NONHARMONIC FOURIER SERIES AND SPECTRAL THEORY

HAROLD E. BENZINGER

ABSTRACT. We consider the problem of using functions $g_n(x) := \exp(i\lambda_n x)$ to form biorthogonal expansions in the spaces $L^p(-\pi,\pi)$, for various values of p. The work of Paley and Wiener and of Levinson considered conditions of the form $|\lambda_n - n| \le \Delta(p)$ which insure that $\{g_n\}$ is part of a biorthogonal system and the resulting biorthogonal expansions are pointwise equiconvergent with ordinary Fourier series. Norm convergence is obtained for p=2. In this paper, rather than imposing an explicit growth condition, we assume that $\{\lambda_n - n\}$ is a multiplier sequence on $L^p(-\pi,\pi)$. Conditions are given insuring that $\{g_n\}$ inherits both norm and pointwise convergence properties of ordinary Fourier series. Further, λ_n and g_n are shown to be the eigenvalues and eigenfunctions of an unbounded operator Λ which is closely related to a differential operator, $i\Lambda$ generates a strongly continuous group and $-\Lambda^2$ generates a strongly continuous semigroup. Half-range expansions, involving $\cos \lambda_n x$ or $\sin \lambda_n x$ on $(0,\pi)$ are also shown to arise from linear operators which generate semigroups. Many of these results are obtained using the functional calculus for well-bounded operators.

1. Introduction. For n an integer, let $\{\lambda_n\}$ be a sequence of pairwise distinct complex numbers. For $-\pi \le x \le \pi$ let

$$g_n(x) = e^{i\lambda_n x}, \quad \varphi_n(x) = e^{inx},$$

and for integrable functions f, g let

(1.2)
$$(f,g) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)\bar{g}(x) dx.$$

Let $1 \le p < \infty$ and $p^{-1} + q^{-1} = 1$. For fixed p, assume there exists a sequence $\{h_n\}$ in L^q $(= L^q(-\pi, \pi))$ such that

$$(1.3) (g_n, h_m) = \delta_{nm}.$$

Then for f in L^p , define the partial sum operator

(1.4)
$$\mathscr{S}_{N}(x;f) = \sum_{n=-N}^{N} (f,h_{n})g_{n}(x).$$

The partial sum operator for ordinary Fourier series is

(1.5)
$$S_N(x;f) = \sum_{n=-N}^{N} \hat{f}_n \varphi_n(x), \quad \hat{f}_n = (f,\varphi_n).$$

Received by the editors September 1, 1985.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 42C15, 42A45, 47A60; Secondary 34B25.

The problem of nonharmonic Fourier series is to find conditions on $\{\lambda_n\}$ so that for some p, the dual sequence $\{h_n\}$ exists in L^q , and for all f in L^p , the partial sum operators $\mathcal{S}_N(x; f)$ have the same properties as the operators $S_N(x; f)$, with respect to norm behavior, pointwise behavior, or both.

In this paper we shall consider these questions, subject to the basic assumption that the sequence $\{\delta_n\}$, defined by

$$\delta_n = \lambda_n - n,$$

is a multiplier sequence on L^p for some fixed but arbitrary $p, 1 \le p < \infty$. This means that there is a bounded linear operator $\mathcal{M}: L^p \to L^p$ such that for each f in L^p ,

$$(1.7) \qquad (\mathcal{M}f)_{n}^{\hat{}} = \delta_{n}\hat{f}_{n}.$$

Another significant property of the sequences $\{n\}$ and $\{\varphi_n\}$ is that they contain the eigenvalues and eigenfunctions of the differential operator Λ_0 defined by

$$\Lambda_0 u = -iu', \quad (u' = du/dx),$$

with domain $\mathcal{D}(\Lambda_0)$ consisting of all absolutely continuous functions u such that u' is in L^p and such that

$$(1.9) u(-\pi) = u(\pi).$$

Thus

$$\Lambda_0 \varphi_n = n \varphi_n.$$

For p=2 the operator Λ_0 is selfadjoint. For $1 the spectral theory of <math>\Lambda_0$ is embodied in the statement that for some complex number λ in the resolvent set of Λ_0 , the resolvent operator $R(\lambda, \Lambda_0)$ is well-bounded. See [2] for the definition and applications to differential operators. We shall give conditions under which there exists a linear operator Λ such that

$$\Lambda g_n = \lambda_n g_n,$$

and such that the resolvent operator is well-bounded, $1 . This is then used to study the properties of half-range expansions, i.e., expansions on <math>L^p(0,\pi)$ (or on $L^p(-\pi,0)$) using the sequence $\{\cos \lambda_n x\}$ or $\{\sin \lambda_n x\}$. In particular, we show that the operators associated with these expansions generate strongly continuous semi-groups.

The study of nonharmonic Fourier series was initiated by Paley and Wiener [8] and by Levinson [7]. Paley and Wiener showed that for p=2 and λ_n real, if $|\delta_n| \le 1/\pi^2$, then $\{h_n\}$ exists and for any f in $L^2(-\pi, \pi)$, the partial sums $\mathcal{S}_n(x; f)$ and $S_n(x; f)$ have the same behavior with respect to pointwise convergence:

(1.12)
$$\lim_{N \to \infty} \left[\mathscr{S}_N(x;f) - S_N(x;f) \right] = 0,$$

uniformly on each closed subinterval interior to $(-\pi, \pi)$. With respect to convergence in the norm of $L^2(-\pi, \pi)$, Paley and Wiener also showed that $\{g_n\}$ is a Riesz basis: there exists a bounded and invertible linear operator A on L^2 such that

$$(1.13) A\varphi_n = g_n,$$

and thus $\{g_n\}$ has the same norm convergence properties in L^2 as does $\{\varphi_n\}$.

