COMPARISON BETWEEN ANALYTIC CAPACITY AND THE BUFFON NEEDLE PROBABILITY

TAKAFUMI MURAI

ABSTRACT. We show that analytic capacity and the Buffon needle probability are not comparable.

1. Introduction. For a compact set E in the complex plane \mathbb{C} , we denote by $H^{\infty}(E^c)$ the Banach space of bounded analytic functions outside E with supremum norm $\|\cdot\|_{H^{\infty}(E^c)}$. The analytic capacity of E is defined by

$$\gamma(E) = \sup\{|u'(\infty)|; u \in H^{\infty}(E^c), ||u||_{H^{\infty}(E^c)} \leq 1\},$$

where $u'(\infty) = \lim_{z \to \infty} z(u(z) - u(\infty))$ [3, p. 6]. We are concerned with estimating $\gamma(E)$. Let D(z,r) denote the open disk of center z and of radius r. For $\varepsilon > 0$, we put $|E|_{(\varepsilon)} = 2 \inf \sum_{k=1}^{\infty} r_k$, where the infimum is taken over all coverings $\{D(z_k, r_k)\}_{k=1}^{\infty}$ of E with radii less than ε . The generalized length of E is defined by $|E| = \lim_{\varepsilon \to 0} |E|_{(\varepsilon)}$; the limit exists since $|E|_{(\varepsilon)}$ is decreasing with respect to ε . It is well known that

(1)
$$\gamma(E) \leq \text{Const}|E| \quad [3, p. 48].$$

Let \mathfrak{P}^{θ} $(-\pi/2 < \theta \le \pi/2)$ denote the straight line defined by the equation $x \sin \theta - y \cos \theta = 0$ and let $\mathfrak{L}(r, \theta)$ $(r > 0, -\pi < \theta \le \pi)$ denote the straight line defined by the equation $x \cos \theta + y \sin \theta = r$. The Buffon length of E is defined by

$$\mathrm{Bu}(E) = \iint_{\{(r,\theta);\ \mathfrak{L}(r,\theta)\cap E\neq\varnothing\}} dr\,d\theta.$$

We easily see that Bu(E) = $\int_{-\pi/2}^{\pi/2} |E^{\theta}| d\theta$, where E^{θ} is the projection of E to \mathfrak{P}^{θ} . If E is contained in D(0,1), Bu(E)/2 π is called the Buffon needle probability; this gives probability (measured by $dr|_{(0,1)} d\theta/2\pi$) of straight lines $\mathfrak{L}(r,\theta)$ intersecting with E.

Suppose that the boundary ∂E of E consists of a finite number of rectifiable Jordan curves. We put

$$\operatorname{Cr}(E) = \iint_{r>0, |\theta| \leq \pi} n(r, \theta) dr d\theta,$$

where $n(r, \theta)$ is the cardinal number of $\mathfrak{L}(r, \theta) \cap \partial E$. Then we have evidently $\mathrm{Bu}(E) \leq \mathrm{Cr}(E)$. Crofton's formula [8, p. 13] shows that $\mathrm{Cr}(E) = 2|\partial E|$. Since

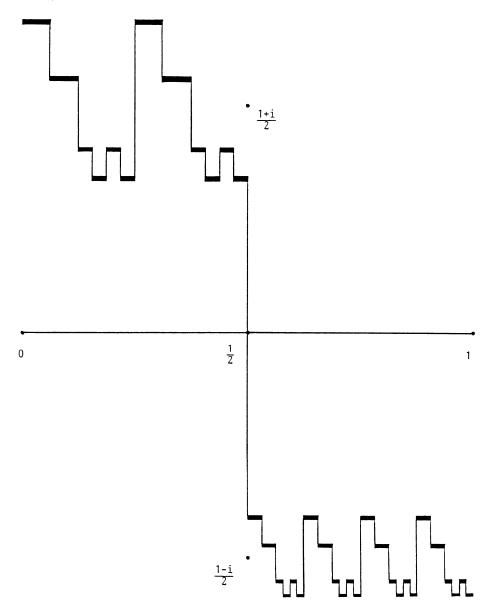
Received by the editors May 19, 1986.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 30C85.

Key words and phrases. Analytic capacity, the Buffon needle probability.

 $\gamma(E) = \gamma(\partial E)$, (1) implies that $\gamma(E) \leq \operatorname{Const} \operatorname{Cr}(E)$. Thus both $\gamma(E)$ and $\operatorname{Bu}(E)$ are dominated by $\operatorname{Const} \operatorname{Cr}(E)$. From this point of view, Ivanov [4] and Marshall [6] asked whether $\gamma(\cdot)$ and $\operatorname{Bu}(\cdot)$ are comparable or not. As an answer to this question, we show in this note

THEOREM. There exists a sequence $(E_n)_{n=1}^{\infty}$ of compact sets in D(0,2) such that $\lim_{n\to\infty} \operatorname{Bu}(E_n)/\gamma(E_n)^{2-\epsilon} = 0$ for any $\epsilon > 0$.



 E_2 $v_1' = 1$, $v_1'' = 2$, $v_2'' = 2$, $v_2'' = 4$

FIGURE 1

The set E_n which will be constructed later has a form like a crank with many pedals (see Figure 1). Our theorem shows that the inequality " $\gamma(\cdot) \leq \text{Const Bu}(\cdot)$ " is not valid. To prove our theorem, we remark

PROPOSITION. Let E be a compact set on a rectifiable graph $\Gamma = \{x + iA(x); \alpha \leq x \leq \beta\}$. Then $\gamma(E) \geqslant \text{Const}|E^0|^{3/2}/|\Gamma|^{1/2}$.

We do not know whether these exponents 3/2 and 1/2 are sharp or not. To prove our proposition, we shall use an estimate of the norm of the Calderón-Cauchy operator [7].

