THE HOMOLOGY AND HIGHER REPRESENTATIONS OF THE AUTOMORPHISM GROUP OF A RIEMANN SURFACE

S. A. BROUGHTON

ABSTRACT. The representations of the automorphism group of a compact Riemann surface on the first homology group and the spaces of q-differentials are decomposed into irreducibles. As an application it is shown that M_{24} is not a Hurwitz group.

1. Introduction. Let G be a finite group of orientation-preserving homeomorphisms of a Riemann surface S of genus $\sigma \ge 2$. We then have a representation of G on the first homology group $H_1(S) = H_1(S, \mathbb{C})$. If S has a conformal structure which is preserved under the G-action, then there are also representations of G on the various spaces of g-differentials $\mathcal{H}^q(S)$ ($\mathcal{H}^q(S)$ = holomorphic sections of $T^*(S) \otimes \cdots \otimes T^*(S)$ (g times), $T^*(S)$ = cotangent bundle). In this note we give formulae (Propositions 1-2) for the decompositions of these representations into irreducibles.

The decompositions for $H_1(S) \cong \mathcal{H}^1(S) \oplus \mathcal{H}^1(S)^*$ and $\mathcal{H}^2(S)$ may be applied to the study of surfaces of genus σ . From the decomposition of the homology representation it follows that the characters of G must satisfy certain inequalities (see (13) below). This is useful in showing that certain groups cannot occur as automorphism groups of a surface of a given genus σ . In [S] L. L. Scott has given a formula equivalent to (13), though derived by a purely group-theoretic argument.

The decompositions of $\mathcal{H}^2(S)$ may be used to locally describe the action of the Teichmüller modular group $\operatorname{Mod}_{\sigma}$ on Teichmüller space, \mathcal{T}_{σ} (see [R]). This was used by J. Lewittes [L] to compute the dimensions of the branch loci of the action of $\operatorname{Mod}_{\sigma}$ on \mathcal{T}_{σ} .

The decompositions are derived in §2 from the Eichler Trace Formula and the Lefshetz Fixed Point Formula, using a simple character theory argument. In §3 we give an application showing that the Mathieu group M_{24} is not a Hurwitz group.

2. The decomposition formulae and their derivations. First we recall some facts about actions of a finite group G on a surface S (cf. [H, T]). The space T = S/G is a surface T of genus τ , and π : $S \to T$ is branched over $Q_1, \ldots, Q_t \in T$ with branching orders n_1, \ldots, n_t . Call $(\tau: n_1, \ldots, n_t)$ the branching data of G (write (n_1, \ldots, n_t) if $\tau = 0$). The Riemann-Hurwitz formula [FK, p. 243] gives

(1)
$$(2\sigma - 2)/|G| = 2\tau - 2 + \sum_{i=1}^{t} (1 - 1/n_i).$$

Received by the editors July 23, 1985 and, in revised form, March 21, 1986. 1980 Mathematics Subject Classification (1985 Revision). Primary 30F30.

We denote the right-hand side by κ . There are elements $a_1, \ldots, a_{\tau}, b_1, \ldots, b_{\tau}, c_1, \ldots, c_t$, generating G, such that

(2)
$$\prod_{i=1}^{\tau} [a_i, b_i] \prod_{j=1}^{t} c_j = 1,$$

and

$$o(c_i) = n_i.$$

If $P \in S$ is a point fixed by $g \in G$, then the induced map of tangent spaces dg^{-1} : $T_P(S) \to T_P(S)$ is multiplication by an o(g)th root of unity, denoted by $\varepsilon(P, g)$. It is easy to show that we may pick the c_i and $P_i \in \pi^{-1}(Q_i)$ such that $G_{P_i} = \{g \in G \mid gP_i = P_i\} = \langle c_i \rangle$ and

