cases}$$

Then $\{\|f + H^{\infty}\|_{y}; y \in M(QC)\} = \{(1 - 1/n)/2; n = 1, 2, ...\}$. By Theorem 6.1, f satisfies (a) and (c).

7. M-ideals. Let F be a weak peak subset of X for $H^{\infty}+C$. We put $(H^{\infty}+C)_F=\{f\in L^{\infty}; f|F\in H^{\infty}+C|F\}$. Then $(H^{\infty}+C)_F$ is a Douglas algebra. In [18], Lucking and Younis gave the following conjecture: Let B be a Douglas algebra such that B/H^{∞} is an M-ideal of L^{∞}/H^{∞} . Is $B=(H^{\infty}+C)_F$ for some weak peak set F for $H^{\infty}+C$? We shall give a negative answer.

THEOREM 7.1. Let $E \subseteq X$ be a peak set for QC. Put

$$B = [H^{\infty}, \{\overline{I}; I \text{ is an inner function with } N(\overline{I}) \subset E\}].$$

Then

- (i) B/H^{∞} is an M-ideal of L^{∞}/H^{∞} .
- (ii) $B \neq (H^{\infty} + C)_F$ for every weak peak set F for $H^{\infty} + C$.

To show this, we need some lemmas.

LEMMA 7.1 [16, COROLLARY 5.1]. Let B be a Douglas algebra with $B \supseteq H^{\infty} + C$. Then B/H^{∞} is an M-ideal of L^{∞}/H^{∞} if and only if $B/H^{\infty} + C$ is an M-ideal of $L^{\infty}/H^{\infty} + C$.

The following lemma is a characterization of M-ideals of $L^{\infty}/H^{\infty}+C$, which is obtained by [5] essentially. For a Douglas algebra B, we denote by B^{\perp} the space of annihilating measures on X for B.

LEMMA 7.2 (SEE [16, THEOREM 5.1]). Let B be a Douglas algebra with $B \supseteq H^{\infty} + C$. Then $B/H^{\infty} + C$ is an M-ideal of $L^{\infty}/H^{\infty} + C$ if and only if for each $\mu \in (H^{\infty} + C)^{\perp}$ there exists $f_{\mu} \in L^{1}(|\mu|)$ such that

- (a) $f_{\mu}^2 = f_{\mu} \ a.e. \ d|\mu|$,
- (b) $\mu f_{\mu}\mu \perp B^{\perp}$, and
- (c) $f_{\mu}\mu \in B^{\perp}$.

For a subset E of X, we put $\Lambda_E = \{I; I \text{ is an inner function with } N(\overline{I}) \subset E\}$. As applications of Lemma 2.5 and Theorem 2.1, we get the following lemma.

LEMMA 7.3. Let $E \subset X$ be a peak set for QC. For a sequence of inner functions $\{I_n\}_{n=1}^{\infty}$ in Λ_E , there exists $I \in \Lambda_E$ such that $N(\overline{I}_n) \subset N(\overline{I})$ for all n.

PROOF. Let $h \in QC$ be a peaking function for E. By Lemma 2.1, we may assume that each I_n is an interpolating Blaschke product with zeros $\{z_{n,k}\}_{k=1}^{\infty}$ and $\sum_{n=1}^{\infty}\sum_{k=1}^{\infty}(1-|z_{n,k}|)<\infty$. Then $\prod_{n=1}^{\infty}I_n$ is a Blaschke product. Put $\psi=\prod_{n=1}^{\infty}I_n$ and $g=\bar{\psi}(1-h)$. Then

$$(1) \hspace{3cm} N(\bar{\psi})\backslash E\subset N(g).$$

To prove that $\{I_n\}_{n=1}^{\infty}$ and g satisfy the assumptions of Lemma 2.5, let $x\in M(H^{\infty}+C)$. Since E is a union set of some QC-level sets, $\operatorname{supp}\mu_x\subset E$ or $\operatorname{supp}\mu_x\cap E=\varnothing$. If $\operatorname{supp}\mu_x\subset E$, we get $0=g|\operatorname{supp}\mu_x\in H^{\infty}|\operatorname{supp}\mu_x$. If $\operatorname{supp}\mu_x\cap E=\varnothing$, then $\overline{I}_n|\operatorname{supp}\mu_x\in H^{\infty}|\operatorname{supp}\mu_x$ for all n, because $I_n\in\Lambda_E$. By Lemma 2.5, there is a Blaschke product I such that

- $(2)\ N(\overline{I})\subset N(\bar{\psi}),$
- (3) either $\overline{I}|\operatorname{supp} \mu_x \in H^{\infty}|\operatorname{supp} \mu_x \text{ or } g|\operatorname{supp} \mu_x \in H^{\infty}|\operatorname{supp} \mu_x \text{ for every } x \in M(H^{\infty} + C)$, and
 - (4) $N(\overline{I}_n) \subset N(\overline{I})$ for all n.
- By (3), applying Theorem 2.1, we get $N(\overline{I}) \cap N(g) = \emptyset$. Hence, by (1) and (2), $N(\overline{I}) \subset E$, so $I \in \Lambda_E$.

