A REMARK ON THE BLOWING-UP OF SOLUTIONS TO THE CAUCHY PROBLEM FOR NONLINEAR SCHRÖDINGER EQUATIONS

O. KAVIAN

ABSTRACT. We consider solutions to $iu_t = \Delta u + |u|^{p-1}u$, $u(0) = u_0$, where x belongs to a smooth domain $\Omega \subset \mathbf{R}^N$, and we prove that under suitable conditions on p, N and $u_0 \in H^2(\Omega) \cap H^1_0(\Omega)$, $\|\nabla u(t)\|_{L^2}$ blows up in finite time. The range of p's for which blowing-up occurs depends on whether Ω is starshaped or not. Examples of blowing-up under Neuman or periodic boundary conditions are given.

RESUMÉ. On considère des solutions de $iu_t = \Delta u + |u|^{p-1}u$, $u(0) = u_0$, où la variable d'espace x appartient à un domaine régulier $\Omega \subset \mathbf{R}^N$, et on prouve que sous des conditions adéquates sur p, N et $u_0 \in H^2(\Omega) \cap H_0^1(\Omega)$, $\|\nabla u(t)\|_{L^2}$ explose en temps fini. Les valeurs de p pour lesquelles l'explosion a lieu dépend de la forme de l'ouvert Ω (en fait Ω étoilé ou non). On donne également des exemples d'explosion sous des conditions de Neuman ou périodiques au bord.

1. Introduction and main results. Let $\Omega \subset \mathbf{R}^N$ (with $N \geq 1$) be a smooth domain and consider for p > 1 the nonlinear Schrödinger equation (NLS),

(1.1)
$$\begin{cases} iu_t = \Delta u + |u|^{p-1}u & \text{on } \Omega, \\ u(0,x) = u_0(x) \end{cases}$$

and

(1)_
$$\begin{cases} iu_t = \Delta u - |u|^{p-1}u & \text{on } \Omega, \\ u(0,x) = u_0(x). \end{cases}$$

When $\Omega = \mathbf{R}^N$, it is well known that, under appropriate conditions on the smoothness of the initial data u_0 , there exists a local solution (in time) to (1.1) and (1.1)_. For (N-2)p < N+2 and $u_0 \in H^1(\mathbf{R}^N)$, the corresponding solution of (1.1)_ is unique and exists globally in time. For $1 and <math>u_0 \in H^1(\mathbf{R}^N)$ the solution of (1.1) is global. (See e.g. Th. Cazenave [1], J. Ginibre and G. Velo [2], and references of these papers.) For $p \geq 1+4/N$ and initial data $u_0 \in \mathcal{S}(\mathbf{R}^N)$ such that the energy

$$E(u_0) = \frac{1}{2} \int_{\mathbf{R}^N} |\nabla u_0|^2 dx - \frac{1}{p+1} \int_{\mathbf{R}^N} |u_0|^{p+1} dx \le 0,$$

R. T. Glassey [3] proves that there exists a finite time $T_* > 0$ such that

$$\lim_{t\uparrow T_{\bullet}}\|\nabla u(t)\|_{L^{2}}=\infty.$$

Received by the editors September 20, 1985 and, in revised form, January 24, 1986. 1980 Mathematics Subject Classification (1985 Revision). Primary 35B99, 35Q20; Secondary 81C05.

When $\Omega = \mathbf{R}^N$, other examples of initial data for which the solution u(t) blows up in finite time are known. H. Berestycki and Th. Cazenave [4] prove that if R > 0 is a minimum-action solution (= ground state) of $-\Delta R + \omega R = R^p$ on \mathbf{R}^N ($p \ge 1 + 4/N$) for some $\omega > 0$, then the solution u(t) of (1.1) with initial data $u_0(x) = \lambda^{N/2} R(\lambda x)$ ($\lambda > 1$) blows up in finite time (note that $e^{-i\omega t} R(x)$ is a solitary wave solution of (NLS), and that $E(u_0) \ge 0$).

When p = 1 + 4/N and $\Omega = \mathbf{R}^N$, Michael Wienstein has observed that if R satisfies $-\Delta R + R = R^p$ on \mathbf{R}^N , then for $(a, b, c, d) \in \mathbf{R}^4$, ad - bc = 1, the function

$$\psi(t,x) := (a+bt)^{-N/2} R\left(\frac{x}{a+bt}\right) \cdot \exp\left(i\frac{b|x|^2 + c + dt}{a+bt}\right),$$

is a solution of (NLS) which blows up in finite time (cf. M. Weinstein [5]).