2. Proof of Proposition. Let L^p $(1 \le p \le \infty)$ denote the L^p space on the real line **R**. Its norm is denoted by $\|\cdot\|_p$. For a real-valued function $b \in L^\infty$, we define a kernel by

$$C[b](x, y) = 1/\{(x - y) + i(B(x) - B(y))\},\$$

where $B(x) = \int_0^x b(t) dt$. The singular integral operator C[b] defined by the above kernel is called the Calderón-Cauchy operator. We denote by $||C[b]||_{2,2}$ the norm of C[b] as an operator from L^2 to itself. We use an auxiliary operator $C^*[b]$ defined by

$$C^*[b]f(x) = \sup_{\varepsilon > 0} |C_{\varepsilon}[b]f(x)|,$$

where

$$C_{\epsilon}[b]f(x) = \int_{|x-y|>\epsilon} C[b](x,y)f(y) dy.$$

The following fact is already known.

Lemma 1 [7].
$$||C[b]||_{2,2} \leq \text{Const}(1 + \sqrt{||b||_{\infty}})$$
.

In the same manner as Lemma 2 in [1, p. 139], the separation theorem yields

LEMMA 2. Let T be an operator defined by a kernel T(x, y) satisfying T(x, y) = -T(y, x) $(x, y \in \mathbb{R})$ and $\sup_{x,y \in \mathbb{R}} |T(x, y)|(1 + |x - y|) < \infty$. Then, for any compact set $F \subset \mathbb{R}$, there exists a nonnegative function $f_0 \in L^{\infty}$ such that

$$||Tf_0||_{\infty} \leq 1$$
, $||f_0||_{\infty} \leq 1/||T||_{w}$, $||f_0||_{1} \geq |F|/10||T||_{w}$, $\sup_{x \in T} (f_0) \subset F$,

where supp (f_0) is the support of f_0 and $||T||_w$ is the weak-(1,1) norm of T, that is,

$$||T||_{w} = \sup\{|x \in \mathbf{R}; |Tf(x)| > 1|/||f||_{1}; f \in L^{1}\}.$$

LEMMA 3.
$$||C^*[b]||_w \leq \text{Const}(1 + \sqrt{||b||_{\infty}})$$
.

PROOF. Let $\omega(C[b])$ denote the minimum of all M satisfying the following three inequalities:

$$|C[b](x,y)| \leq M/|x-y|.$$

$$|C[b](x,y) - C[b](x',y)| \le M|x - x'|^{1/2}/|x - y|^{3/2} (|x - x'| \le |x - y|/2).$$

$$|C[b](x,y) - C[b](x,y')| \le M|y-y'|^{1/2}/|x-y|^{3/2} (|y-y'| \le |x-y|/2).$$

We put $||C[b]||_{CZ} = ||C[b]||_{2,2} + \omega(C[b])$. It is known that $||C^*[b]||_w \leq \text{Const}||C[b]||_{CZ}$ [5, Chapter 4]. Since $\omega(C[b]) \leq \text{Const}(1 + \sqrt{||b||_{\infty}})$, Lemma 1 gives the required inequality.

Lemma 4. For a compact set $F \subset \mathbf{R}$, there exists a nonnegative function $f_F \in L^{\infty}$ such that

$$||C^*[b]f_F||_{\infty} \le 1, \quad ||f_F||_{\infty} \le 1/(1 + \sqrt{||b||_{\infty}}),$$

 $||f_F||_1 \ge \text{Const}|F|/(1 + \sqrt{||b||_{\infty}}), \quad \text{supp}(f_F) \subset F.$

PROOF. Lemma 3 shows that $\|C_{\varepsilon}[b]\|_{w} \leq \operatorname{Const}(1+\sqrt{\|b\|_{\infty}})$ ($\varepsilon > 0$). Hence Lemma 2 shows that, to each $\varepsilon > 0$, there corresponds a nonnegative function $f_{\varepsilon} \in L^{\infty}$ satisfying

$$\begin{aligned} \|C_{\epsilon}[b]f_{\epsilon}\|_{\infty} &\leq 1, \quad \|f_{\epsilon}\|_{\infty} &\leq 1/\left(1 + \sqrt{\|b\|_{\infty}}\right), \\ \|f_{\epsilon}\|_{1} &\geq \operatorname{Const}|F|/\left(1 + \sqrt{\|b\|_{\infty}}\right) \quad \text{and} \quad \operatorname{supp}(f_{\epsilon}) \subset F. \end{aligned}$$

Cotlar's inequality [5, p. 56] gives that

$$\left| C_{\eta}[b] f_{\varepsilon}(x) \right| \leq \operatorname{Const} \left\{ \operatorname{m} \left(C_{\varepsilon}[b] f_{\varepsilon} \right)(x) + \left\| C[b] \right\|_{CZ} \operatorname{m} f_{\varepsilon}(x) \right\}$$

$$(x \in \mathbf{R}, 0 < \varepsilon < \eta),$$

where m is the noncentered maximal operator [5, p. 9]. Hence

$$\left\|C_{\eta}[b]f_{\varepsilon}\right\|_{\infty} \leq \operatorname{Const}\left\{\left\|C_{\varepsilon}[b]f_{\varepsilon}\right\|_{\infty} + \left\|C[b]\right\|_{CZ}\left\|f_{\varepsilon}\right\|_{\infty}\right\} \leq \operatorname{Const.}$$

Let f_F^0 be a weak* cluster point of $(f_{\varepsilon})_{\varepsilon>0}$ in the space of measures. Then we have $\|C_{\eta}[b]f_F^0\|_{\infty} \leq \text{Const}$, which gives $\|C^*[b]f_F^0\|_{\infty} \leq \text{Const}$. Multiplying f_F^0 by a suitable absolute constant, we obtain the required function f_F . Q.E.D.