LEMMA 7.4 [13, LEMMA 3]. Let E be a closed G_{δ} -subset of X. Then there is an inner function I with $\varphi \neq N(\overline{I}) \subset E$.

LEMMA 7.5. Let ν be a measure on X with $\nu \in (H^{\infty} + C)^{\perp}$. If J is an inner function with $\overline{J}\nu \notin (H^{\infty} + C)^{\perp}$, then $|\nu|(N(\overline{J})) \neq 0$.

PROOF. Suppose that $|\nu|(N(\overline{J})) = 0$. Then there is a sequence of compact subsets $\{K_n\}_{n=1}^{\infty}$ of X such that $\lim_{n\to\infty} |\nu|(K_n) = \|\nu\|$ and $K_n \cap N(\overline{J}) = \emptyset$. Since $\pi^{-1}(\pi(N(\overline{J}))) = N(\overline{J})$, moreover we may assume $\pi^{-1}(\pi(K_n)) = K_n$. Then K_n is a weak peak set for QC and for $H^{\infty} + C$. Hence $\nu|K_n \in (H^{\infty} + C)^{\perp}$ [4, p. 58]. Since $K_n \cap N(\overline{J}) = \emptyset$, $\overline{J}|K_n \in (H^{\infty} + C)|K_n$. Hence $\overline{J}\nu|K_n \in (H^{\infty} + C)^{\perp}$. Since $\lim_{n\to\infty} |\nu|(K_n) = \|\nu\|$, $\overline{J}\nu \in (H^{\infty} + C)^{\perp}$. But this is a contradiction.

LEMMA 7.6 [16, THEOREM 2.1]. Let B be a Douglas algebra with $B \supset H^{\infty} + C$. Let λ be a measure on X with $\lambda \in B^{\perp}$. If ν is a measure with $\nu \ll \lambda$, then there is an inner function I such that $I\nu \in B^{\perp}$.

PROOF OF THEOREM 7.1. (i) By Lemma 7.4, $H^{\infty} + C \subsetneq B$. We shall show that $B/H^{\infty} + C$ is an M-ideal of $L^{\infty}/H^{\infty} + C$, then we get (i) by Lemma 7.1. To show the above fact, we use Lemma 7.2. Let $\mu \in (H^{\infty} + C)^{\perp}$ with $\|\mu\| = 1$. Put $\alpha = \sup\{|\mu|(N(\overline{I})); I \in \Lambda_E\}$. Then there is a sequence $\{I_n\}_{n=1}^{\infty}$ in Λ_E such that $\lim_{n\to\infty} |\mu|(N(\overline{I}_n)) = \alpha$. By Lemma 7.3, there is $I_0 \in \Lambda_E$ such that $N(\overline{I}_n) \subset N(\overline{I}_0)$. Hence $|\mu|(N(\overline{I}_0)) = \alpha$. Put $f_{\mu} = 1 - \chi_{N(\overline{I}_0)}$. Then f_{μ} satisfies (a) of Lemma 7.2. Also by Lemma 7.3,

(1)
$$|f_{\mu}\mu|(N(\overline{I})) = 0 \text{ for every } I \in \lambda_E.$$

To show $f_{\mu}\mu \in B^{\perp}$, suppose that $f_{\mu}\mu \notin B^{\perp}$. Since B coincides with the closed linear span of $\{\overline{I}(H^{\infty}+C); I \in \Lambda_E\}$, there is $J \in \Lambda_E$ such that $\overline{J}f_{\mu}\mu \notin (H^{\infty}+C)^{\perp}$. We note that $f_{\mu}\mu \in (H^{\infty}+C)^{\perp}$, because $N(\overline{I}_0)$ is a weak peak set for $H^{\infty}+C$ by Corollary 2.1. By Lemma 7.5, $|f_{\mu}\mu|(N(\overline{J}))\neq 0$. But this contradicts (1). Thus we get (c) of Lemma 7.2.