When $\Omega \neq \mathbf{R}^N$, $N \leq 2$ and p < 1 + 4/N, H. Brézis and Th. Gallouët [6] prove that, for $u_0 \in H_0^1(\Omega)$, there exists a unique global solution to (1.1). But for $N \geq 3$, due to the fact that when $\Omega \neq \mathbf{R}^N$ the behavior of $e^{it\Delta}$ is not well known, much less can be said about the global existence or the blowing-up of solutions in finite time. However for p = 1 + 4/N, N = 1 or 2 and Ω being a ball, numerical computations made by A. Patera, C. Sulem, and P. L. Sulem [7, 8] suggest that there are solutions which blow up in finite time. In this paper we prove that depending on the shape of the domain Ω and the value of p there are solutions of (1.1) which blow up in finite time. (We do not study local existence and uniqueness of the Cauchy problem (1.1). We suppose that a local solution is given and we prove that it blows up in finite time—or rather it cannot exist globally in some appropriate space—, whenever the initial data satisfies a certain set of conditions.)

The main results are the following.

(1.2) PROPOSITION. Let Ω be a smooth starshaped domain in \mathbf{R}^N and $p \ge 1+4/N$. Let T>0 and consider a solution u(t) of (1.1) (with $u(0)=u_0$) such that

(1.3)
$$u \in C^1([0,T], L^2(\Omega)) \cap C([0,T], H^2 \cap H_0^1 \cap L^{p+1}(\Omega)).$$

Then if $\int_{\Omega} |x|^2 |u_0(x)|^2 dx < \infty$ and u_0 satisfies either of the following conditions (1.4) or (1.5), then there exists T_* (depending on u_0) such that $T < T_*$ (i.e. the solution blows up in finite time).

(1.4)
$$E(u_0) := \frac{1}{2} \int_{\Omega} |\nabla u_0|^2 dx - \frac{1}{p+1} \int_{\Omega} |u_0|^{p+1} dx < 0,$$

(1.5)
$$\begin{cases} E(u_0) \ge 0, & \operatorname{Im} \int_{\Omega} (x \cdot \nabla u_0) \overline{u}_0(x) \, dx > 0 \quad and \\ \left| \operatorname{Im} \int_{\Omega} (x \cdot \nabla u_0) u_0(x) \, dx \right|^2 \ge E(u_0) \cdot \int_{\Omega} |x u_0(x)|^2 \, dx. \end{cases}$$

For a domain Ω which is not starshaped Proposition (1.6) holds $(N \geq 2)$:

(1.6) PROPOSITION. Let ω be a smooth domain in \mathbf{R}^N , starshaped with respect to some point $x_0 \in \omega$ and let r > 0 such that $B(x_0, r) \subset \omega$. Then if $\Omega := \omega \cap \overline{B(x_0, r)}^c$, $p \geq 5$ and u_0 is such that $\int_{\Omega} |x|^2 |u_0(x)|^2 dx < \infty$ and satisfies either of conditions (1.4) or (1.5 bis), then the solution of the (NLS) (1.1) satisfying (1.3),

blows up in finite time.

$$(1.5 \text{ bis}) \qquad \left\{ \begin{aligned} E(u_0) &\geq 0, \quad \text{Im} \int (\nabla \varphi \cdot \nabla u_0) \overline{u}_0(x) \, dx > 0 \quad and \\ \left| \text{Im} \int (\nabla \varphi \cdot \nabla u_0) \overline{u}_0(x) \, dx \right|^2 &\geq 4N E(u_0) \int \varphi(x) |u_0(x)|^2 \, dx \end{aligned} \right.$$

where

$$arphi(x) := rac{1}{2} |x - x_0|^2 + rac{r^N}{(N-2)|x - x_0|^{N-2}} \quad ext{when } N \geq 3$$

and

$$\varphi(x) := \frac{1}{2}|x - x_0|^2 - r^2 \log|x - x_0|$$
 when $N = 2$.

If one is interested in the blowing-up of solutions which satisfy other boundary value conditions than Dirichlet (i.e. $H_0^1(\Omega)$) such as Neuman or periodic conditions, one can construct such solutions using (1.2) (cf. Remark 4.9 below). Note that the condition $\int_{\Omega} |x|^2 |u_0(x)|^2 dx < \infty$ is satisfied when Ω is bounded and $u_0 \in H_0^1(\Omega)$; actually this condition seems technical when Ω is unbounded and one can give the following variant of Proposition (1.2).

(1.7) PROPOSITION. Let Ω be a smooth domain in \mathbf{R}^N such that there exists $k \geq 1, \ a \in \mathbf{R}^N$ and $1 \leq j_1 < j_2 < \cdots < j_k \leq N$ such that if $\vec{n}(x)$ is the outer normal to the boundary $\partial \Omega$ one has

$$\forall x \in \partial \Omega \quad (x_{j_1} - a_{j_1}) n_{j_1}(x) + \dots + (x_{j_k} - a_{j_k}) n_{j_k}(x) \ge 0.$$

Then if $u_0 \in H_0^1(\Omega)$ satisfies

(1.8)
$$\int_{\Omega} (|x_{j_1}|^2 + \dots + |x_{j_k}|^2) |u_0(x)|^2 dx < \infty$$

and either of conditions (1.4) or (1.9), the solution u of (1.1) satisfying (1.3) blows up in finite time if $p \ge 1 + 4/k$.