LEMMA 5. Let F, f_F be the same as in Lemma 4 and let

$$\hat{f}_{F}(z) = \int_{-\infty}^{\infty} \frac{f_{F}(y)}{\{z - (y + iB(y))\}} dy \qquad (z \notin \hat{F} = \{x + iB(x); x \in F\}).$$

Then $\|\hat{f}_F\|_{H^{\infty}(\hat{F}^c)} \leq \text{Const and } |\hat{f}'_F(\infty)| \geq \text{Const}|F|/(1+\sqrt{\|b\|_{\infty}}).$

PROOF. By Lemma 4, we have

$$|\hat{f}_{F}'(\infty)| = ||f_{F}||_{1} \ge \operatorname{Const}|F|/(1 + \sqrt{||b||_{\infty}}).$$

We show $\|\hat{f}_F\|_{H^{\infty}(\hat{F}^c)} \leq \text{Const. For any } z \notin \hat{F}$, we have

$$\hat{f}_F(z) = \int_{-\infty}^{\infty} \frac{f_F(y)}{(\operatorname{Re} z - y) + i \{ B(\operatorname{Re} z) - B(y) + (\operatorname{Im} z - B(\operatorname{Re} z)) \}} dy$$

as long as Im $z \neq B(\text{Re } z)$. Hence it is sufficient to show that

$$\sup_{x,y\in\mathbf{R},\ y\neq 0}\left|\int_{-\infty}^{\infty}\frac{f_F(y)}{(x-y)+i(B(x)-B(y)+s)}\,dy\right|\leqslant \mathrm{Const.}$$

Let $s_0 = 2(1 + ||b||_{\infty})$. We have, for any $x, s \in \mathbb{R}$, $s \neq 0$,

$$\left| \int_{-\infty}^{\infty} \frac{f_{F}(y)}{(x-y)+i(B(x)-B(y)+s)} \, dy \right|$$

$$\leq \left| \int_{|x-y| \leq |s|/s_{0}} \left| + \left| \int_{|s|/s_{0} < |x-y| \leq |s|} \right| + \left| \int_{|x-y| > |s|} \right| \right|$$

$$\leq \int_{|x-y| \leq |s|/s_{0}} \frac{f_{F}(y)}{|s|-|B(x)-B(y)|} \, dy + \int_{|s|/s_{0} < |x-y| \leq |s|} \frac{f_{F}(y)}{|x-y|} \, dy$$

$$+ \left| \int_{|x-y| > |s|} \frac{sf_{F}(y)}{\{(x-y)+i(B(x)-B(y)+s)\}\{(x-y)+i(B(x)-B(y))\}} \, dy \right|$$

$$+ |C_{|s|}[b]f_{F}(x)|$$

$$\leq \operatorname{Const} ||f_{F}||_{\infty} + ||f_{F}||_{\infty} \log s_{0} + ||f_{F}||_{\infty} |s| \int_{|x-y| > |s|} \frac{f_{F}(y)}{(x-y)^{2}} \, dy + C^{*}[b]f_{F}(x)$$

$$\leq \operatorname{Const} (1 + \log s_{0}) ||f_{F}||_{\infty} + ||C^{*}[b]f_{F}||_{\infty} \leq \operatorname{Const}. \quad Q.E.D.$$

LEMMA 6. Let E and Γ be the same as in the theorem. Then there exists a graph $\Gamma^* = \{x + iB(x); \ \alpha \leq x \leq \beta\}, \ B(x) = \int_{\alpha}^{x} b(t) dt + A(\alpha); \ \text{such that } \|b\|_{\infty} \leq 4|\Gamma|/|E^0| \ \text{and } |\alpha \leq x \leq \beta; \ A(x) \neq B(x)| \leq |E^0|/2.$

PROOF. Let $t_0 = 2|\Gamma|/|E^0|$. Then

$$t_0 \geqslant \frac{|\Gamma|}{\beta - \alpha} \geqslant \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} |a(t)| dt$$
 $(a = A').$

The Calderón-Zygmund decomposition [5, p. 12] shows that there exists a sequence $(I_k)_{k=1}^{\infty}$ of mutually nonoverlapping intervals in $[\alpha, \beta]$ such that

$$|a(x)| \le t_0$$
 a.e. in $[\alpha, \beta] - \bigcup_{k=1}^{\infty} I_k$,
 $t_0 \le \frac{1}{|I_k|} \int_{I_k} |a(t)| dt \le 2t_0$ $(k \ge 1)$.

We put

$$b(x) = \begin{cases} a(x) & \left(x \in [\alpha, \beta] - \bigcup_{k=1}^{\infty} I_k\right), \\ \frac{1}{|I_k|} \int_{I_k} a(t) dt & (x \in I_k, k \ge 1). \end{cases}$$

Then $||b||_{\infty} \le 2t_0 = 4|\Gamma|/|E^0|$. We have, with $B(x) = \int_{\alpha}^{x} b(t) dt + A(\alpha)$, $|\alpha \le x \le \beta$; $A(x) \ne B(x)| \le \sum_{k=1}^{\infty} |I_k| \le \frac{1}{t_0} \sum_{k=1}^{\infty} \int_{I_k} |a(t)| dt$ $\le |\Gamma|/t_0 = |E^0|/2$.

Thus $\Gamma^* = \{x + iB(x); \alpha \le x \le \beta\}$ satisfies the required two inequalities. Q.E.D.

We now prove our proposition.Let Γ^* be the graph given in Lemma 6. We can choose a compact set F in $E^0 \cap \{\alpha \le x \le \beta; \ A(x) = B(x)\}$ so that $|F| \ge |E^0|/4$. Let \hat{f}_F be the function in Lemma 5. Since $\hat{F} \subset E$, we have $\hat{f}_F \in H^{\infty}(E^c)$, $\|\hat{f}_F\|_{H^{\infty}(E^c)} \le \text{Const. Thus}$

$$\gamma(E) \geqslant \left| \hat{f}_F'(\infty) \right| \geqslant \operatorname{Const} |F| / (1 + \sqrt{\|b\|_{\infty}})$$

$$\geqslant \operatorname{Const} |F| / \left\{ 1 + \sqrt{4|\Gamma| / |E^0|} \right\} \geqslant \operatorname{Const} |E^0|^{3/2} / |\Gamma|^{1/2}.$$

This completes the proof of our proposition.