The above result on pointwise convergence was generalized by Levinson, who showed that if 1 and if

$$(1.14) |\delta_p| \leqslant L < (p-1)/2p,$$

then $\{h_n\}$ exists and for any f in $L^p(-\pi,\pi)$ the partial sums $\mathscr{S}_N(x;f)$ and $S_N(x;f)$ are uniformly equiconvergent on closed intervals interior to $(-\pi,\pi)$. Levinson did not give any results on the norm convergence of \mathscr{S}_N .

The question of norm convergence was considered by Pollard in [10]. There it was shown that for 1 , if <math>r = 2p/|2 - p| and if $\{\delta_n\}$ is in l', with

then $\{g_n\}$ is a basis for L^p and there exists a bounded invertible operator $A: L^p \to L^p$ such that (1.13) holds. If p = 2 then $r = \infty$ and (1.15) becomes

$$(1.16) |\delta_n| \leqslant L < (\ln 2)/\pi.$$

This result for p = 2 had been obtained earlier by Duffin and Eachus [4].

All of these conditions on $\{\delta_n\}$, whether for pointwise convergence, norm convergence, or both, impose a limitation on $\{\delta_n\}$: in none of these conditions is $|\delta_n|$ allowed to be greater than $\frac{1}{4}$. Consider the example $\delta_n = \delta$ for all n, where δ is an arbitrary complex number. Then

$$g_n(x) = e^{i\delta x} \varphi_n(x).$$

It is a simple matter to see that even if δ is selected so that none of the above conditions are satisfied, the resulting $\{g_n\}$ satisfies all of the conclusions of the above theorems, and in fact more is true: the pointwise equiconvergence theorem holds in the larger class $L'(-\pi,\pi)$, and $\{g_n\}$ is the set of eigenfunctions of an unbounded linear operator which generates a strongly continuous bounded group of transformations on L^p , 1 , and whose square generates a strongly continuous semigroup.

The conditions given by Paley and Wiener and by Pollard imply that $\{\delta_n\}$ is a multiplier sequence, and the same clearly holds for the above example. Thus the assumption that $\{\delta_n\}$ is a multiplier sequence contains all of the previous norm results, frees the theory from explicit growth conditions, and allows the association to each sequence $\{g_n\}$ of an unbounded linear operator whose spectral theory incorporates the norm properties of $\{g_n\}$. Further, if $\{\delta_n\}$ is a multiplier sequence and if $\{g_n\}$ is a basis for L^p equivalent to $\{\varphi_n\}$, then pointwise equiconvergence is also obtained. Levinson's results are not included in this theory.

A survey of nonharmonic Fourier series is in [13] and other recent results on norm behavior can be found in [14, 15].

2. Norm convergence.

2.1. DEFINITION. The sequences $\{g_n\}, \{\varphi_n\}$ are equivalent in L^p if there exists a bounded linear operator $A: L^p \to L^p$, with bounded inverse, such that

$$(2.2) A\varphi_n = g_n.$$

Note that the definition applies for p = 1, where $\{\varphi_n\}$ is not a basis. The invertibility of A is sufficient for the existence of the dual sequence $\{h_n\}$ in L^q :

$$(2.3) h_n = A^{-1} * \varphi_n.$$

2.4. LEMMA. If $\{g_n\}$ and $\{\varphi_n\}$ are equivalent, then

$$(2.5) \mathcal{S}_N = AS_N A^{-1}.$$

PROOF. From (2.2) and (2.3) we have $(f, h_n)g_n = A(A^{-1}f, \varphi_n)\varphi_n$.

2.6. THEOREM. If $\{g_n\}$ is equivalent to $\{\varphi_n\}$ in L^p , 1 , then

$$\lim_{N \to \infty} \|\mathscr{S}_N f - f\|_p = 0.$$

If $\{g_n\}$ is equivalent to $\{\varphi_n\}$ in L^1 , then the arithmetic means of $\mathscr{S}_N f$ converge to f in the norm of L^1 .

PROOF. We have $\mathcal{S}_N - I = A[S_N - I]A^{-1}$ and

$$\frac{1}{N+1} \sum_{n=0}^{N} \mathscr{S}_{N} - I = A \left[\frac{1}{N+1} \sum_{n=0}^{N} S_{n} - I \right] A^{-1}.$$

Thus \mathcal{S}_N inherits the properties of S_N .

Let $X: L^p \to L^p$ be the linear operator defined by

$$(2.7) (Xf)(x) = xf(x).$$

Note that $||X|| = \pi$.

2.8. THEOREM. If $\{\delta_n\}$ is a multiplier sequence for some L^p , $1 \le p < \infty$, and if A is the linear operator defined by

(2.9)
$$A = \sum_{k=0}^{\infty} \frac{(iX)^k \mathcal{M}^k}{k!},$$

then $A\varphi_n = g_n$. (It is not claimed that A is invertible.)

PROOF. If there exists an operator A such that $A\varphi_n = g_n$, then for any trigonometric polynomial

$$t(x) = \sum_{n=-N}^{N} \hat{t}_n \varphi_n(x)$$

we must have

(2.10)
$$At = \sum_{n=-N}^{N} \hat{t}_n g_n.$$

Now $g_n(x) = \varphi_n(x)e^{i\delta_n x}$, so

$$At = \sum_{n=-N}^{N} \hat{t}_n \varphi_n \sum_{k=0}^{\infty} \frac{(ix)^k \delta_n^k}{k!} = \sum_{k=0}^{\infty} \frac{(ix)^k}{k!} \sum_{n=-N}^{N} \delta_n^k \hat{t}_n \varphi_n.$$

Since $\mathcal{M}^k t = \sum_{-N}^N \delta_n^k \hat{t}_n \varphi_n$, we have

$$At = \sum_{k=0}^{\infty} \frac{\left(iX\right)^k \mathcal{M}^k}{k!} t, \quad \text{and} \quad ||At|| \leqslant e^{\pi ||\mathcal{M}||} ||t||.$$

Since the trigonometric polynomials are dense in L^p for $1 \le p < \infty$, the extension to all of L^p of the operator defined by (2.10) is the operator defined in (2.9).