$$(1.9) \qquad \begin{cases} E(u_0) \geq 0, & \operatorname{Im} \int (\nabla \varphi \cdot \nabla u_0) \overline{u}_0(x) \, dx > 0 \quad and \\ \left| \operatorname{Im} \int_{\Omega} (\nabla \varphi \cdot \nabla u_0) \overline{u}_0(x) \, dx \right|^2 \geq 2E(u_0) \int \varphi |u_0(x)|^2 \, dx \end{cases}$$

where

$$\varphi(x) = \frac{1}{2}(|x_{j_1} - a_{j_1}|^2 + \dots + |x_{j_k} - a_{j_k}|^2).$$

In particular if Ω is bounded in k directions and $p \ge 1 + 4/k$ the condition (1.8) is fulfilled and the only condition for the blowing-up is (1.4) (or (1.9)).

It is clear that the condition $p \ge 1 + 4/k$ in (1.7) is not optimal in the sense that p < 1 + 4/k does not imply global existence. In §4.7 we prove that the condition $p \ge 5$ in (1.6) is optimal in the sense that there are global solutions for p < 5 and any value of $E(u_0)$; at the same time there are solutions which blow up when $1 + 4/N \le p < 5$ (and $E(u_0) \le 0$).

The proof of these results is a slight modification of the one given by R. T. Glassey [3] (see below).

The author wishes to thank Alain Haraux who brought his attention to this question.

2. Preliminary results. In what follows, we consider a sufficiently smooth solution of (1.1) for which the following hold for some T > 0:

$$(1.1) iu_t = \Delta u + |u|^{p-1}u.$$

$$(2.1) u(0,x) = u_0(x) \not\equiv 0.$$

$$(2.2) u(t) \in H_0^1(\Omega) \text{ for } 0 \le |t| \le T \text{ (Dirichlet boundary condition)}.$$

(2.3)
$$\int_{\Omega} |u(t,x)|^2 dx = \int_{\Omega} |u_0(x)|^2 dx \text{ for } 0 \le |t| \le T.$$

(2.4)
$$\frac{1}{2} \int_{\Omega} |\nabla u(t,x)|^2 dx - \frac{1}{p+1} \int_{\Omega} |u(t,x)|^{p+1} dx =: E(u(t)) = E(u_0)$$
 for $0 \le |t| \le T$.

For instance any classical solution of (1.1) satisfies (2.3) and (2.4). (To obtain (2.3) multiply the equation (1.1) by \overline{u} , integrate over Ω and take the imaginary part; to obtain (2.4) multiply (1.1) by \overline{u}_t , take the real part and integrate over Ω .)

Following R. T. Glassey we consider the "variance" of u (in fact that of $|u|^2$) but we modify this variance according to the shape of Ω . More precisely let φ satisfy

(2.5)
$$\varphi \ge 0, \quad \varphi \not\equiv 0, \quad \varphi \in C^4(\mathbf{R}^N)$$

and define for $t \in [-T, T]$

(2.6)
$$V(t) := \frac{1}{2} \int_{\Omega} \varphi(x) |u(t,x)|^2 dx.$$

Define also the Hessian of φ by

$$(2.7) H(\varphi)(x) := (\partial_{kj}^2 \varphi(x))_{1 \le k, j \le N}$$

and for $\xi \in \mathbf{C}^N$

(2.8)
$$(H(\varphi)\xi|\xi) := \sum_{1 \le k,j \le N} \partial_{kj}^2 \varphi(x) \xi_j \overline{\xi}_k.$$

To prove the results about the blowing-up of solutions we prove first the following lemma and in the next sections we choose the function φ according to Ω .

(2.9) LEMMA. Let $u \in C^1([0,T],L^2(\Omega)) \cap C([0,T],H^2 \cap H_0^1 \cap L^{p+1}(\Omega))$ be a solution of (1.1) with $u(0,x) = u_0(x)$, φ satisfying (2.5) with compact support and V defined as in (2.6). Then $V \in C^2([0,T])$ and for each t one has

$$\begin{split} V'(t) &= \operatorname{Im} \int_{\Omega} \varphi(x) \overline{u}(t,x) \Delta u(t,x) \, dx \\ V''(t) &= 2 \int_{\Omega} (H(\varphi) \nabla u | \nabla u)(t,x) \, dx \\ &+ \left(\frac{2}{p+1} - 1 \right) \int_{\Omega} \Delta \varphi \cdot |u|^{p+1}(t,x) \, dx \\ &- \frac{1}{2} \int_{\Omega} \Delta^2 \varphi \cdot |u|^2(t,x) \, dx \\ &- \int_{\partial \Omega} |\nabla u(t,x) \cdot \vec{n}(x)|^2 \nabla \varphi(x) \cdot \vec{n}(x) \, dx \end{split}$$

where $\vec{n}(x)$ is the outer normal at $x \in \partial \Omega$ (Ω is supposed to be smooth).