3. Construction of (E_n) . In this section we construct a sequence $(E_n)_{n=2}^{\infty}$ of compact sets in D(0,2) so that

$$\gamma(E_n) \geqslant \operatorname{Const}/\sqrt{n} \,,$$

(3)
$$\operatorname{Bu}(E_n) \leqslant \operatorname{Const}(\log n)^2/n.$$

If such a sequence has been constructed, the assertion of our theorem is evidently deduced. Let $I_0 = [0, 1]$ and $U = I_0 \times [-1, 1]$. For two sets G, G' in U and a positive integer ν , we define

$$\sigma(G,G') = \left(\frac{1}{2}G + \frac{i}{2}\right) \cup \left(\frac{1}{2}G' + \frac{1-i}{2}\right), \quad \tau(\nu,G) = \bigcup_{\mu=0}^{\nu-1} \left(\frac{1}{\nu}G + \frac{\mu}{\nu}\right),$$

where $\zeta G + \zeta' = \{\zeta z + \zeta'; z \in G\}$ $(\zeta, \zeta' \in \mathbb{C})$. Given $n \ge 2$, we shall define two finite increasing sequences $(\nu'_k)_{k=1}^n$, $(\nu''_k)_{k=1}^n$ of positive integers later. To these two sequences, we associate n+1 sets G_0, G_1, \ldots, G_n as follows:

$$G_0 = \sigma(I_0, I_0), \quad G_k = \sigma\left(\tau(\nu_k', G_{k-1}), \tau(\nu_k'', G_{k-1})\right) \qquad (1 \leqslant k \leqslant n).$$

We put $E_n = G_n$ (see Figure 1).

Here is a lemma necessary for the proof of (2).

LEMMA 7. There exists a graph $\Gamma_n = \{x + iA_n(x); 0 \le x \le 1\}$ such that $|\Gamma_n| \le Const \ n \ and \ |(\Gamma_n \cap E_n)^0| \ge \frac{1}{2}$.

PROOF. For two sets G, G' in U, we put

$$\tilde{\sigma}(G,G') = \sigma(G,G') \cup \left(\frac{i}{2}I_0\right) \cup \left(iI_0 + \frac{1-i}{2}\right) \cup \left(-\frac{i}{2}I_0 + 1\right).$$

Then

$$|\tilde{\sigma}(G,G')| \le |\sigma(G,G')| + 2 \le \frac{1}{2}(|G| + |G'|) + 2.$$

For a positive integer ν and a set G in U, we have $|\tau(\nu, G)| \le |G|$. We now define n+1 arcwise connected sets $\Lambda_0, \Lambda_1, \ldots, \Lambda_n$ by

$$\Lambda_0 = \tilde{\sigma}(I_0, I_0), \quad \Lambda_k = \tilde{\sigma}(\tau(\nu_k', \Lambda_{k-1}), \tau(\nu_k'', \Lambda_{k-1})) \qquad (1 \leqslant k \leqslant n).$$

Then we have $\Lambda_n \supset E_n$ and

$$|\Lambda_n| \leq \frac{1}{2} \Big(|\tau(\nu_n', \Lambda_{n-1})| + |\tau(\nu_n'', \Lambda_{n-1})| \Big) + 2$$

$$\leq |\Lambda_{n-1}| + 2 \leq \cdots \leq |\Lambda_0| + 2n = 2n + 3.$$

We see that $\Lambda_n \cap \mathfrak{L}(r,0)$ is a singleton except for r > 0 such that $\mathfrak{L}(r,0)$ passes through one of the endpoints of E_n . Hence we can define a graph Γ_n satisfying the required two inequalities. Q.E.D.

We now show (2). Let Γ_n be the graph given in Lemma 7. We put $\tilde{E}_n = E_n \cap \Gamma_n$. Then our proposition shows that

$$\gamma(E_n) \geqslant \gamma(\tilde{E}_n) \geqslant \operatorname{Const} |\tilde{E}_n^0|^{3/2} / |\Gamma_n|^{1/2}$$

$$\geqslant \operatorname{Const} / |\Gamma_n|^{1/2} \geqslant \operatorname{Const} / \sqrt{n}.$$

Thus we have (2).

4. Proof of (3). In this section we define $(\nu'_k)_{k=1}^n$, $(\nu''_k)_{k=1}^n$ such that (3) holds. Geometric observation immediately yields

LEMMA 8. For $0 \le k \le n$, G_k is a union of $\prod_{j=0}^k (v_j' + v_j'')$ segments in $U(v_0' = v_0'' = 1)$.

LEMMA 9. Let X be a union of at most ν intervals in an interval I = [s, s+r] on \mathbb{R} and let Y be a set in I of the form $Y = \bigcup_{j=0}^{\mu''-1} (Y' + (jr/\mu''))$ for some $\mu'' \ge 1$ and $Y' \subset [s, s+(r/\mu'')]$. Then

$$|X \cup Y| \le |X| + |Y| - |X| |Y|/r + 3r\nu/\mu''$$
.

PROOF. We can write $X = \bigcup_{j=1}^{\mu'} J_j$ with mutually disjoint intervals $\{J_j\}_{j=1}^{\mu'}$, $\mu' \leq \nu$. Then, for each J_j , the number of k's satisfying $(s + (kr/\mu''), s + \{(k+1)r/\mu''\})$ $\subset J_j$ is larger than $(\mu''|J_j|/r) - 3$. Hence

$$|X \cap Y| = \sum_{j=1}^{\mu'} |J_j \cap Y| \ge \sum_{j=1}^{\mu'} |Y'| \left\{ \frac{\mu'' |J_j|}{r} - 3 \right\}$$

$$= \frac{\mu'' |Y'|}{r} \sum_{j=1}^{\mu'} |J_j| - 3\mu' |Y'| \ge \frac{|X| |Y|}{r} - \frac{3r\nu}{\mu''},$$

which gives the required inequality. Q.E.D.

For $z \in \mathbb{C}$ and $\xi \in \mathbb{R}$, we write $x(z, \xi) = \operatorname{Re} z + \xi \operatorname{Im} z$. The straight line passing through z and $x(z, \xi)$ is perpendicular to $\mathfrak{P}^{\arctan \xi}$. For a set $G \subset \mathbb{C}$, we write $G(\xi) = \{x(z, \xi); z \in G\}$. Then $(sG + \zeta)(\xi) = sG(\xi) + x(\zeta, \xi)$ $(s \in \mathbb{R}, \zeta \in \mathbb{C})$.