(4)
$$\varepsilon(P_i, c_i) = \exp(2\pi\sqrt{-1}/n_i).$$

Let $U_n \subseteq S^1$ be the group of *n*th roots of unity and let $\varphi_k \colon S^1 \to S^1$ be the character $z \to z^k$, $k \in \mathbb{Z}$. Let c_1, \ldots, c_t be as defined above and let $\nu_i \colon \langle c_i \rangle \to U_{n_i}$ be the isomorphism defined by $c_i \to \exp(2\pi\sqrt{-1}/n_i)$. Let χ_0, \ldots, χ_l be the irreducible characters of G with $\chi_0 = \text{principal character}$. Each χ_j defines a character of U_n by means of the isomorphism ν_i . Define $m_i^k(\chi_j)$, $0 \le k \le n_i - 1$, by

(5)
$$\chi_{j}|U_{n_{i}} = \sum_{k=0}^{n_{i}-1} m_{i}^{k}(\chi_{j}) \varphi_{k}|U_{n_{i}}$$

and define $m_i^k(\chi_j)$ for all $k \in \mathbf{Z}$ by periodicity: $m_i^k(\chi_j) = m_i^{k+n_i}(\chi_j)$. Let $\operatorname{ch}_{\mathscr{H}^q(S)}$ be the character of the representation of G on $\mathscr{H}^q(S)$, and write

$$\operatorname{ch}_{\mathscr{H}^{q}(S)} = \mu_{q}^{0} \chi_{0} + \cdots + \mu_{q}^{l} \chi_{l}.$$

Define the Poincaré series $P_{\chi_i}(z)$ by

$$P_{\chi_j}(z) = \sum_{q=0}^{\infty} \mu_q^j z^q.$$

We have the following propositions.

PROPOSITION 1. Let G be a group of conformal automorphisms of a Riemann surface S of genus ≥ 2 and let all notation be as above. Then:

(i)
$$P_{\chi_0}(z) = 1 + z + zR_{\chi_0}(z)$$
,

(ii)
$$P_{\chi_j} = zR_{\chi_j}(z)$$
, $j \neq 0$, where

(iii)

$$R_{\chi_j} = \frac{(1-\tau)\chi_j(1)}{1-z} + \frac{\kappa\chi_j(1)}{(1-z)^2} - \sum_{i=1}^t \frac{1}{n_i} \cdot \frac{e_i^0(j) + e_i^1(j)z + \dots + e_i^{n_i-1}(j)z^{n_i-1}}{1-z^{n_i}}$$

and

$$e_i^r(j) = \sum_{k=0}^{n_i-1} k \cdot m_i^{1+r+k}(\chi_j).$$

PROPOSITION 2. Let G be a finite group of homeomorphisms of a Riemann surface S, $\operatorname{ch}_{H_1(S)}$ the character of the homology representation, and other notation as above. Then the multiplicity of χ_i in $\operatorname{ch}_{H_1(S)}$, $\langle \chi_i, \operatorname{ch}_{H_1(S)} \rangle$, is given by

(i)
$$\langle \chi_0, \operatorname{ch}_{H_1(S)} \rangle = 2\tau$$
,

(ii)

$$\langle \chi_j, \operatorname{ch}_{H_1(S)} \rangle = (2\tau - 2 + t)\chi_j(1) - \sum_{j=1}^t m_i^0(\chi_j), \quad j \neq 0.$$

Let ρ be the regular representation of G and ρ_i the permutation character determined by G acting on the coset space $G/\langle c_i \rangle$. Then (i) and (iii) may be rewritten: (iii)

$$\operatorname{ch}_{H_1(S)} = 2\chi_0 + (2\tau - 2 + t)\rho - \sum_{i=1}^t \rho_i.$$

Before proving Propositions 1-2 we recall the Eichler Trace Formula and the Lefschetz Fixed Point Formula. Let $\eta: G \to \mathbb{Z}$ be the class function on G obtained by setting $\eta(g)$ equal to the negative of the Euler characteristic of the fixed point subset S^g of g, i.e.