PROOF. The fact that $V \in C^2$ is straightforward, but for the sake of completeness we sketch here the proof. As $\varphi \in C^4_c(\mathbf{R}^N)$ and $u \in C^1([-T,T],L^2(\Omega))$ it is clear that $V \in C^1([-T,T])$ and

$$V'(t) = \operatorname{Re} \int_{\Omega} \varphi \overline{u}(t, x) u_t(t, x) dx$$

but by (1.1) $u_t = -i\Delta u - i|u|^{p-1}u$ and hence (denoting by $\langle \cdot, \cdot \rangle$ the duality H^{-1}, H_0^1):

$$V'(t) = \operatorname{Im}\langle \Delta u(t), \varphi \overline{u}(t) \rangle$$

Now, for $h \in \mathbf{R}$, $h \neq 0$, we have

(2.10)
$$V'(t+h) - V'(t) = \operatorname{Im}\langle \Delta u(t+h), \varphi[\overline{u}(t+h) - \overline{u}(t)] \rangle + \operatorname{Im}\langle \Delta (u(t+h) - u(t)), \varphi \cdot \overline{u}(t) \rangle$$

or, equivalently,

$$(2.11) V'(t+h) - V'(t) = \operatorname{Im}\langle \Delta(u(t+h) - u(t)), \varphi[\overline{u}(t+h) - \overline{u}(t)] \rangle$$

$$+ 2\operatorname{Im} \int_{\Omega} \nabla \varphi \cdot \nabla \overline{u}(t)[u(t+h) - u(t)] dx$$

$$+ \operatorname{Im} \int_{\Omega} \Delta \varphi \cdot \overline{u}(t)[u(t+h) - u(t)] dx.$$

The first term in (2.11) can be written as

(2.12)
$$\operatorname{Im}\langle \Delta(u(t+h)-u(t)), \varphi[\overline{u}(t+h)-\overline{u}(t)]\rangle \\ = -\operatorname{Im}\int_{\Omega} [\overline{u}(t+h)-\overline{u}(t)]\nabla\varphi\cdot\nabla(u(t+h)-u(t))\,dx,$$

and using the fact that $u\in C^1([-T,T],L^2(\Omega))$ and $u\in C([-T,T],H^1_0(\Omega))$, one sees that by (2.11), (2.12) $\lim_{h\to 0}\frac{1}{h}[V'(t+h)-V'(t)]$ exists and

$$(2.13) \hspace{1cm} V''(t) = 2 \operatorname{Im} \int_{\Omega} \nabla \varphi \cdot \nabla \overline{u}(t) \cdot u_t(t) \, dx + \operatorname{Im} \int_{\Omega} \Delta \varphi \cdot \overline{u}(t) u_t(t) \, dx.$$

This identity proves that $V \in C^2([-T, T])$.

In the sequel, for the sake of simplicity we drop the subscript Ω , the variable t and set

$$(2.14) \hspace{3.1em} A_1 := \operatorname{Im} \int \nabla \varphi \cdot \nabla \overline{u} \cdot u_t \, dx,$$

$$(2.15) A_2 := \operatorname{Im} \int \Delta \varphi \cdot \overline{u} \cdot u_t \, dx$$

(so $V'' = 2A_1 + A_2$). By (1.1) one has $u_t = -i\Delta u - i|u|^{p-1}u$, and we can study A_1, A_2 .

For A_2 : an integration by parts give

$$A_{2} = -\operatorname{Re} \int \Delta \varphi \cdot |u|^{p+1} dx + \operatorname{Re} \int \Delta \varphi \cdot |\nabla u|^{2} dx + \operatorname{Re} \int \overline{u} \nabla u \cdot \nabla (\Delta \varphi) dx.$$

But Re $\overline{u}\nabla u = \frac{1}{2}\nabla(|u|^2)$ and hence

$$(2.16) \quad A_2 = -\operatorname{Re} \int \Delta \varphi |u|^{p+1} dX + \operatorname{Re} \int \Delta \varphi \cdot |\nabla u|^2 dx - \frac{1}{2} \int \Delta^2 \varphi \cdot |u|^2 dx.$$

For A_1 : using (1.1) we have by integration by parts

$$A_{1} = -\operatorname{Re} \int (\nabla \varphi \cdot \nabla \overline{u}) \Delta u \, dX - \operatorname{Re} \int \nabla \varphi \cdot \nabla u \cdot |u|^{p-1} u \, dx,$$

$$(2.17) \qquad A_{1} = -\operatorname{Re} \int (\nabla \varphi \cdot \nabla \overline{u}) \Delta u \, dx - \frac{1}{p+1} \int \nabla \varphi \cdot \nabla (|u|^{p+1}) \, dx,$$

$$A_{1} = -\operatorname{Re} \int (\nabla \varphi \cdot \nabla \overline{u}) \Delta u \, dx + \frac{1}{p+1} \int \Delta \varphi \cdot |u|^{p+1} \, dx.$$