2.11. THEOREM. If for some $p, 1 \le p < \infty$,

then $\{g_n\}$ is equivalent to $\{\varphi_n\}$ in L^p .

PROOF. It suffices to show that ||A - I|| < 1. From (2.9),

$$||A - I|| \le \sum_{k=1}^{\infty} \frac{||X||^k ||\mathcal{M}||^k}{k!} = e^{\pi ||\mathcal{M}||} - 1.$$

Then (2.12) follows from the condition $e^{\pi ||\mathcal{M}||} - 1 < 1$.

This theorem contains the theorems of Duffin and Eachus and of Pollard. Using the Fredholm alternative to invert operators of the form I - K, where K is compact, along with a representation of the dual sequence given by Levinson [7, Lemma 16.2], condition (1.15) of Pollard's theorem can be eliminated.

- 2.13. THEOREM. Let $1 , <math>p \neq 2$, and let r = 2p/|2 p|. Then $\{g_n\}$ and $\{\varphi_n\}$ are equivalent if
 - (i) $\lambda_n \neq \lambda_m$ for $n \neq m$;
 - (ii) $\{\delta_n\}$ is in l^r .

The proof follows some preliminary material.

- 2.14. Lemma. Let $\{u_n\}$ be a sequence in a Banach space $\mathscr B$ and let $\{v_n\}$ be a sequence in a dual space $\mathscr B^*$ such that $(u_n,v_m)=\delta_{nm}$. Let $\{g_n\}$ be a sequence in $\mathscr B$ such that
 - (1) $g_n = u_n$ except for n in a finite set S;
 - (2) $\det((g_n, v_m))_{n,m \text{ in } S} \neq 0.$

Then there exists a bounded, invertible operator $A: \mathcal{B} \to \mathcal{B}$ such that $Au_n = g_n$.

PROOF. For f in \mathcal{B} define an operator K by

$$Kf = \sum_{n \in S} (f, v_n) (u_n - g_n),$$

and let A = I - K. Then K is compact and $Au_n = g_n$ for all n. To show that A is invertible it suffices to show (by the Fredholm alternative) that Af = 0 implies f = 0. We have Af = 0 if and only if f = Kf:

(2.15)
$$f = \sum_{n \in S} (f, v_n) (u_n - g_n).$$

Then for m in S,

$$\sum_{n \in S} (f, v_n)(g_n, v_m) = 0.$$

From condition (2), $(f, v_n) = 0$ for all n in S, and from (2.15), f = 0.

For Levinson's representation of h_n , we need the Fourier transform \mathcal{F} and its inverse \mathcal{F}^{-1} defined by

(2.16)
$$(\mathscr{F}f)(\lambda) = \int_{-\infty}^{\infty} f(x)e^{-i\lambda x} dx \quad (f \text{ defined on } (-\infty, \infty)),$$

(2.17)
$$(\mathscr{F}^{-1}F)(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\lambda) e^{i\lambda x} d\lambda.$$

For the sequence $\{\lambda_n\}$, let

(2.18)
$$G(\lambda) = (\lambda - \lambda_0) \prod_{n=1}^{\infty} \left(1 - \frac{\lambda}{\lambda_n}\right) \left(1 - \frac{\lambda}{\lambda_{-n}}\right).$$

Questions of convergence will be considered below. For $1 , let <math>p^{-1} + q^{-1} = 1$, $s = \min(p, q)$, $s^{-1} + t^{-1} = 1$. L^p refers to the interval $(-\pi, \pi)$ and $L^p(\mathbf{R})$ refers to $(-\infty, \infty)$.

2.19. Theorem (Levinson [7; pp. 48–58]). Let 1 . Assume

$$(2.20) |\delta_n| \leqslant L < (s-1)/2s.$$

Then the infinite product (2.18) converges to an entire function $G(\lambda)$ such that if

$$(2.21) H_n(\lambda) = G(\lambda) / [(\lambda - \lambda_n) G'(\lambda_n)],$$

then

- (i) H_n is in $L^s(\mathbf{R})$ for λ restricted to \mathbf{R} ,
- (ii) $(\mathcal{F}^{-1}H_n)(x)$ is in $L^t(\mathbf{R})$, and its support is contained in $(-\pi,\pi)$,
- (iii) the dual sequence $\{h_n\}$ is given by

$$\bar{h}_{n}(x) = 2\pi (\mathscr{F}^{-1}H_{n})(x), \quad -\pi < x < \pi,$$

and

(2.23)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i\lambda x} \overline{h}_n(x) dx = H_n(\lambda), \quad \lambda \in \mathbb{C}.$$

- 2.24. Remarks. Levinson's theorems are stated for $1 , but using the containment relations for <math>L^p$ spaces on finite intervals, the above extension of the range of p holds. Also, what is denoted by h_n in Levinson's work is $2\pi \bar{h}_n$ in our notation.
- 2.25. Lemma. For a finite set S of indices, let $\{\lambda_n\}$, $\{\mu_n\}$, $n \in S$, be two sets of complex numbers such that no two numbers are the same. Then

$$M := \det((\lambda_n - \mu_m)^{-1})_{n,m \in S} \neq 0.$$

PROOF. Let $p(\lambda) = \prod_{m \in S} (\lambda - \mu_m)$ and let $p_i(\lambda) = p(\lambda)/(\lambda - \mu_i)$. Then

$$\frac{1}{\lambda_n - \mu_m} = \frac{p_m(\lambda_n)}{p(\lambda_n)}, \qquad (p(\lambda_n) \neq 0).$$

Thus

$$\left[\prod_{n=1}^{\infty} p(\lambda_n)\right] M = \det(p_m(\lambda_n)).$$

Now each p_m is a polynomial of degree |S|-1, where |S| is the cardinality of S, and all zeros of $p_m(\lambda)$ are accounted for by $\lambda = \mu_i$, where $i \in S$, $i \neq m$. Since $\lambda_n \neq \mu_i$, we have $M \neq 0$.