To prove (b), we shall show

(2) $\lambda \mid N(\overline{I}) = 0$ for every $\lambda \in B^{\perp}$ and $I \in \Lambda_E$.

Fix $\lambda \in B^{\perp}$ and $I \in \Lambda_E$. By Lemma 7.6, there is an inner function Ψ such that

$$\Psi|\lambda| \mid N(\overline{I}) \in B^{\perp}.$$

Let $h \in QC$ be a peaking function for E. We note that for $x \in M(H^{\infty} + C)$, either $\overline{I} \mid \operatorname{supp} \mu_x \in H^{\infty} \mid \operatorname{supp} \mu_x$ or $\overline{\Psi}(1-h) \mid \operatorname{sup} \mu_x \in H^{\infty} \mid \operatorname{supp} \mu_x$, because $N(\overline{I}) \subset E$. By Theorem 2.1, $N(\overline{I}) \cap N(\overline{\Psi}(1-h)) = \emptyset$. By Corollary 2.1, there is a function q in QC such that $0 \leq q \leq 1$,

$$(4) \hspace{1cm} q=1 \hspace{0.5cm} \text{ on } N(\overline{I}) \hspace{0.5cm} \text{ and } \hspace{0.5cm} q=0 \hspace{0.5cm} \text{ on } N(\overline{\Psi}(1-h)).$$

If $q\overline{\Psi}|\operatorname{supp} \mu_x \not\in H^{\infty}|\operatorname{supp} \mu_x$ for $x\in M(H^{\infty}+C)$, then $q(x)\neq 0$ and $\overline{\Psi}|\operatorname{supp} \mu_x \not\in H^{\infty}|\operatorname{supp} \mu_x$. Since $h\in QC$, h(x)=1 by (4). Hence $\operatorname{supp} \mu_x\subset E$, so $N(q\overline{\Psi})\subset E$. By Lemma 2.2, there is a sequence of inner functions $\{\Psi_n\}_{n=1}^{\infty}$ such that $[H^{\infty},q\overline{\Psi}]=[H^{\infty},\{\overline{\Psi}_n\}_{n=1}^{\infty}]$. Since $N(\overline{\Psi}_n)\subset N(q\overline{\Psi})\subset E$, we get $[H^{\infty},q\overline{\Psi}]\subset B$. By (3) and (4),

$$0=\int_{N(\overline{I})}q\overline{\Psi}\Psi d|\lambda|=\int_{N(\overline{I})}d|\lambda|.$$

Hence $\lambda | N(\overline{I}) = 0$. Thus we get (2). Consequently $\mu - f_{\mu}\mu = \mu | N(\overline{I}_0) \perp B^{\perp}$, so we get (b) of Lemma 7.2.

Applying Lemma 7.2, $B/H^{\infty} + C$ is an M-ideal of $L^{\infty}/H^{\infty} + C$. This completes the proof of (i).

(ii) Suppose that $B=(H^\infty+C)_F$ for a weak peak subset of X for $H^\infty+C$. To show $F\supset X\backslash E$, suppose not. Then there exists an open and closed subset U of X with $U\cap (E\cup F)=\varnothing$. By Lemma 7.4, there is an inner function I with $\varnothing\neq N(\overline{I})\subset U$. Then there is $x\in M(H^\infty+C)\backslash X$ such that $\sup \mu_x\subset U$. Since $\sup \mu_x\cap E=\varnothing$, $B|\sup \mu_x=H^\infty|\sup \mu_x$. Since $\sup \mu_x\cap F=\varnothing$, $(H^\infty+C)_F|\sup \mu_x$ coincides with the space of continuous functions on $\sup \mu_x$. This is a contradiction, so we have $F\supset X\backslash E$.

Let V be the closure of $X \setminus E$. By [4, p. 18], V is an open and closed subset of X and $V \subset F$. Since QC does not have nontrivial idempotents, $E \cap V \neq \emptyset$. Since $E \cap V$ is a closed G_{δ} -set, again by Lemma 7.4 there is an inner function J with $\emptyset \neq N(\overline{J}) \subset E \cap V$. By the definition of B, $\overline{J} \in B$. Since $N(\overline{J}) \subset V \subset F$, $\overline{J} \notin (H^{\infty} + C)_F$. This contradicts $B = (H^{\infty} + C)_F$. Hence we get (ii).