On the other hand

$$-\operatorname{Re}\int (\nabla \varphi, \nabla \overline{u}) \Delta u \, dx = B_1 + B_2 + B_3$$

where

(2.18)
$$B_1 := -\operatorname{Re} \int_{\partial \Omega} (\nabla \varphi \cdot \nabla u) (\nabla \overline{u} \cdot \vec{n}) \, dx,$$

$$(2.19) \hspace{1cm} B_2 := \operatorname{Re} \sum_{1 \leq k \leq N} \int_{\Omega} \partial_k \varphi(\nabla \overline{u} \cdot \partial_k \nabla u) \, dx,$$

$$B_3 := \operatorname{Re} \sum_{1 \leq k \leq N} \int_{\Omega} \partial_k u(\nabla \overline{u} \cdot \partial_k \nabla \varphi) \, dx.$$

First note that by (2.8), B_3 can be written

(2.20)
$$B_3 = \int_{\Omega} (H(\varphi) \nabla u | \nabla u) \, dx.$$

We remark also that $\operatorname{Re} \nabla \overline{u} \cdot \partial_k \nabla u = \frac{1}{2} \partial_k |\nabla u|^2$ and hence

(2.21)
$$B_2 = \int_{\Omega} \nabla \varphi \cdot \nabla \left(\frac{1}{2} |\nabla u|^2\right) dx, \\ B_2 = \frac{1}{2} \int_{\partial \Omega} (\nabla \varphi \cdot \vec{n}) |\nabla u|^2 dx - \frac{1}{2} \int_{\Omega} \Delta \varphi |\nabla u|^2 dx.$$

Concerning B_1 , note that $u|_{\partial\Omega}=0$ and hence on $\partial\Omega \nabla u=(\nabla u\cdot\vec{n})\vec{n}$: this yields

$$B_1 = -\int_{\partial\Omega} (
abla arphi \cdot ec{n}) |
abla u|^2 dx.$$

Finally using this and (2.21), (2.20) we get

$$A_{1} = -\frac{1}{2} \int_{\partial \Omega} (\nabla \varphi \cdot \vec{n}) |\nabla u|^{2} dx - \frac{1}{2} \int_{\Omega} \Delta \varphi |\nabla u|^{2} dx + \int_{\Omega} (H(\varphi) \nabla u |\nabla u| dx + \frac{1}{p+1} \int_{\Omega} \Delta \varphi |u|^{p+1} dx$$

and this, together with (2.16), gives the lemma. \Box

Now for the proof of the propositions of $\S 1$, we have to choose an appropriate function φ .

3. Proof of Proposition (1.2) and (1.7). Without loss of generality we may assume that Ω is starshaped with respect to $0 \in \Omega$, i.e.

$$(3.1) \forall x \in \partial \Omega, x \cdot \vec{n}(x) \ge 0.$$

First let $\psi \in C_c^{\infty}(\mathbf{R})$ be such that

$$\psi(-y) = \psi(y) \qquad \forall y \in \mathbf{R}, \ \psi(y) = 1 \quad \text{for } |y| \le 1, \ \psi(y) = 0 \quad \text{for } |y| \ge 2, \ \psi'(y) \le 0 \qquad \forall y \in \mathbf{R}_+,$$

and define $f_m(x) := \psi(|x|/m)$ for $x \in \mathbf{R}^N$ and $m \ge 1$. Next, for a solution u such as in Proposition (1.2), define

$$V(t) := rac{1}{4} \int_{\Omega} |x|^2 |u(t,x)|^2 \, dx$$

and

$$V_m(t) := rac{1}{4} \int_{\Omega} |x|^2 f_m(x) |u(t,x)|^2 \, dx.$$

By Lemma 2.9 we know that

$$\begin{split} V_m''(t) &= 2 \int_{\Omega} (H(\varphi_m) \nabla u | \nabla u)(t, x) \, dx \\ &+ \left(\frac{2}{p+1} - 1 \right) \int_{\Omega} \Delta \varphi_m |u|^{p+1}(t, x) \, dx \\ &- \frac{1}{2} \int_{\Omega} \Delta^2 \varphi_m |u|^2(t, x) \, dx \\ &- \int_{\partial \Omega} |\nabla u(t, x)|^2 \nabla \varphi_m(x) \cdot \vec{n}(x) \, dx \end{split}$$

where

$$\varphi_m := \tfrac{1}{2} |x|^2 f_m(x)$$

and by the above hypotheses on φ_m and u one sees easily that $(V_m'')_m$ converges in $L^1([-T,T])$ to