PROOF OF THEOREM 2.13. There exists a finite set S of indices n such that $\lambda_n \neq n$ for $n \in S$, $|\delta_n| \leq L < (s-1)/2s$, and

$$\left(\sum_{n \notin S} |\delta_n|^r\right)^{1/r} < (\ln 2)/\pi.$$

Let $\mu_n = m$ for $n \in S$, $\mu_n = \lambda_n$ for $n \notin S$, and let $u_n(x) = e^{i\mu_n x}$. Since $\{\mu_n - m\}$ satisfies Pollard's theorem (or Theorem 2.11), we see that $\{u_n\}$ is equivalent to $\{\varphi_n\}$. Let $\{v_n\}$ denote the dual sequence. Since $\{\mu_m - n\}$ also satisfies Levinson's condition (2.20), we have

(2.26)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i\lambda x} \bar{v}_m(x) dx = H_m(\lambda).$$

Since $\{g_n\}$ and $\{u_n\}$ differ only for $n \in S$, to show that $\{g_n\}$ and $\{u_n\}$ are equivalent it suffices to show that

$$\det((g_n, v_m))_{n,m \in S} \neq 0.$$

Using (2.26), this becomes

$$\det(H_m(\lambda_n))_{n,m\in S}\neq 0.$$

Using (2.21), this becomes

(2.27)
$$\left[\prod_{n \in S} \frac{G(\lambda_n)}{G'(\mu_n)} \right] \left[\det \left((\lambda_n - \mu_m)^{-1} \right)_{n,m \in S} \right] \neq 0.$$

Recall that $G(\lambda)$ is formed with zeros at $\{\mu_m\}$, so $G(\lambda_n) \neq 0$ for $n \in S$. Since the set $\{\lambda_n\}$ is disjoint from the set $\{\mu_n\}$ for $n \in S$, the determinant in (2.27) is not zero.

2.28 REMARK. The analogue of Theorem 2.13 for p=2 is that $|\delta_n| \le L < (\ln 2)/\pi$ for |n| sufficiently large, and, for the finitely many remaining λ_n 's, that they are pairwise distinct.

For $p \neq 2$, Theorem 2.13 requires that $\delta_n \to 0$ as $|n| \to \infty$. Using the theory of well-bounded operators, a general class of multipliers can be given for which $\delta_n \to 0$ is not necessary. A special case will yield a proof of a theorem of Kadec [6]:

THEOREM (KADEC). Let $\{\delta_n\}$ be real and assume $|\delta_n| \le L < \frac{1}{4}$. Then $\{g_n\}$ is a basis for L^2 equivalent to $\{\varphi_n\}$.

Some of the details of this theory are now presented.

2.29. DEFINITION. An arc C in the complex plane is *admissible* if it is simple, nonclosed and rectifiable:

Let S denote the length of C and let $\rho:[0,S] \to C$ denote the arc-length parameterization of C, with $b=\rho(S)$. A function $f:C\to \mathbb{C}$ is said to be absolutely continuous on C if $f\circ\rho$ is absolutely continuous on [0,S], and for such functions f, we define

(2.30)
$$|||f|||_C = |f(b)| + \int_C |df/dz| |dz|.$$

2.31. DEFINITION (RINGROSE [12, p. 634]). An operator T on a Banach space is well-bounded on C if there exists a constant K > 0 such that if p(z) is any

polynomial, then

2.33. THEOREM [12, p. 636]. If T is well-bounded on C, then for each absolutely continuous function f on C, there is a bounded linear operator f(T) such that the mapping $f \to f(T)$ is a homomorphism of AC(C) into the algebra of bounded linear operators, and

$$(2.34) ||f(T)|| \le K|||f|||_{C}.$$

If the underlying Banach space is reflexive, then there exists a family of projections $\{E(\lambda): \lambda \in C\}$ a spectral family for T, which can be used to express f(T) as a modified Riemann-Stieltjes integral [3, Chapter 17]. See also [2, Proposition 2.3], where we see that the constant K of (2.34) can be chosen to be $\sup\{\|E(\lambda)\|: \lambda \in C\}$.

For $\Delta > 0$, let

$$(2.35) T_{\Delta} = \Delta T, C_{\Delta} = \{ \Delta z : z \in C \}, E_{\Delta}(\lambda) = E(\lambda/\Delta), \lambda \in C_{\Delta}.$$

2.36. Theorem. T_{Δ} is a well-bounded operator on C_{Δ} with spectral family E_{Δ} , and for any function f which is absolutely continuous on C_{Δ} ,

$$||f(T_{\Delta})|| \leq K|||f|||_{C_{\delta}},$$

where

(2.38)
$$K = \sup\{E_{\Delta}(\lambda): \lambda \in C_{\Delta}\} = \sup\{E(\lambda): \lambda \in C\}.$$

For the proof of this theorem, see [1] for a general discussion of functions of well-bounded operators. We emphasize that the constant K for T_{Δ} in (2.37) is computable from the spectral family for T.

Multiplier transforms which are well-bounded have been studied by D. J. Ralph [11].

2.39. DEFINITION. A real sequence $\{\delta_n\}$, $-\infty < n < \infty$, is piecewise monotone if $\{\delta_n\}$ is monotone for |n| sufficiently large. A complex sequence $\{\delta_n\}$ lying on an admissible arc C is piecewise monotone if $\{\rho^{-1}(\delta_n)\}$ is piecewise monotone.

Note that the sense of monotonicity does not have to be the same for the two tails of $\{\delta_n\}$.