REMARK. Let B be a Douglas algebra given in Theorem 7.1. By the above proof and $[\mathbf{4}, p. 59]$, $N(\overline{I})$ is an interpolation set for B for every $I \in \Lambda_E$, that is, $B|N(\overline{I}) = C(N(\overline{I}))$. If we put $B' = [H^{\infty}, \{\overline{I}: I \text{ is an inner function with } N(\overline{I}) \subset X \setminus E\}]$, then we have $B' = (H^{\infty} + C)_E$

By the same way as in [17], we have the following.

COROLLARY 7.1. Let B be a Douglas algebra given in Theorem 7.1. Then B has the best approximation property, that is, for each $f \in L^{\infty}$ there is $g \in B$ such that ||f + B|| = ||f - g||.

As a special case, we get Proposition 2 in [18]. Let F be an open subset of ∂D . Put $L_F^{\infty} = \{f \in L^{\infty}; f \text{ is continuous at each point of } F\}$, and $E = \{x \in X; z(x) \in X \setminus F\}$. Then E is a peak set for QC, and it is easy to see that $H^{\infty} + L_F^{\infty} = [H^{\infty}, \{\overline{I}; I \text{ is an inner function with } N(\overline{I}) \subset E\}]$. Hence $H^{\infty} + L_F^{\infty}$ has the best approximation property.

REFERENCES

- 1. S. Axler, Factorization of L^{∞} functions, Ann. of Math. (2) 106 (1977), 567-572.
- 2. S. Axler, I. D. Berg, N. Jewell, and A. L. Shields, Approximation by compact operators and the space $H^{\infty} + C$, Ann. of Math. (2) 109 (1979), 601-612.
- 3. S.-Y. A. Chang, A characterization of Douglas subalgebras, Acta Math. 137 (1976), 81-89.
- 4. T. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.
- T. Gamelin, D. Marshall, R. Younis, and W. Zame, Function theory and M-ideals, Ark. Mat. 23 (1985), 261–279.
- 6. J. Garnett, Bounded analytic functions, Academic Press, New York and London, 1981.
- 7. P. Gorkin, Decompositions of the maximal ideal space of L^{∞} , Thesis, Michigan State Univ., East Lansing, 1982.
- 8. ____, Decompositions of the maximal ideal space of L^{∞} , Trans. Amer. Math. Soc. 282 (1984), 33-44.
- C. Guillory, K. Izuchi and D. Sarason, Interpolating Blaschke products and division in Douglas algebras, Proc. Roy. Irish Acad. 84A (1984), 1-7.
- K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N.J., 1962.
- unpublished note.

- 12. K. Izuchi, Zero sets of interpolating Blaschke products, Pacific J. Math. 119 (1985), 337-342
- 13. ____, QC-level sets and quotients of Douglas algebras, J. Funct. Anal. 65 (1986), 293-308.
- 14. ____, A geometrical characterization of singly generated Douglas algebras, Proc. Amer. Math. Soc. 97 (1986), 410-412.
- 15. K. Izuchi and Y. Izuchi, Extreme and exposed points in quotients of Douglas algebras by H^{∞} or $H^{\infty} + C$, Yokohama Math. J. 32 (1984), 45-54.
- 16. ____, Annihilating measures for Douglas algebras, Yokohama Math. J. 32 (1984), 135-151.
- 17. D. Lucking, The compact Hankel operators from an M-ideal in the space of Hankel operators, Proc. Amer. Math. Soc. 79 (1980), 222-224.
- 18. D. Luecking and R. Younis, Quotients of L^{∞} by Douglas algebras and best approximation, Trans. Amer. Math. Soc. **276** (1983), 699-706.
- 19. D. Marshall, Subalgebras of L^{∞} containing H^{∞} , Acta Math. 137 (1976), 91-98.
- D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975). 391–405.
- 21. ____, Function theory on the unit circle, Virginia Polytechnic Institute and State Univ., Blacksburg, 1978.
- 22. ____, The Shilov and Bishop decompositions of $H^{\infty} + C$, Conf. on Harmonic Anal. in Honor of A. Zygmund, Vol. 2, Wadsworth, Belmont, Calif., 1981, pp. 461–474.
- 23. T. Wolff, Two algebras of bounded functions, Duke Math. J. 49 (1982), 321-328.
- 24. R. Younis, Division in Douglas algebras and some applications, Arch. Math. (Basel) 45 (1985), 550-560.

DEPARTMENT OF MATHEMATICS, KANAGAWA UNIVERSITY, YOKOHAMA 221, JAPAN