(3.2)
$$W(t) := 2 \int_{\Omega} |\nabla u|^{2}(t,x) dx + \left(\frac{2}{p+1} - 1\right) N \int_{\Omega} |u|^{p+1}(t,x) dx - \int_{\partial \Omega} |\nabla u(t,x)|^{2} x \cdot \vec{n}(x) dx$$

(here we use the fact that if $\varphi(x) := \frac{1}{2}|x|^2$, $(H(\varphi)\nabla u|\nabla u) = |\nabla u|^2$ and $\Delta \varphi = N$). On the other hand $V_m(t) \uparrow V(t)$ as $m \to \infty$ and

$$V'_{m}(t) = \operatorname{Im} \int_{\Omega} \varphi_{m} \overline{u}(t, x) \Delta u(t, x) dx$$

$$= \operatorname{Im} \int_{\Omega} \overline{u}(t, x) \nabla \varphi_{m}(x) \cdot \nabla u(t, x) dx.$$

$$(3.3) \qquad V_{m}(t) = V_{m}(0) + V'_{m}(0) \cdot t + \int_{0}^{t} (t - s) V''_{m}(s) ds,$$

$$V'_{m}(0) \to -\operatorname{Im} \int_{\Omega} \overline{u}_{0}(x) x \cdot \nabla u_{0}(x) dx,$$

$$V(t) = V(0) - \left(\operatorname{Im} \int_{\Omega} \overline{u}_{0}(x) x \cdot \nabla u_{0}(x) dx \right) t + \int_{0}^{t} (t - s) W(s) ds.$$

But by (2.4) and (3.1) we have

$$W(t) \le 4E(u_0) + \left(\frac{2N+4}{p+1} - N\right) \int_{\Omega} |u(t,x)|^{p+1}$$

 $\le 4E(u_0) \le 0 \text{ if } p \ge 1 + 4/N$

and hence

$$(3.4) 0 < V(t) \le V(0) - \left(\operatorname{Im} \int_{\Omega} \overline{u}_0 x \cdot \nabla u_0(x) \, dx \right) t + 2E(u_0) \cdot t^2.$$

Now it is clear that if u_0 satisfies (1.4) or (1.5) the solution u(t) cannot exist globally (notice that if $E(u_0) < 0$, the blow-up occurs for some $T_* > 0$ and also for some $T_{**} < 0$). This proves Proposition (1.2).

The proof of Proposition (1.7) is the same as above by choosing (we may suppose a=0)

$$\varphi(x) := \frac{1}{2}(|x_{j_1}|^2 + \cdots + |x_{j_k}|^2)$$

and then $\Delta \varphi = k$, $\Delta^2 \varphi = 0$

$$(H(\varphi)\nabla u|\nabla u) = |\partial_{j_1}u|^2 + \dots + |\partial_{j_k}u|^2 \le |\nabla u|^2,$$

 $\nabla \varphi \cdot \vec{n} = x_{j_1} \cdot n_{j_1}(x) + \dots + x_{j_k} \cdot n_{j_k}(x) \ge 0,$
 $W(t) \le 4E(u_0) + \left(\frac{2k+4}{p+1} - k\right) \int_{\Omega} |u(t,x)|^{p+1} dx$

(W is defined in 3.2). Now if $p \ge 1 + 4/k$ one has $W(t) \le 4E(u_0)$ and hence one observes that (3.4) holds and the proof of Proposition 1.7 is over.

4. Proof of Proposition (1.6). Without loss of generality one can assume that $x_0 = 0$ and r = 1. Thus

$$\partial\Omega = \{x \in \mathbf{R}^N; |x| = 1\} \cup \partial\omega$$

(note that $\partial \omega \cap \{x; |x| = 1\} = \emptyset$), and denoting by $\vec{n}(x)$ the outward normal at $x \in \partial \Omega$ on has

(4.1)
$$\begin{cases} \text{if } |x| = 1 & \vec{n}(x) = -x, \\ \text{if } x \in \partial \omega & \vec{n}(x) \cdot x \ge 0. \end{cases}$$

Now define for $x \in \overline{\Omega}$

(4.2)
$$\begin{cases} \varphi(x) := \frac{1}{2}|x|^2 + \frac{1}{(N-2)|x|^{N-2}} & \text{if } N \ge 3, \\ \varphi(x) := \frac{1}{2}|x|^2 - \log|x| & \text{if } N = 2, \end{cases}$$

(the case N=1 is already contained in Proposition (1.2)), and

$$(4.3) V(t) := \frac{1}{2} \int_{\Omega} \varphi(x) |u(t,x)|^2 dx.$$

As in §3, consider $f_m(x) := \psi(|x|/m)$ where $\psi \in C_c^{\infty}(\mathbf{R})$ and

$$V_m(t) := rac{1}{2} \int_{\Omega} arphi(x) f_m(x) |u(t,x)|^2 dx.$$

In the same fashion, one can check easily that $(V''_m)_m$ converges in $L^1([-T,T])$ to

$$(4.4) \hspace{3cm} W(t) := 2 \int_{\Omega} (H(\varphi) \nabla u | \nabla u)(t,x) \, dx$$

$$+ \left(\frac{2}{p+1} - 1\right) N \int |u|^{p+1}(t,x) \, dx$$

$$- \int_{\partial \Omega} |\nabla u(t,x) \cdot \vec{n}(x)|^2 \nabla \varphi \cdot \vec{n}(x) \, dx$$

(here we use the fact that $\Delta \varphi = N$).