LEMMA 10. Let G be a set in U with at most ν components. For three nonnegative integers ν' , ν'' , m with $\nu'' \ge \nu' \ge m+1$, we put

$$H = H(\nu', \nu'', m, G) = (\frac{1}{2}\tau(\nu', G) + i/2) \cup (\frac{1}{2}\tau(\nu'', G) + (1-i)/2 + m).$$

Let $m \leq \xi \leq m + 1$. Then

$$|H(\xi)| \leq \left\{1 - \xi_m |G(\xi)|\right\} |G(\xi)| + \operatorname{Const}\left\{(m+1)/\nu' + \nu\nu'/\nu''\right\}$$

as long as $|G(\xi)| \leq 1$, where $\xi_m = \min\{\xi - m, m + 1 - \xi\}$.

PROOF. Suppose that $m \le \xi \le m + \frac{1}{2}$. We put

$$X_{j} = \frac{1}{2\nu'}G + \frac{j}{2\nu'} + \frac{i}{2} \qquad (0 \le j \le \nu' - 1),$$

$$Y_{j} = \frac{1}{2\nu''}G + \frac{j}{2\nu''} + \frac{1-i}{2} + m \qquad (j = 0, \pm 1, \pm 2, \dots).$$

Then $|X_j(\xi)| = |G(\xi)|/2\nu'$, $|Y_j(\xi)| = |G(\xi)|/2\nu''$. Let $\mu' = \iota(2\nu'\xi_m)$ and $\mu'' = \iota(2\nu''\xi_m)$, where $\iota(x)$ is the integral part of x. If $\mu' \leq 2m + 2$, then, by $2\nu'|X_j(\xi)| = 2\nu''|Y_j(\xi)| = |G(\xi)| \leq 1$, we have

$$|H(\xi)| = \left| \left(\frac{1}{2} \tau(\nu', G) + \frac{i}{2} \right) (\xi) \cup \left(\frac{1}{2} \tau(\nu'', G) + \frac{1-i}{2} + m \right) (\xi) \right|$$

$$= \left| \left\langle \bigcup_{j=0}^{\nu'-1} X_j(\xi) \right\rangle \cup \left\{ \bigcup_{j=0}^{\nu''-1} Y_j(\xi) \right\} \right|$$

$$\leq \sum_{j=0}^{\nu'-1} |X_j(\xi)| + \sum_{j=0}^{\nu''-1} |Y_j(\xi)| = |G(\xi)|$$

$$\leq |G(\xi)| + \left\{ \frac{\mu'+1}{2\nu'} - \xi_m \right\} \leq |G(\xi)| + \left\{ \frac{\mu'+1}{2\nu'} - \xi_m |G(\xi)|^2 \right\}$$

$$\leq \left\{ 1 - \xi_m |G(\xi)| \right\} |G(\xi)| + \frac{2m+3}{2\nu'},$$

which gives the required inequality. Suppose that $\mu' \ge 2m + 3$. We apply Lemma 9 to

$$X = \bigcup_{j=\nu'-\mu'+m+1}^{\nu'-m-2} X_j(\xi), \quad Y = \left\{ \bigcup_{j=-\infty}^{\infty} Y_j(\xi) \right\} \cap I,$$
$$I = \left[x((1-i)/2 + m, \xi), x(\mu''/2\nu'' + (1-i)/2 + m, \xi) \right];$$

geometric observation shows that $X \subset I$ and $Y = \bigcup_{j=0}^{\mu''-1} (Y' + (j|I|/\mu''))$ with

$$Y' = Y \cap \left[x((1-i)/2 + m, \xi), x((1-i)/2 + m, \xi) + |I|/\mu'' \right]$$

(see Figure 2). Since $\mu' \leqslant \nu'$, $|I| = \mu''/2\nu''$ and X is a union of at most $\nu\mu'$ intervals, Lemma 9 gives that

$$|X \cup Y| \le |X| + |Y| - |X| |Y|/|I| + 3\nu\mu'|I|/\mu''$$

$$\le |Y| + |X|\{1 - |Y|/|I|\} + 2\nu\nu'/\nu''.$$

Since $|G(\xi)| \le 1$, $|X| \le (\mu' - 2m - 2)|G(\xi)|/2\nu'$,

$$\frac{\mu' - 2m - 2}{2\nu'} \frac{\left| G(\xi) \right|}{\left| I \right|} \leq \frac{\xi_m - 1/2\nu'}{\left| I \right|} \leq \frac{\mu'' + 1/2\nu'' - 1/2\nu'}{\left| I \right|} \leq \frac{\mu''}{2\nu'' \left| I \right|} = 1$$

and

$$|Y| = \left| \left\langle \bigcup_{j=-m-1}^{\mu''+m} Y_j(\xi) \right\rangle \cap I \right| \leq \frac{\mu'' + 2m + 2}{2\nu''} |G(\xi)|,$$

we have

$$\begin{split} |X \cup Y| &\leq |Y| + \left(\frac{\mu' - 2m - 2}{2\nu'} |G(\xi)|\right) \left\{1 - \frac{|Y|}{|I|}\right\} + \frac{2\nu\nu'}{\nu''} \\ &= \frac{\mu' - 2m - 2}{2\nu'} |G(\xi)| + |Y| \left\{1 - \frac{\mu' - 2m - 2}{2\nu'} \frac{|G(\xi)|}{|I|}\right\} + \frac{2\nu\nu'}{\nu''} \\ &\leq \frac{\mu' - 2m - 2}{2\nu'} |G(\xi)| \\ &+ \left(\frac{\mu'' + 2m + 2}{2\nu''} |G(\xi)|\right) \left\{1 - \frac{\mu' - 2m - 2}{2\nu'} \frac{|G(\xi)|}{|I|}\right\} + \frac{2\nu\nu'}{\nu''} \\ &\leq \frac{\mu' - 2m - 2}{2\nu'} |G(\xi)| \\ &+ \frac{\mu''}{2\nu''} |G(\xi)| \left\{1 - \frac{\mu' - 2m - 2}{2\nu'} \frac{|G(\xi)|}{|I|}\right\} + \left\{\frac{m + 1}{\nu''} + \frac{2\nu\nu'}{\nu''}\right\} \\ &= \left\{\frac{\mu' - 2m - 2}{2\nu'} + \frac{\mu''}{2\nu''}\right\} |G(\xi)| - \frac{\mu' - 2m - 2}{2\nu'} |G(\xi)|^2 + \left\{\frac{m + 1}{\nu''} + \frac{2\nu\nu'}{\nu''}\right\} \\ &\leq \left\{\frac{\mu' - 2m - 2}{2\nu'} + \frac{\mu''}{2\nu''}\right\} |G(\xi)| - \xi_m |G(\xi)|^2 + \left\{\frac{2m + 3}{2\nu'} + \frac{m + 1}{\nu''} + \frac{2\nu\nu'}{\nu''}\right\}. \end{split}$$