$$\eta(1) = 2\sigma - 2, \qquad \eta(g) = -|S^g|, \quad g \neq 1.$$

By the Lefschetz Fixed Point Formula,

(6)
$$\operatorname{ch}_{H_1(S)}(g) = 2 + \eta(g), \quad g \in G.$$

Define λ_q : $G \to \mathbb{C}$, $q \ge 0$, as follows:

$$\lambda_0(g) = 1, \qquad g \in G,$$

$$\lambda_q(1) = (\sigma - 1)(2q - 1), \qquad q \geqslant 1,$$

$$\lambda_q(g) = \sum_{\sigma \in \Gamma} \frac{\left(\varepsilon(P, g)\right)^q}{1 - \varepsilon(P, g)}, \qquad q \geqslant 1,$$

where the last sum is zero if S^g is empty. The Riemann-Roch Theorem and the Eichler Trace Formula state that the characters $ch_{\mathscr{H}^q(S)}$ are given by

(7)
$$ch_{\mathscr{L}^{q}(S)}(g) = \lambda_{q}(g), \qquad q \neq 1, \\ ch_{\mathscr{L}^{1}(S)}(g) = 1 + \lambda_{q}(g).$$

For proofs of (6)–(7) see [FK]. Observe [FK] that $\eta(g) = 2 \operatorname{Re} \lambda_1(g)$. Write

$$\eta = \eta^0 + \cdots + \eta^t, \qquad \lambda_a = \lambda_a^0 + \cdots + \lambda_a^t,$$

where

$$\begin{split} &\eta^{0}(1) = 2\sigma - 2, &\eta^{0}(g) = 0, &g \neq 1, \\ &\eta^{i}(1) = 0, &\eta^{i}(g) = -\big|S^{g} \cap \pi^{-1}(Q_{i})\big|, &i > 0, \\ &\lambda^{0}_{q}(1) = (\sigma - 1)(2q - 1), &\lambda^{0}_{q}(g) = 0, &g \neq 1, q \geqslant 1, \\ &\lambda^{i}_{q}(1) = 0, &\lambda^{i}_{q}(g) = \sum_{P \in S^{g} \cap \pi^{-1}(Q_{i})} \frac{\left(\varepsilon(P, g)\right)^{q}}{1 - \varepsilon(P, g)}, &i > 0, q \geqslant 1. \end{split}$$

For $1 \neq g \in G$, $S^g \cap \pi^{-1}(Q_i) \neq \emptyset$ if and only if the conjugacy class of g, $\mathrm{Cl}(g)$, meets $\langle c_i \rangle$. Assume $g \in \langle c_i \rangle$, then since G_{P_i} is cyclic, $S^g \cap \pi^{-1}(Q_i)$ is in 1-1 correspondence with $N_G(\langle g \rangle)/\langle c_i \rangle$ by $h \to h \cdot P_i$. Furthermore, $N_G(\langle g \rangle)/\mathrm{Cent}(g)$ is in 1-1 correspondence wih $\mathrm{Cl}(g) \cap \langle c_i \rangle$ by $h \to hgh^{-1}$. From (4) and the definition of ν_i , $\varepsilon(P_i, g) = \nu_i(g)$, $g \in \langle c_i \rangle$. It easily follows for i > 0 that

(8)
$$\lambda_q^i(g) = \frac{|\operatorname{Cent}(g)|}{n_i} \cdot \sum_{h \in \operatorname{Cl}(g) \cap \langle c_i \rangle} \frac{(\nu_i(h))^q}{1 - \nu_i(h)}.$$

Since λ_q^i is a class function, this holds for all $1 \neq g \in G$. Similarly, for $1 \neq g \in G$,

(9)
$$\eta^{i}(g) = -\frac{|\operatorname{Cent}(g)|}{n_{i}} |\operatorname{Cl}(g) \cap \langle c_{i} \rangle|.$$