2.40. THEOREM [11, COROLLARY 3.2.6]. If $\{\delta_n\}$ is a piecewise monotone sequence on an admissible arc C, then $\{\delta_n\}$ is a multiplier sequence for L^p , $1 , and the associated multiplier transform <math>\mathcal M$ is well-bounded on C. Moreover, if f is absolutely continuous on C, then for any g in L^p

$$(2.41) \qquad (f(T)g)_n^{\hat{}} = f(\delta_n)\hat{g}_n.$$

The proof of the next theorem depends upon the expression (due to Kadec [6]) of $1 - e^{i\delta x}$ in the orthonormal system $\{1, \cos nx, \sin(n - \frac{1}{2})x\}$ for $n \ge 1$:

(2.42)
$$1 - e^{i\delta x} = \left(1 - \frac{\sin \pi \delta}{\pi \delta}\right) + \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{\left(-1\right)^k \delta \sin \pi \delta}{k^2 - \delta^2} \cos kx + i \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{\left(-1\right)^k \delta \cos \pi \delta}{\left(k - \frac{1}{2}\right)^2 - \delta^2} \sin\left(k - \frac{1}{2}\right)x.$$

2.43. THEOREM. Let M be a well-bounded multiplier transform on some L^p , $1 , with multiplier sequence <math>\{\delta_n\}$. Then there exists $\Delta = \Delta(\mathcal{M}, p) > 0$ such that if $\lambda_n = n + \Delta \delta_n$, then $\{g_n\}$ is a basis for L^p equivalent to $\{\varphi_n\}$.

PROOF. Let f be a trigonometric polynomial in L^p : $f = \sum_{-N}^N \hat{f}_n \varphi_n$. For such f, $Af = \sum_{-N}^N \hat{f}_n g_n$ exists, and B = I - A is defined:

$$Bf = \sum_{-N}^{N} \hat{f}_n \varphi_n [1 - e^{i\Delta\delta_n x}].$$

Using (2.42) with $\delta = \Delta \delta_n$ and then interchanging the order of summation, we have

(2.44)
$$Bf = \sum_{n=-N}^{N} \left(1 - \frac{\sin \pi \Delta \delta_{n}}{\pi \Delta \delta_{n}} \right) \hat{f}_{n} \varphi_{n}$$

$$+ \frac{2}{\pi} \sum_{k=1}^{\infty} (-1)^{k} \cos kx \sum_{n=-N}^{N} \frac{\Delta \delta_{n} \sin \pi \Delta \delta_{n}}{k^{2} - (\Delta \delta_{n})^{2}} \hat{f}_{n} \varphi_{n}$$

$$+ \frac{i2}{\pi} \sum_{k=1}^{\infty} (-1)^{k} \sin(k - \frac{1}{2}) x \sum_{n=-N}^{N} \frac{\Delta \delta_{n} \cos \pi \Delta \delta_{n}}{(k - \frac{1}{2})^{2} - (\Delta \delta_{n})^{2}} \hat{f}_{n} \varphi_{n}.$$

Define functions

$$\alpha(\delta) = 1 - \frac{\sin \pi \delta}{\pi \delta}, \quad \beta_k(\delta) = \frac{\delta \sin \pi \delta}{k^2 - \delta^2},$$
$$\gamma_k(\delta) = \frac{\delta \cos \pi \delta}{\left(k - \frac{1}{2}\right)^2 - \delta^2}, \quad k = 1, 2, \dots.$$

These functions are absolutely continuous on any admissible arc, and by Theorem 2.40, for any f in L^p ,

$$\begin{split} \alpha(\mathcal{M}_{\Delta})f &= \sum_{-\infty}^{\infty} \alpha(\Delta\delta_n)\hat{f}_n\varphi_n, \quad \beta_k(\mathcal{M}_{\Delta})f = \sum_{-\infty}^{\infty} \beta_k(\Delta\delta_n)\hat{f}_n\varphi_n, \\ \gamma_k(\mathcal{M}_{\Delta})f &= \sum_{-\infty}^{\infty} \gamma_k(\Delta\delta_n)\hat{f}_n\varphi_n. \end{split}$$

Thus, using the density in L^p of the trigonometric polynomials, we see that the operators A, B have continuous extensions to all of L^p , and

$$Bf = \alpha(\mathcal{M}_{\Delta})f + \frac{2}{\pi} \sum_{k=1}^{\infty} (-1)^k \cos kx \beta_k(\mathcal{M}_{\Delta})f$$
$$+ \frac{2i}{\pi} \sum_{k=1}^{\infty} (-1)^k \sin(k - \frac{1}{2})x \gamma_k(\mathcal{M}_{\Delta})f.$$

Let K > 0 be selected as in (2.38), where $E(\lambda)$ is the spectral family of \mathcal{M} . Using the triangle inequality,

$$||Bf|| \leq ||f||K \left\{ |||\alpha|||_{C_{\Delta}} + \frac{2}{\pi} \sum_{k=1}^{\infty} |||\beta_k|||_{C_{\Delta}} + \frac{2}{\pi} \sum_{k=1}^{\infty} |||\gamma_k|||_{C_{\Delta}} \right\}.$$

Note that

$$|\beta_k(\delta)| = \mathcal{O}(\delta/k^2)$$
, uniformly as $\delta \to 0$, $k \to \infty$, $|\beta'_k(\delta)| = \mathcal{O}(\delta/k^2)$, also uniformly,

so that

$$\||\beta_k|\|_{C_{\lambda}} = \mathcal{O}(\Delta/k^2)$$
 as $k \to \infty$.

Using similar estimates for α , γ_k , we see that for Δ sufficiently small, ||B|| < 1, and then A is invertible.