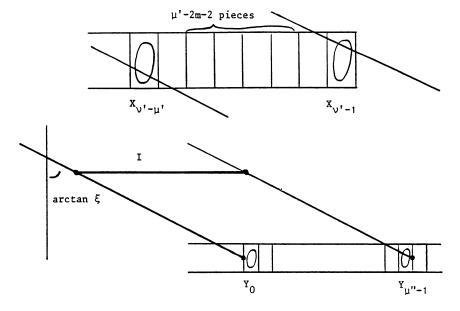


FIGURE 2

Thus

$$|H(\xi)| = \left| \left\{ \bigcup_{j=0}^{\nu'-1} X_{j}(\xi) \right\} \cup \left\{ \bigcup_{j=0}^{\nu''-1} Y_{j}(\xi) \right\} \right|$$

$$\leq \left| \left\{ \bigcup_{j=0}^{\nu'-1} X_{j}(\xi) - X \right\} \cup \left[\left\{ \bigcup_{j=0}^{m} + \bigcup_{j=\mu''-m-1}^{\nu''-1} \right\} Y_{j}(\xi) \right] \cup (X \cup Y) \right|$$

$$\leq \left\{ \sum_{j=0}^{\nu'-\mu'+m} + \sum_{j=\nu'-m-1}^{\nu'-1} \right\} |X_{j}(\xi)| + \left\{ \sum_{j=0}^{m} + \sum_{j=\mu''-m-1}^{\nu''-1} \right\} |Y_{j}(\xi)| + |X \cup Y|$$

$$= \left\{ \frac{\nu'-\mu'+2m+2}{2\nu'} + \frac{\nu''-\mu''}{2\nu''} \right\} |G(\xi)| + |X \cup Y| + \frac{2m+2}{2\nu''} |G(\xi)|$$

$$\leq \left\{ 1 - \xi_{m}|G(\xi)| \right\} |G(\xi)| + \operatorname{Const} \left\{ \frac{m+1}{\nu'} + \frac{\nu\nu'}{\nu''} \right\}.$$

In the case where $m + \frac{1}{2} < \xi \le m + 1$, we discuss $H(\xi)$ on an interval

$$\left[x\left(-\frac{\iota(2\nu''\xi_m)}{2\nu''}+\frac{1-i}{2}+m+\frac{1}{2},\xi\right),x\left(\frac{1-i}{2}+m+\frac{1}{2},\xi\right)\right].$$

Then, in the same manner as above, we obtain the required inequality. Q.E.D.

Lemma 11.
$$|G_k(\xi)| \le |G_{k-1}(\xi)| \le 1 \quad (\xi \in \mathbf{R}, 1 \le k \le n).$$

PROOF. We easily see that $|G_0(\xi)| \le 1$. We have

$$\begin{aligned} |G_{k}(\xi)| &= \left| \sigma \left(\tau \left(\nu'_{k}, G_{k-1} \right), \tau \left(\nu''_{k}, G_{k-1} \right) \right) (\xi) \right| \\ &= \left| \left(\frac{1}{2} \tau \left(\nu'_{k}, G_{k-1} \right) (\xi) + \frac{\xi}{2} \right) \cup \left(\frac{1}{2} \tau \left(\nu''_{k}, G_{k-1} \right) (\xi) + \frac{1 - \xi}{2} \right) \right| \\ &\leq \frac{1}{2} \left\{ \left| \tau \left(\nu'_{k}, G_{k-1} \right) (\xi) \right| + \left| \tau \left(\nu''_{k}, G_{k-1} \right) (\xi) \right| \right\} \\ &= \frac{1}{2} \left\{ \left| \bigcup_{j=0}^{\nu'_{k}-1} \left(\frac{1}{\nu'_{k}} G_{k-1}(\xi) + \frac{j}{\nu'_{k}} \right) \right| + \left| \bigcup_{j=0}^{\nu''_{k}-1} \left(\frac{1}{\nu''_{k}} G_{k-1}(\xi) + \frac{j}{\nu''_{k}} \right) \right| \right\} \\ &\leq |G_{k-1}(\xi)|, \quad \text{O.E.D.} \end{aligned}$$

We now define $(\nu'_k)_{k=1}^n$, $(\nu''_k)_{k=1}^n$ such that (3) holds. We see that $|E_n^{\theta}| = |E_n(\tan \theta)|\cos \theta$ $(-\pi/2 < \theta \le \pi/2)$. Hence we have

$$Bu(E_n) = \int_{-\pi/2}^{\pi/2} |E_n^{\theta}| d\theta = \int_{-\infty}^{\infty} \frac{|E_n(\xi)|}{(1+\xi^2)^{3/2}} d\xi$$
$$= \sum_{m=-n}^{n} \int_{m}^{m+1} + \int_{-\infty}^{-n} + \int_{n+1}^{\infty} \left(= \sum_{m=-n}^{n} \delta_m + \delta_{-n-1} + \delta_{n+1}, \text{say} \right).$$