But $\nabla \varphi = (1 - |x|^{-N})X$ and

if $x \in \partial \Omega |x| = 1$ then $\nabla \varphi \cdot \vec{n}(x) = 0$;

if $x \in \partial \omega$ then $\nabla \varphi(x) \cdot \vec{n}(x) \geq 0$.

This means that

$$(4.5) \forall x \in \partial \Omega \nabla \varphi(x) \cdot \vec{n}(x) \geq 0.$$

On the other hand

$$\partial_{kj}^2 \varphi = (1 - |x|^{-N})\delta_{kj} + N|x|^{-(N+2)}x_jx_k$$

and

(4.6)
$$(H(\varphi)\nabla u|\nabla u) \le |\nabla u|^2 + (N-1)|x|^{-N}|\nabla u|^2$$

$$\le N|\nabla u|^2 \quad \text{since } |x| \ge 1.$$

Hence (4.5) and (4.6) yield

$$egin{align} W(t) & \leq N \left(2 \int_{\Omega} |
abla u|^2 + \left(rac{2}{p+1} - 1
ight) \int |u|^{p+1}
ight) \ & \leq N \left(4E(u_0) + \left(rac{6}{p+1} - 1
ight) \int |u|^{p+1}
ight), \ W(t) & \leq 4NE(u_0) \quad ext{(since } p \geq 5). \end{cases}$$

So we get

$$0 < V(t) \le V(0) + V'(0)t + 2NE(u_0)t^2$$

and again this proves Proposition (1.6), noting that (when $E(u_0) \ge 0$)

$$V'(0) = \operatorname{Im} \int \varphi \overline{u}_0 \Delta u_0 = -\operatorname{Im} \int_{\Omega} (\nabla \varphi \cdot \nabla u_0) \overline{u}_0(x) \, dx. \quad \Box$$

(4.7) REMARK. When Ω is starshaped and $N \leq 2$, p < 1 + 4/N the solution of (1.1) satisfying (1.3) is global in time, no matter what the sign of $E(u_0)$ is. When Ω is not starshaped and $1 + 4/N \leq p \leq 5$ the situation is somewhat complicated.

Consider for instance $\Omega = B(0,1)^c$ where $B(0,1) = \{x \in \mathbf{R}^N, |x| \le 1\}, N \ge 2$.

If u_0 is spherically symmetric with respect to the origin 0, it is clear that the solution u(t) is spherically symmetric for each t. On the other hand if $\varphi \in C_c^1(\Omega)$ is spherically symmetric, then for any $\sigma \in \mathbf{R}^N$ with $|\sigma| = 1$

$$egin{aligned} |arphi(r\sigma)|^2 &= -2\int_r^\infty arphi(z\sigma)\sigma\cdot
abla arphi(z\sigma)\,dx \ &\leq 2\left(\int_1^\infty z^{-(N-1)}|arphi(z\sigma)|^2\,dz
ight)^{1/2} \left(\int_1^\infty z^{N-1}|
abla arphi(z\sigma)|^2\,dz
ight)^{1/2} \end{aligned}$$

and this yields

(4.8)
$$\|\varphi\|_{L^{\infty}(\Omega)} \le C \|\varphi\|_{L^{2}}^{1/2} \|\nabla\varphi\|_{L^{2}}^{1/2}.$$

Now if u(t) is a spherically symmetric solution of (1.1)

$$\|\nabla u(t)\|^{2} \leq 2E(u_{0}) + \frac{2}{p+1} \int |u(t)|^{p+1}$$

$$\leq 2E(u_{0}) + C\|u(t)\|_{L^{\infty}}^{p+1} \|u(t)\|_{L^{2}}^{2}.$$

But $||u(t)||_{L^2} = ||u_0||_{L^2} = C^{te}$ and hence by (4.8) we get

$$\|\nabla u(t)\|_{L^2}^2 \le C + C\|\nabla u(t)\|_{L^2}^{(p-1)/2}.$$

So if p < 5 then $\|\nabla u(t)\|_{L^2} \le C^{te}$ and using again (4.8) we get a uniform estimate for $\|u(t)\|_{L^{\infty}}$ and this proves that the spherically symmetric solutions of (1.1) are global in time, whatever $E(u_0)$ can be.

Consider now, for the sake of simplicity, the case where N=2, $\Omega=B(0,1)^c$ and $1+4/N\leq p<5$. We are going to construct a solution of (1.1) which blows up in finite time.

