THE BERGMAN SPACES, THE BLOCH SPACE, AND GLEASON'S PROBLEM

KEHE ZHU

ABSTRACT. Suppose f is a holomorphic function on the open unit ball B_n of \mathbb{C}^n . For $1 \leq p < \infty$ and m > 0 an integer, we show that f is in $L^p(B_n, dV)$ (with dV the volume measure) iff all the functions $\partial^m f/\partial z^\alpha$ ($|\alpha| = m$) are in $L^p(B_n, dV)$. We also prove that f is in the Bloch space of B_n iff all the functions $\partial^m f/\partial z^\alpha$ ($|\alpha| = m$) are bounded on B_n . The corresponding result for the little Bloch space of B_n is established as well. We will solve Gleason's problem for the Bergman spaces and the Bloch space of B_n before proving the results stated above. The approach here is functional analytic. We make extensive use of the reproducing kernels of B_n . The corresponding results for the polydisc in \mathbb{C}^n are indicated without detailed proof.

1. Introduction. Let B_n be the open unit ball in \mathbb{C}^n with dV the normalized volume measure on B_n . The Bergman space $L^p_a(B_n)$ is the closed subspace of $L^p(B_n, dV)$ consisting of holomorphic functions. The Bloch space $\mathscr{B}(B_n)$ is the space of holomorphic functions f on B_n with the property that $(1-|z|^2)|\nabla f(z)|$ is bounded on B_n , where $\nabla f(z) = (\partial f(z)/\partial z_1, \ldots, \partial f(z)/\partial z_n)$ is the analytic gradient of f. It is clear that a holomorphic function f on B_n is in $\mathscr{B}(B_n)$ iff the functions

$$(1-|z|^2)\frac{\partial f}{\partial z_1}(z),\ldots,(1-|z|^2)\frac{\partial f}{\partial z_2}(z)$$

are in $L^{\infty}(B_n)$.

For $\alpha = (\alpha_1, \dots, \alpha_n)$ with each α_i a nonnegative integer, we will write $|\alpha| = \alpha_1 + \dots + \alpha_n$, $z^{\alpha} = z_1^{\alpha_1} \dots z_n^{\alpha_n}$, $\overline{w^{\alpha}} = \overline{w}_1^{\alpha_1} \dots \overline{w}_n^{\alpha_n}$, and $\partial^{|\alpha|} f(z) / \partial z^{\alpha} = \partial^{|\alpha|} f(z) / \partial z_1^{\alpha_1} \dots \partial z_n^{\alpha_n}$.

The main results of this paper are Theorems A, B, and C.

THEOREM A. Let m be a positive integer and f be a holomorphic function on B_n . Then

- (1) $f \in L_a^p(B_n)$ $(1 \le p < +\infty)$ iff the functions $(1-|z|^2)^m \partial^m f(z)/\partial z^\alpha$ $(|\alpha| = m)$ are in $L^p(B_n, dV)$;
- (2) $f \in \mathcal{B}(B_n)$ iff the functions $(1-|z|^2)^m \partial^m f(z)/\partial z^\alpha$ ($|\alpha|=m$) are in $L^\infty(B_n, dV)$.

When n = 1, we will denote by **D** the open unit disc in **C** and dA the normalized area measure on **D**. We state the results in Theorem A for n = 1 as a corollary.

Received by the editors June 15, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 32A10, 46E15; Secondary 32H10, 47B38.

COROLLARY. Suppose m is a positive integer and f is analytic on D. Then

- (1) $f \in L_a^p(\mathbf{D})$ $(1 \le p < \infty)$ iff $(1 |z|^2)^m f^{(m)}(z)$ is in $L^p(\mathbf{D}, dA)$;
- (2) $f \in \mathcal{B}(\mathbf{D})$ iff $(1-|z|^2)^m f^{(m)}(z)$ is in $L^{\infty}(\mathbf{D}, dA)$.