We first estimate δ_0 . Recall that G_{k-1} is a union of $\prod_{j=0}^{k-1} (\nu_j' + \nu_j'')$ segments in U. Applying Lemma 10 to $G = G_{k-1}$, $\nu' = \nu_k'$, $\nu'' = \nu_k''$, m = 0, we have, for any $0 \le \xi < 1$,

$$\begin{aligned} |G_{k}(\xi)| &= \left| \sigma \left(\tau (\nu'_{k}, G_{k-1}), \tau (\nu''_{k}, G_{k-1}) \right) (\xi) \right| = \left| H(\nu'_{k}, \nu''_{k}, 0, G_{k-1}) (\xi) \right| \\ &\leq \left\{ 1 - \xi_{0} |G_{k-1}(\xi)| \right\} |G_{k-1}(\xi)| + \operatorname{Const} \left[\frac{1}{\nu'_{k}} + \left\{ \prod_{j=0}^{k-1} \left(\nu'_{j} + \nu''_{j} \right) \right\} \frac{\nu'_{k}}{\nu''_{k}} \right]. \end{aligned}$$

Since this estimate is valid for any $1 \le k \le n$, we obtain

$$(4) |E_{n}(\xi)| = |G_{n}(\xi)|$$

$$\leq \prod_{k=1}^{n} \left\{ 1 - \xi_{0} |G_{k-1}(\xi)| \right\} |G_{0}(\xi)| + C_{0} \sum_{k=1}^{n} \left[\frac{1}{\nu'_{k}} + \left\{ \prod_{j=0}^{k-1} \left(\nu'_{j} + \nu''_{j} \right) \right\} \frac{\nu'_{k}}{\nu''_{k}} \right]$$

$$\leq \left\{ 1 - \xi_{0} |E_{n}(\xi)| \right\}^{n} + C_{0} \rho_{n},$$

by Lemma 11, where C_0 is an absolute constant and

(5)
$$\rho_n = \sum_{k=1}^n \left[\frac{n}{\nu_k'} + \left\langle \prod_{j=0}^{k-1} \left(\nu_j' + \nu_j'' \right) \right\rangle \frac{\nu_k'}{\nu_k''} \right].$$

We define ξ_0' by $1/\xi_0' = 1/\xi_0 + C_0 n \rho_n$. If $|E_n(\xi)| > (1/n\xi_0') \log(10 + n\xi_0')$, then (4) shows that

$$\begin{split} \left| E_n(\xi) \right| & \leq \left\{ 1 - \xi_0 \frac{1}{n\xi_0'} \log \left(10 + n\xi_0' \right) \right\}^n + C_0 \rho_n \\ & \leq \left\{ 1 - \frac{1}{n} \log \left(n\xi_0' \right) \right\}^n + C_0 \rho_n \\ & \leq \frac{1}{n\xi_0'} + C_0 \rho_n \leq \frac{2}{n\xi_0'} \leq \frac{1}{n\xi_0'} \log \left(10 + n\xi_0' \right) < |E_n(\xi)|, \end{split}$$

which is a contradiction. Thus (4) yields that $|E_n(\xi)| \le (1/n\xi_0')\log(10 + n\xi_0')$ $(0 \le \xi \le 1)$. We have

(6)
$$\delta_{0} \leq \int_{0}^{1} |E_{n}(\xi)| d\xi \leq \frac{2}{n} + \int_{1/n}^{1-1/n} \frac{1}{n\xi'_{0}} \log(10 + n\xi'_{0}) d\xi$$
$$\leq \frac{2}{n} + 2 \int_{1/n}^{1/2} \left(\frac{1}{n\xi} + C_{0}\rho_{n} \right) \log(10 + n\xi) d\xi$$
$$\leq \operatorname{Const} \left\{ \frac{(\log n)^{2}}{n} + \rho_{n} \log n \right\}.$$

We next estimate δ_m $(1 \le m \le n)$. We have, for any $2 \le k \le n$, $m \le \xi \le m + 1$,

$$|G_k(\xi)| \leq \frac{1}{2} \left\{ \left| \tau \left(\nu_k', G_{k-1} \right) (\xi) \right| + \left| \tau \left(\nu_k'', G_{k-1} \right) (\xi) \right| \right\}.$$

To estimate $|\tau(\nu'_k, G_{k-1})(\xi)|$, we put

$$X_{j}^{*} = \frac{1}{\nu_{k}'} \left(\frac{1}{2} X^{*} + \frac{i}{2} \right) + \frac{j}{\nu_{k}'}, \quad Y_{j}^{*} = \frac{1}{\nu_{k}'} \left(\frac{1}{2} Y^{*} + \frac{1-i}{2} \right) + \frac{j}{\nu_{k}'}$$

$$\left(0 \leqslant j \leqslant \nu_{k}' - 1 \right),$$

where $X^* = \tau(\nu'_{k-1}, G_{k-2})$ and $Y^* = \tau(\nu''_{k-1}, G_{k-2})$. Lemmas 8, 10 and 11 show that

$$\begin{split} \left| \tau (\nu_{k}', G_{k-1})(\xi) \right| &= \left| \bigcup_{j=0}^{\nu_{k}'-1} \left\{ X_{j}^{*}(\xi) \cup Y_{j}^{*}(\xi) \right\} \right| \\ &\leq \sum_{j=0}^{m-1} \left| Y_{j}^{*}(\xi) \right| + \sum_{j=\nu_{k}'-m}^{\nu_{k}'-1} \left| X_{j}^{*}(\xi) \right| + \sum_{j=0}^{\nu_{k}'-m-1} \left| \left(X_{j}^{*} \cup Y_{j+m}^{*} \right)(\xi) \right| \\ &= \frac{m}{2\nu_{k}'} \left| Y^{*}(\xi) \right| + \frac{m}{2\nu_{k}'} \left| X^{*}(\xi) \right| \\ &+ \frac{\nu_{k}'-m}{\nu_{k}'} \left| \left\{ \left(\frac{1}{2} X^{*} + \frac{i}{2} \right) \cup \left(\frac{1}{2} Y^{*} + \frac{1-i}{2} + m \right) \right\}(\xi) \right| \\ &\leq \frac{m}{\nu_{k}'} \left| G_{k-2}(\xi) \right| + \frac{\nu_{k}'-m}{\nu_{k}'} \left| H(\nu_{k-1}', \nu_{k-1}'', m, G_{k-2})(\xi) \right| \\ &\leq \frac{m}{\nu_{k}'} + \frac{\nu_{k}'-m}{\nu_{k}'} \left[\left\{ 1 - \xi_{m} |G_{k-2}(\xi)| \right\} |G_{k-2}(\xi)| \right. \\ &+ \left. \operatorname{Const} \left\{ \frac{m+1}{\nu_{k-1}'} + \left(\prod_{j=0}^{k-2} \left(\nu_{j}' + \nu_{j}'' \right) \right) \frac{\nu_{k-1}'}{\nu_{k-1}'} \right\} \right] \\ &\leq \left\{ 1 - \xi_{m} |E_{n}(\xi)| \right\} |G_{k-2}(\xi)| + \operatorname{Const} \left[\frac{m+1}{\nu_{k-1}'} + \left(\prod_{j=0}^{k-2} \left(\nu_{j}' + \nu_{j}'' \right) \right) \frac{\nu_{k-1}'}{\nu_{k-1}'} \right]. \end{split}$$