We now give proofs of the decompositions, first Proposition 2. Let $1 = g_0, \dots, g_l$ be a set of representatives of conjugacy classes of G. For $i = 0, 1, \dots, l$:

$$\langle \eta, \chi_{j} \rangle = \sum_{i=0}^{t} \langle \eta^{i}, \chi_{j} \rangle = \sum_{i=0}^{t} \frac{1}{|G|} \sum_{g \in G} \eta^{i}(g) \overline{\chi}_{j}(g)$$

$$= \sum_{i=0}^{t} \sum_{k=0}^{t} \frac{\eta^{i}(g_{k}) \overline{\chi}_{j}(g_{k})}{|\operatorname{Cent}(g_{k})|}$$

$$= \frac{2\sigma - 2}{|G|} \chi_{j}(1) - \sum_{i=1}^{t} \frac{1}{n_{i}} \sum_{1 \neq g \in \langle c_{i} \rangle} \overline{\chi_{j}(g)},$$

from (9) above. By the Riemann-Hurwitz Formula (1), (10) may be rewritten as

$$(2\tau - 2 + t)\chi_j(1) - \sum_{i=1}^t \frac{1}{n_i} \sum_{g \in \langle c_i \rangle} \bar{\chi}_j(g) = (2\tau - 2 + t)\chi_j(1) - \sum_{i=1}^t m_i^0(\chi_j).$$

Since $ch_{H_1(S)} = 2\chi_0 + \eta$, (i) and (ii) of Proposition 2 follow immediately; (iii) follows from (i)–(ii) and Frobenius reciprocity.

Let $R_{\sigma}(z) = \sum_{\alpha=1}^{\infty} \lambda_{\alpha}(g) z^{q-1}$. To prove Proposition 1 it suffices by (7) to prove

(11)
$$R_{\chi_j}(z) = \frac{1}{|G|} \sum_{g \in G} R_g(z) \overline{\chi_j(g)}.$$

Using (8) and arguing as above, the right-hand side of (11) equals (12)

$$\begin{split} \sum_{q=1}^{\infty} \frac{(\sigma-1)\chi_{j}(1)}{|G|} (2q-1)z^{q-1} + \sum_{i=1}^{t} \sum_{q=1}^{\infty} \sum_{1 \neq g \in \langle c_{i} \rangle} \frac{1}{n_{i}} \frac{(\nu_{i}(g))^{q}}{1 - \nu_{i}(g)} \bar{\chi}_{j}(g)z^{q-1} \\ = \kappa \chi_{j}(1)(1-z)^{-2} \frac{\kappa \chi_{j}(1)(1-z)^{-1}}{2} \\ + \sum_{i=1}^{t} \sum_{r=0}^{n_{i}-1} \frac{1}{n_{i}} \sum_{1 \neq \omega \in U_{n}} \frac{\omega^{r+1}}{1 - \omega} \bar{\chi}_{j}(\omega)z^{r}(1-z)^{-n_{i}}. \end{split}$$

We calculate

$$\sum_{1 \neq \omega \in U_n} \frac{\omega^s}{1 - \omega} \overline{\chi}(\omega) = \lim_{x \to 1} \sum_{1 \neq \omega \in U_n} \frac{\omega^s}{1 - x\omega} \overline{\chi}(\omega)$$

$$= \lim_{x \to 1} \left(\sum_{q=0}^{\infty} \sum_{\omega \in U_n} \omega^{q+s} \overline{\chi}(\omega) x^q - \sum_{q=0}^{\infty} \chi(1) x^q \right)$$

$$= \lim_{x \to 1} \left(n \frac{L_s(x)}{1 - x^n} - \frac{\chi(1)}{1 - x} \right),$$

where $L_s(x) = a_0 + a_1 x + \cdots + a_{n-1} x^{n-1}$ and $a_k = (1/n) \sum_{\omega \in U_n} \omega^{k+s} \overline{\chi}(\omega)$. The limit is easily calculated by l'Hôpital's rule and equals $(n-1)\chi(1)/2 - L_s'(1)$. Setting $n = n_i$, s = r + 1, $\chi = \chi_j$, then $a_k = m_i^{1+k+r}(\chi_j)$ and (11) now follows easily from (12) and the definition of R_{χ_s} .

3. Application. If $\tau = 0$, then G is generated by c_1, \ldots, c_t with $c_1 \cdot c_2 \cdot \cdots \cdot c_t = 1$, and from (ii) of Proposition 2 it follows that for a nonprincipal character χ_i

(13)
$$(t-2)\chi_j(1) \geqslant \sum_{i=1}^t m_i^0(\chi_j).$$

This is a reformulation of the inequality that L. L. Scott obtains in [S] by purely group theoretic means for arbitrary characteristic. The G-module he constructs on p. 475 of [S] may be identified with $H_1(S)$. The inequality (13) may sometimes be used as a "Brauer trick" to show that a given group cannot occur as the automorphism group of a surface of given genus.