If $\{\delta_n\}$ is real, then more precision in estimating $\||\beta_k|\|$, etc., can be obtained. For $|\delta| \le L \le \frac{1}{4}$ we see that $\operatorname{var}\beta_k = 2\beta_k(L)$ so that

$$\||\beta_k|\|_{[-L,L]} = 3\beta_k(L)$$

and similarly for α , γ_k . Thus

$$||Bf|| \leq ||f||3K\left\{1 - \frac{\sin \pi \Delta L}{\pi \Delta L} + \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{\Delta L \sin \pi \Delta L}{k^2 - (\Delta L)^2} + \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{\Delta L \cos \pi \Delta L}{\left(k - \frac{1}{2}\right)^2 - \left(\Delta L\right)^2}\right\}.$$

Again using Kadec [6], we note that

$$\frac{\Delta 2L}{\pi} \sum_{1}^{\infty} \frac{1}{k^2 - (\Delta L)^2} = \frac{1}{\Delta \pi L} - \cot \pi \Delta L,$$

$$\frac{2\Delta L}{\pi} \sum_{1}^{\infty} \frac{1}{\left(k - \frac{1}{2}\right)^2 - (\Delta L)^2} = \tan \pi \Delta L,$$

so

$$||Bf|| \le ||f|| 3K \left\{ 1 - \frac{\sin \pi \Delta L}{\pi \Delta L} + \frac{\sin \pi \Delta L}{\pi \Delta L} - \cos \pi \Delta L + \sin \pi \Delta L \right\},$$

$$||B|| \le 3K \left[1 - \cos \pi \Delta L + \sin \pi \Delta L \right].$$

Then for Δ sufficiently small, ||B|| < 1.

To say how small Δ should be, it is necessary to know K. Let H denote the conjugate function mapping on L^p . For $1 , let <math>s = \min(p, q)$. Then [9]

Using the representation of the spectral family of \mathcal{M} [11, Theorem 3.2.4] we have:

2.46. Lemma. If $\{\delta_n\}$ is real and piecewise monotone, and if m is the number of intervals (of integers) on which $\{\delta_n\}$ is monotone, then

$$K \leqslant m[1 + \tan \pi/2r].$$

Kadec's theorem was based on Parseval's equality. A spectral-theoretic proof can be given, since \mathcal{M} is then selfadjoint and $\|\beta_k(\mathcal{M})\| = \sup(|\beta_k(\delta_n)|)$, etc.

3. Pointwise convergence.

3.1. THEOREM. Let p be fixed, $1 \le p < \infty$. Assume $\{\delta_n\}$ is a multiplier sequence in L^p and that $\{g_n\}$, $\{\varphi_n\}$ are equivalent. Then for each f in L^p ,

$$\lim_{N\to\infty} \left[\mathscr{S}_N(x;f) - S_N(x;f) \right] = 0,$$

uniformly on each interval $[-\pi + d, \pi - d], d > 0$.

3.2. REMARK. Note that this theorem includes the case p = 1, even though $\{\varphi_n\}$, $\{g_n\}$ are not bases in L^1 . Theorem 3.1 contains as a special case a result of Duffin and Schaeffer [5, §4] for L^2 .

PROOF OF THEOREM 3.1. Since $\{g_n\}$, $\{\varphi_n\}$ are equivalent, we have $\mathcal{S}_N = AS_NA^{-1}$. Using the expression (2.9) for A, we have

$$\mathscr{S}_{N} = \sum_{k=0}^{\infty} X^{k} \frac{(i\mathscr{M})^{k}}{k!} S_{N} A^{-1},$$

but since \mathcal{M} and S_N commute,

(3.3)
$$\mathscr{S}_{N} = \sum_{k=0}^{\infty} X^{k} S_{N} \frac{(i\mathscr{M})^{k}}{k!} A^{-1}.$$

Since $S_N = S_N A A^{-1}$, we have

$$(3.4) S_N = \sum_{k=0}^{\infty} S_N X^k \frac{(i\mathscr{M})^k}{k!} A^{-1},$$

and then

$$\mathscr{S}_N f - S_N f = \sum_{k=1}^{\infty} \left(X^k S_N - S_N X^k \right) \frac{\left(i \mathscr{M} \right)^k}{k!} A^{-1} f.$$

Let D_N denote the Dirichlet kernel

$$D_N(x-t) = \frac{\sin(N+\frac{1}{2})(x-t)}{2\sin((x-t)/2)}.$$

For any function g in L^p ,

$$(X^k S_N - S_N X^k) g(x) = \int_{-\pi}^{\pi} D_N(x - t) (x^k - t^k) g(t) dt,$$

where

$$D_N(x-t)(x^k-t^k) = \sin(N+\frac{1}{2})(x-t)\frac{x-t}{2\sin(x-t)/2}[x^{k-1}+x^{k-2}t+\cdots+t^{k-1}].$$

Given d > 0, there exists K = K(d) > 0 such that if $|x| \le \pi - d$, then

$$|D_N(x-t)(x^k-t^k)| \leq Kk\pi^k, \qquad |x| \leq \pi - d, |t| \leq \pi.$$

Thus

$$|(X^kS_N - S_NX^k)g(x)| \leq 2\pi Kk\pi^k||g||.$$

Let $\varepsilon > 0$ be given. Then there exists $J = J(\varepsilon, f)$ such that

$$\left| \sum_{k=J}^{\infty} \left(X^k S_N - S_N X^k \right) \frac{\left(i \mathcal{M} \right)^k}{k!} A^{-1} f \right| < \frac{\varepsilon}{2}$$

for all N, $|x| \le \pi - d$. For the finitely many remaining terms, it is easily seen that the Riemann-Lebesgue lemma holds uniformly in x, $|x| \le \pi - d$, so for N sufficiently large,

$$\left| \sum_{k=1}^{J-1} \left(X^k S_N - S_N X^k \right) \frac{\left(i \mathcal{M} \right)^k}{k!} A^{-1} f \right| < \frac{\varepsilon}{2}.$$

4. Eigenfunction expansions. In this section we assume $\{\delta_n\}$ is a multiplier sequence for L^p , for some p, $1 \le p < \infty$, and that the corresponding $\{g_n\}$ is equivalent to $\{\varphi_n\}$. Let Λ_0 be the differential operator defined in (1.8), (1.9), and let Λ be defined by

(4.1)
$$\Lambda = A(\Lambda_0 + \mathcal{M})A^{-1}, \qquad \mathcal{D}(\Lambda) = A\mathcal{D}(\Lambda_0).$$

4.2. THEOREM. Λ is a closed, densely defined operator on L^p ,

$$\Lambda g_n = \lambda_n g_n,$$

and $i\Lambda$ is the infinitesimal generator of the uniformly bounded, strongly continuous group

$$(4.4) U(t) = AU_0(t)e^{i\mathcal{M}t}A^{-1}, t \in \mathbf{R},$$

where $U_0(t)$ is the translation group generated by $i\Lambda_0$.