These inequalities are valid with ν'_k replaced by ν''_k , and hence

$$\begin{aligned} |G_{k}(\xi)| &\leq \left\{1 - \xi_{n} |E_{n}(\xi)|\right\} |G_{k-2}(\xi)| \\ &+ \operatorname{Const} \left[\frac{m+1}{\nu_{k-1}'} + \left(\prod_{j=0}^{k-2} \left(\nu_{j}' + \nu_{j}''\right)\right) \frac{\nu_{k-1}'}{\nu_{k-1}''}\right]. \end{aligned}$$

Using this inequality for $k = n, n - 2, ..., n - 2(\iota(n/2) + 1)$, we have, with an absolute constant C'_0 ,

$$\begin{aligned} |E_{n}(\xi)| &= |G_{n}(\xi)| \leqslant \left\{1 - \xi_{m} |E_{n}(\xi)|\right\}^{\iota(n/2)} |E_{n-2\iota(n/2)}(\xi)| \\ &+ \operatorname{Const} \sum_{l=0}^{\iota(n/2)} \left[\frac{m+1}{\nu'_{n-2l-1}} + \left(\prod_{j=0}^{n-2l-2} \left(\nu'_{j} + \nu''_{j}\right)\right) \frac{\nu'_{n-2l-1}}{\nu''_{n-2l-1}} \right] \\ &\leqslant \left\{1 - \xi_{m} |E_{n}(\xi)|\right\}^{\iota(n/2)} + C'_{0} \rho_{n}. \end{aligned}$$

In the same manner as in the estimate of δ_0 , this yields that $|E_n(\xi)| \le (3/n\xi_m')\log(10 + n\xi_m')$ $(m \le \xi \le m + 1)$, where ξ_m' is defined by $1/\xi_m' = 1/\xi_m + C_0'n\rho_n$. Thus

(7)
$$\delta_{m} \leq \frac{1}{m^{3}} \int_{m}^{m+1} |E_{n}(\xi)| d\xi$$

$$\leq \frac{2}{m^{3}n} + \frac{1}{m^{3}} \int_{m+1/n}^{m+1-1/n} \frac{3}{n\xi'_{m}} \log(10 + n\xi'_{m}) d\xi$$

$$\leq \operatorname{Const} \left\{ \frac{(\log n)^{2}}{n} + \rho_{n} \log n \right\} \frac{1}{m^{3}} \qquad (1 \leq m \leq n).$$

By (6) and (7), we have

$$\sum_{m=0}^{n+1} \delta_m \leqslant \sum_{m=0}^{n} \delta_m + \int_{n+1}^{\infty} \frac{d\xi}{\xi^3}$$

$$\leqslant \operatorname{Const}\left\{\frac{\left(\log n\right)^2}{n} + \rho_n \log n\right\} \left\{1 + \sum_{m=1}^{n} \frac{1}{m^3}\right\} + \frac{1}{2(n+1)}$$

$$\leqslant \operatorname{Const}\left\{\frac{\left(\log n\right)^2}{n} + \rho_n \log n\right\}.$$

In the same manner, we have $\sum_{m=1}^{n+1} \delta_{-m} \leq \text{Const}\{(\log n)^2/n + \rho_n \log n\}$. Consequently we have

(8)
$$\operatorname{Bu}(E_n) = \sum_{m=-n-1}^{n+1} \delta_m \leqslant \operatorname{Const}\left\{\frac{(\log n)^2}{n} + \rho_n \log n\right\}.$$

Now we put

$$\begin{split} \nu_k' &= n^3 & \left(1 \leqslant k \leqslant n\right), \\ \nu_k'' &= n^2 \left\langle \prod_{j=0}^{k-1} \left(\nu_j' + \nu_j''\right) \right\rangle \nu_k' & \left(1 \leqslant k \leqslant n\right), \end{split}$$

where $\nu_0' = \nu_0'' = 1$. Then, by (5), we have $\rho_n \le 2/n$. By (8), we have Bu(E_n) \le Const(log n)²/n. This completes the proof of (3). As easily seen, (2) and (3) yield the required equality in our theorem. This completes the proof of our theorem.

REFERENCES

- 1. A. M. Davie and B. & Assendal, Analytic capacity and differentiability properties of finely harmonic functions, Acta Math. 149 (1982), 127-152.
 - 2. G. David, A lower estimate for the norm of the Cauchy integral operator on Lipschitz curves, preprint.
 - 3. J. Garnett, Analytic capacity and measure, Lecture Notes in Math., vol. 297, Springer-Verlag, 1972.
- 4. L. D. Ivanov, On sets of analytic capacity zero, Lecture Notes in Math., vol. 1043, Springer-Verlag, 1984, pp. 498-501.

- 5. J. L. Journé, Calderón-Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderón, Lecture Notes in Math., vol. 994, Springer-Verlag, 1983.
- 6. D. E. Marshall, Removable sets for bounded analytic functions, Lecture Notes in Math., vol. 1043, Springer-Verlag, 1984, pp. 485-490.
- 7. T. Murai, Boundedness of singular integral operators of Calderón type. VI, Nagoya Math. J. 102 (1986), 127-133.
 - 8. L. A. Santaló, Introduction to integral geometry, Hermann, 1953.

DEPARTMENT OF MATHEMATICS, COLLEGE OF GENERAL EDUCATION, NAGOYA UNIVERSITY, CHIKUSA-KU, NAGOYA, 464, JAPAN