Let
$$\Omega_+ := \{(x, y) \in \mathbb{R}^2, x > 0, y > 0, x^2 + y^2 > 1\}.$$

It is clear that Ω_+ is starshaped with respect to the point (1,1). Now let $v_0 \in C_0^{\infty}(\Omega_+)$ be such that $E(v_0) < 0$. By Proposition (1.2) the solution v(t) of (1.1) with $v(t) \in H_0^1(\Omega_+)$ and $v(0) = v_0$ blows up in finite time. If one considers u(t) defined as

$$u(t,x,y) = egin{cases} v(t,x,y) & ext{if } x \geq 0, \ y \geq 0, \ -v(t,x,y) & ext{if } x \geq 0, \ y \leq 0, \ v(t,-x,-y) & ext{if } x \leq 0, \ y \leq 0, \ -v(t,-x,y) & ext{if } x \leq 0, \ y \geq 0, \end{cases}$$

then u(t) is a solution of (1.1) $u(t) \in H_0^1(\Omega)$ and blows up in finite time.

(4.9) REMARK. If one considers other boundary conditions than Dirichlet (that is other than $u(t) \in H_0^1(\Omega)$), using (1.2) one can construct solutions of (1.1) which blow up in finite time. Indeed consider, for example, the case where N=1, and the periodic boundary condition on $\Omega =]-1,+1[$, i.e.

$$u(t,-1) = u(t,+1), \qquad u_x(t,-1) = u_x(t,+1).$$

If one takes an initial data u_0 such that

$$u_0(-x) = -u_0(x) \quad \forall x \in [-1, +1], \qquad u_0 \in H_0^1(] - 1, +1[)$$

then the solution of (1.1) with $u(0,x) = u_0(x)$ satisfies

$$u(t, -x) = -u(t, x) \quad \forall x \in [-1, +1],$$

 $u(t, -1) = u(t, +1) = 0, \quad u_x(t, -1) = u_x(t, 1).$

So if $p \ge 5$ and

$$\frac{1}{2} \int_{-1}^{+1} |u_{0x}|^2 - \frac{1}{p+1} \int_{-1}^{+1} |u_0|^{p+1} < 0,$$

the periodic solution u(t) blows up in finite time (because it does so in $H_0^1([-1, +1])$ by Proposition (1.2)).

For the Neuman boundary condition (i.e. for instance $\Omega =]0,2[$ and $u_x(t,0) = u_x(t,2) = 0)$ consider an initial data $v_0 \in H_0^1(-1,+1)$ such that

$$\forall x \in [-1, +1] \quad v_0(x) = v_0(-x)$$

 $p \geq 5$ and

$$\frac{1}{2} \int_0^1 |v_{0x}|^2 \, dx - \frac{1}{p+1} \int_0^1 |v_0|^{p+1} \, dx < 0.$$

Then the solution $v(t) \in H_0^1(]-1,+1[)$ with $v(0)=v_0$ blows up in finite time and satisfies

$$v(t,x) = v(t,-x) \quad \forall x \in [-1,+1].$$

Hence $v_x(t,0) = 0$, and if u(t) is defined as

$$u(t,x) = \left\{ egin{array}{ll} v(t,x) & ext{for } 0 \leq x \leq 1, \\ -v(t,2-x) & ext{for } 1 \leq x \leq 2, \end{array}
ight.$$

u(t) is a solution of (1.1) with $u(t) \in H^1(]0,2[), u_x(t,0) = u_x(t,2) = 0$, and u(t) blows up in finite time.

REFERENCES

- Th. Cazenave, Equations de Schrödinger non-linéaire en dimension deux, Proc. Roy. Soc. Edinburgh. 88 (1979), 327-346.
- J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I: The Cauchy problem, general case, J. Funct. Anal. 32 (1979), 33-71.
- R. T. Glassey, On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation, J. Math. Phys. 18 (1977), 1794-1797.
- H. Berestycki and Th. Cazenave, Instabilité des états stationnaries dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris 293 (1983), 489-492.
- 5. M. I. Weinstein, On the structure and formation of singularities in solutions to non-linear dispersive evolution equations, (preprint).
- H. Brezis and Th. Gallouet, Nonlinear Schrödinger evolution equations, Nonlinear Anal. 4 (1980), 677-681.
- C. Sulem, P. L. Sulem and A. Patera, Numerical simulation of singular-solutions to the two-dimensional cubic Schrödinger equation, Comm. Pure Appl. Math. 37 (1984), 755– 778
- C. Sulem, P. L. Sulem and H. Frisch, Tracing complex singularities with spectral methods,
 J. Comp. Phys. 50 (1983), 138-161.

LABORATOIRE D'ANALYSE NUMÉRIQUE, UNIVERSITÉ P. & M. CURIE, COULOIR 55-65, 5ÈME ETAGE, 4, PLACE JUSSIEU, 75230-PARIS CEDEX, FRANCE

Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912