As an example of this let us verify that the Mathieu group M_{24} is not a Hurwitz group. The group G is a Hurwitz group if it occurs as the automorphism group of a surface S of genus σ with $|G| = 84(\sigma - 1)$, Hurwitz' upper bound for the order of an automorphism group. If G acts on S as above then the branching data is (2, 3, 7) and G has a generating (2, 3, 7)-vector (c_1, c_2, c_3) . In Table 1 we have copied a portion of the character table of M_{24} [Fr, p. 346], giving, for selected characters, the character values of all elements of order 1, 2, 3, or 7. The classes are given in cycle notation, M_{24} being realized as a permutation group of degree 24.

TABLE 1
$$\chi_{1} = \frac{1^{24} \quad 1^{8}2^{8} \quad 2^{12} \quad 1^{6}3^{6} \quad 3^{8} \quad 1^{3}7_{+}^{3}}{45 \quad -3 \quad 5 \quad 0 \quad 3 \quad (-1 + \sqrt{-7})/2 \quad (-1 - \sqrt{-7})/2} \\
\chi_{2} \quad 252 \quad 28 \quad 12 \quad 9 \quad 0 \quad 0 \quad 0$$

For c_i chosen from the classes in Table 1 all the nonidentity elements of $\langle c_i \rangle$ are conjugate in M_{24} except for $\langle c_3 \rangle$, where half lie in $1^37_+^3$ and the other half lie in $1^37_-^3$. Since $\kappa = 1/42$, we obtain from (10), for any nonprincipal character χ of M_{24} ,

$$\frac{1}{42}(\chi(1)-21\chi(c_1)-28\chi(c_2)-36\operatorname{Re}\chi(c_3))=\langle \eta,\chi\rangle\geqslant 0,$$

or

$$\chi(1) \ge 21\chi(c_1) + 28\chi(c_2) + 36 \operatorname{Re}\chi(c_3).$$

(This is equivalent to (13) but slightly more convenient.) There is no possible choice of c_1 , c_2 , c_3 for which this inequality holds for both the characters χ_1 , χ_2 above. It is interesting to note that for $c_1 \in 2^{12}$, $c_2 \in 3^8$, $c_3 \in 1^37^3_+$, or $1^37^3_-$, χ_2 and its conjugate $\bar{\chi}_2$ are the only irreducible characters for which (13) fails, and that the standard Brauer trick [I, p. 70] applied to any pair of $\langle c_1 \rangle$, $\langle c_2 \rangle$, or $\langle c_3 \rangle$ fails.

REFERENCES

- [FK] H. M. Farkas and I. Kra, *Riemann surfaces*, Graduate Texts in Math., no. 71, Springer-Verlag, Berlin and New York, 1979.
 - [Fr] F. G. Frobenius, Gesammelte Abhandlungen, Vol. 3, Springer-Verlag, Berlin and New York, 1968.
 - [H] J. Harvey, On branch loci in Teichmüller space, Trans. Amer. Math. Soc. 153 (1971), 387-399.
 - [I] I. M. Isaacs, Character theory of finite groups, Academic Press, New York, 1976.
 - [L] J. Lewittes, Invariant quadratic differentials, Bull. Amer. Math. Soc. 68 (1962), 320-322.
- [R] H. E. Rauch, A transcendental view of the space of algebraic Riemann surfaces, Bull. Amer. Math. Soc. 21 (1965), 1-39.
 - [S] L. L. Scott, Matrices and cohomology, Ann. of Math. (2) 105 (1977), 473-492.
- [T] T. Tucker, Finite groups acting on surfaces and the genus of a group. J. Combin. Theory Ser. B 34 (1983), 82-98.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN - MADISON, MADISON, WISCONSIN 53706

Current address: Department of Mathematics, Cleveland State University, Cleveland, Ohio 44115