PROOF. This is a direct consequence of (4.1), noting that Λ_0 and \mathcal{M} commute. For the further study of Λ , let 1 . Then

(4.5)
$$(\lambda I - \Lambda)^{-1} f = \sum_{-\infty}^{\infty} (\lambda - \lambda_n)^{-1} (f, h_n) g_n, \qquad f \in L^p.$$

Since $\{(\lambda - \lambda_n)^{-1}\}$ is in l^r for all r, $1 < r < \infty$, it follows that $\{(\lambda - \lambda_n)^{-1}\}$ is a multiplier sequence in L^p for $1 . For <math>(\lambda I - \Lambda)^{-1}$ to be well-bounded, it suffices to have $\{(\lambda - \lambda_n)^{-1}\}$ piecewise monotone. If $\{\delta_n\}$ is real, this is the case if $|\delta_n| \le L < 1/2$.

4.6. LEMMA. Let $\delta_n = \alpha_n + i\beta_n$ where

for n sufficiently large. Let λ be a real number distinct from the λ_n . Then $\{(\lambda_n - \lambda)^{-1}\}$ lies on an admissible arc C and is piecewise monotone.

PROOF. If suffices to show that $\{\text{Re}(\lambda_n - \lambda)^{-1}\}$ is piecewise monotone and $\{\text{Im}(\lambda_n - \lambda)^{-1}\}$ is of bounded variation, since then the arc formed by joining successive points $(\lambda_n - \lambda)^{-1}$ with straight lines is admissible. A computation yields

$$\operatorname{Re}(\lambda_n - \lambda)^{-1} = \frac{1}{n} - \frac{\alpha_n - \lambda}{n^2} + \frac{\gamma_n}{n^3}, \quad \gamma_n = \mathcal{O}(1),$$

and then the difference of two successive ones is

$$\frac{1}{n(n+1)}\left[1-(\alpha_n-\alpha_{n+1})+\frac{\gamma_n}{n}\right].$$

For |n| sufficiently large this is positive, since $\alpha_n - \alpha_{n+1} < 1$. Clearly $\text{Im}(\lambda_n - \lambda)^{-1} = \mathcal{O}(n^{-2})$, so this sequence is of bounded variation.

4.8. THEOREM. If $\{\delta_n\}$ satisfies (4.7), then $R(\lambda, \Lambda)$ is well-bounded.

PROOF. By the above lemma, $\{(\lambda - \lambda_n)^{-1}\}$ satisfies the conditions of [11, Corollary 3.2.6] (see also Theorem 2.40), so $R(\lambda, \Lambda_0 + \mathcal{M})$ is well-bounded. Well-boundedness is preserved by similarity transforms.

We have $\Lambda^2 = A(\Lambda_0 + \mathcal{M})^2 A^{-1}$ with domain $\mathcal{D}(\Lambda_0^2)$.

4.9. Theorem. If λ does not coincide with any λ_n^2 and if (4.7) holds, then $R(\lambda, \Lambda^2)$ is well-bounded on L^p , 1 .

The proof is similar to that for Λ .

4.10. COROLLARY. For $1 , <math>-\Lambda^2$ is the infinitesimal generator of a semi-group in L^p .

PROOF. Since the admissible arc C containing $\{(\lambda - \lambda_n^2)^{-1}\}$ enters the origin with bounded slope, the conditions of [2, Theorem 5.15] are satisfied. (See also [2, Lemma 5.48].)

5. Half-range expansions. Assuming the sequence $\{\lambda_n\}$ is odd:

$$\lambda_{-n} = -\lambda_n,$$

we consider expansions for $0 < x < \pi$ (or for $-\pi < x < 0$) in $\{\cos \lambda_n x\}$, $n \ge 0$ and in $\{\sin \lambda_n x\}$, $n \ge 1$. We give conditions assuring that these functions are eigenfunctions of linear operators which generate strongly continuous semigroups in $L^p(0,\pi)$.

We assume throughout this section that (5.1) holds and $\{g_n\}$, $\{\varphi_n\}$ are equivalent in some space L^p .

5.2. LEMMA.
$$g_{-n}(x) = g_n(-x), h_{-n}(x) = h_n(-x).$$

PROOF. Since $\{g_n\}$ is given explicitly, this is an immediate consequence of (5.1). For h_n , let m be fixed and let $w(x) = h_m(-x)$. Then for all n, and using the above property of g_n , we have $(g_n, w - h_{-m}) = 0$ all n, m. Since $\{g_n\}$ is complete we have $w = h_{-m}$.

For the remainder of this section we consider cosine expansions. Thus let

(5.3)
$$G_n(x) = [g_n(x) + g_{-n}(x)]/2, \quad H_n(x) = [h_n(x) + h_{-n}(x)]/2,$$

 $c_n(x) = \cos nx.$

Clearly

(5.4)
$$G_n = Ac_n, \quad H_n = A^{-1*}c_n.$$

For an even function f on $[-\pi, \pi]$, let

(5.5)
$$F(x) = f(x), \quad 0 < x < \pi,$$

and for two functions u, v on $(0, \pi)$, let

(5.6)
$$\langle u, v \rangle = \frac{2}{\pi} \int_0^{\pi} u(x) \bar{v}(x) dx.$$

5.7. LEMMA. If f is an even function, then for $0 < x < \pi$,

$$(f, h_0)g_0 = \frac{1}{2}\langle F, H_0 \rangle G_0,$$

$$(5.8) (f, h_n)g_n + (f, h_{-n})g_{-n} = \langle F, H_n \rangle G_n,$$

(5.9)
$$\sum_{-N}^{N} (f, h_n) g_n = \frac{1}{2} \langle F, H_0 \rangle G_0 + \sum_{1}^{N} \langle F, H_n \rangle G_n := \mathscr{T}_N(x; F).$$

PROOF. Computational.

Let

(5.10)
$$T_N(x; F) = \frac{1}{2} \langle F, c_0 \rangle c_0(x) + \sum_{n=1}^{N} \langle F, c_n \rangle c_n(x), \quad 0 < x < \pi.$$

5.11. THEOREM. If (5.1) holds and if $\{g_n\}$, $\{\varphi_n\}$ are equivalent in L^p for some p, $1 \le p < \infty$, then for all F in $L^p(0,\pi)$,

$$\lim_{N\to\infty} \left[\mathscr{T}_N(x;F) - T_N(x;F) \right] = 0,$$

uniformly on $[0, \pi - d]$ for each d > 0. If 1 , then

$$\lim_{N\to\infty} \mathscr{T}_N(\,\cdot\,;\,F\,) = F$$

in the norm of $L^p(0,\pi)$.

PROOF. These are direct consequences of the relations

$$\mathcal{S}_N(x;f) = \mathcal{T}_N(x;F), \quad S_N(x;f) = T_N(x;F), \quad 0 < x < \pi,$$

and the analogous theorems for \mathcal{S}_N , S_N .

If f is an even function in $\mathcal{D}(\Lambda^2)$, then for $0 < x < \pi$,

$$\Lambda^2 f = \sum_{n=1}^{\infty} \lambda_n^2 \langle F, H_n \rangle G_n := \Gamma^2 F,$$

where $\mathcal{D}(\Gamma^2)$ consists of all F in $L^p(0,\pi)$ such that the even extension to $[-\pi,\pi]$ is in $\mathcal{D}(\Lambda^2)$. For $\lambda \neq \lambda_n^2$, and for any polynomial P,

$$(5.12) \quad P(R(\lambda, \Gamma^{2}))F = \frac{1}{2}P(\lambda^{-1})\langle F, H_{0}\rangle G_{0} + \sum_{n=1}^{\infty} P((\lambda - \lambda_{n}^{2})^{-1})\langle F, H_{n}\rangle G_{n}$$
$$= P(R(\lambda_{n}\Lambda^{2}))f, \qquad 0 < x < \pi.$$

5.13. THEOREM. If $\{\delta_n\}$ satisfies (4.7), along with the other assumptions of this section, then for $1 , <math>R(\lambda, \Gamma^2)$ is well bounded and $-\Gamma^2$ generates a strongly continuous semigroup on $L^p(0, \pi)$.

PROOF. Since for any function F and its even extension f we have

$$||f||^p = 2||F||^p$$
,

from (5.12) and the well-boundedness of $R(\lambda, \Lambda^2)$,

$$||P(R(\lambda, \Gamma^{2}))F|| = 2^{-1/p}||P(R(\lambda, \Lambda^{2}))f||$$

$$\leq 2^{-1/p}K|||P|||||f|| = K|||P||||F||,$$

where ||P||| is computed on the piecewise linear admissible arc containing $\{(\lambda - \lambda_n^2)^{-1}\}$. Thus $R(\lambda, \Gamma^2)$ is well-bounded and the proof of Corollary 4.10 applies.

REFERENCES

- 1. H. E. Benzinger, Functions of well-bounded operators, Proc. Amer. Math. Soc. 92 (1984), 75-80.
- 2. H. E. Benzinger, E. Berkson and T. A. Gillespie, Spectral families of projections, semigroups and differential operators, Trans. Amer. Math. Soc. 275 (1983), 431-475.
- 3. H. R. Dowson, Spectral theory of linear operators, London Math. Soc. Mono., No. 12, Academic Press, New York, 1978.
- 4. R. J. Duffin and J. J. Eachus, Some notes on an expansion theorem of Paley and Wiener, Bull. Amer. Math. Soc. 48 (1942), 850-855.
- 5. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
 - 6. M. I. Kadec, The exact value of the Paley-Wiener constant, Soviet Math. Dokl. 5 (1964), 559-561.
- 7. N. Levinson, Gap and density theorems, Amer. Math. Soc. Colloq. Publ., Vol. 26, Amer. Math. Soc., Providence, R. I., 1940.
- 8. R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex domain, Amer. Math. Soc. Colloq. Publ., Vol. 19, Amer. Math. Soc., Providence, R. I., 1934.
- 9. S. K. Pichorides, On the best value of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov, Studia Math. 44 (1972), 165-179.
- 10. H. Pollard, The mean convergence of non-harmonic series, Bull. Amer. Math. Soc. 50 (1944), 583-586.
 - 11. D. J. Ralph, Semigroups of well-bounded operators and multipliers, Thesis, Univ. of Edinburgh, 1977.
 - 12. J. R. Ringrose, On well-bounded operators. II, Proc. London Math. Soc. (3) 13 (1963), 613-638.
 - 13. R. M. Young, An introduction to nonharmonic Fourier series, Academic Press, New York, 1980.
 - 14. R. M. Redheffer, Completeness of sets of complex exponentials, Adv. in Math. 24 (1977), 1-62.
- 15. R. M. Redheffer and R. M. Young, Completeness and basis properties of complex exponentials, Trans. Amer. Math. Soc. 277 (1983), 93-111.

Department of Mathematics, University of Illinois, 1409 W. Green Street, Urbana, Illinois 61801