Part (1) in the above corollary is due to Hardy, Littlewood, and Zabulionsis, see [6] and Theorem 5.6 of [3]. Part (2) in the above corollary is well known (see [1] or Theorem 5.5 of [3], for example). Thus Theorem A is a generalization of these known results on the disc to the open unit ball B_n . In particular, Theorem A partially answers a question posed at the end of §2 in [2]. Theorem A exhibits a special connection between the Bloch space and the Bergman spaces. We can think of the Bloch space $\mathscr{B}(B_n)$ as the Bergman space $L_a^p(B_n)$ as $p \to +\infty$. This property is unique for the balls among bounded symmetric domains. For the polydisc \mathbf{D}^n in \mathbf{C}^n , the "limit" of the Bergman spaces $L_a^p(\mathbf{D}^n)$ as $p \to \infty$ is strictly larger than the Bloch space. We state the result for the bidisc.

THEOREM B. Suppose f is holomorphic on \mathbf{D}^2 , and $1 \leq p < +\infty$. Then $f \in L^p_a(\mathbf{D}^2)$ iff the functions

$$(1-|z_1|^2)\frac{\partial f}{\partial z_1}(z_1,0), \quad (1-|z_2|^2)\frac{\partial f}{\partial z_2}(0,z_2), \quad (1-|z_1|^2)(1-|z_2|^2)\frac{\partial^2 f}{\partial z_1\partial z_2}(z_1,z_2)$$

are in $L^p(\mathbf{D}^2, dV)$.

The space of holomorphic functions f on \mathbf{D}^2 with the above three functions being in $L^{\infty}(\mathbf{D}^2)$ strictly contains the Bloch space $\mathscr{B}(\mathbf{D}^2)$ [7].

The main tools that we need in this paper are:

- (1) The boundedness of a family of projections from $L^p(B_n, dV)$ onto $L^p_a(B_n)$ for all $p \in [1, +\infty)$ (see [4]);
- (2) The generalized Gleason's problem for the Bergman spaces and the Bloch space, which we state as

THEOREM C. For any $m \geq 1$, there exist linear operators A_{α} ($|\alpha| = m$) on holomorphic functions in B_n such that

(1) If f and all its partial derivatives of order $\leq m-1$ are zero at 0, then

$$f(z) = \sum_{|\alpha|=m} z^{\alpha} A_{\alpha} f(z), \qquad z \in B_n;$$

- (2) Each A_{α} is bounded on $L_a^p(B_n)$ for all $1 \leq p < \infty$;
- (3) Each A_{α} is bounded on $\mathscr{B}(B_n)$.

We study the generalized Gleason's problem in §2. §3 is devoted to the proof of part (1) of Theorem A when 1 . Part (2) of Theorem A is proved in §4. The case <math>p = 1 is treated in §5. We outline the proof for Theorem B in §6.

The author wishes to thank Sheldon Axler and Karel Stroethoff for pointing out the reference [6]. The author is grateful to the referee for some very useful comments and simplifying the proof of Theorems 5 and 6. The referee also pointed out that some of the reproducing kernel arguments could be handled alternatively by integration by parts.

2. Gleason's problem. Let X be a space of holomorphic functions on a domain Ω in \mathbb{C}^n . Then Gleason's problem for X is the following: Given $a \in \Omega$, $f \in X$, and f(a) = 0, do there exist functions f_1, \ldots, f_n in X such that

$$f(z) = \sum_{k=1}^{n} (z_k - a_k) f_k(z)$$

for all z in Ω ?

The difficulty of this problem depends on Ω and X. Gleason originally asked the question for $\Omega = B_n$, a = 0, and X = the ball algebra $A(B_n)$ (the space of holomorphic functions in B_n which are continuous on \bar{B}_n). Gleason's problem is trivial if $\Omega = \mathbf{D}^n$ and a = 0. Gleason's original problem was solved by Leibenson, who observed that

$$f(z) - f(0) = \sum_{k=1}^{n} z_k \int_0^1 \frac{\partial f}{\partial z_k}(tz) dt$$

and then proved that each function

$$f_k(z) = \int_0^1 \frac{\partial f}{\partial z_k}(tz) dt$$

is in $A(B_n)$ if f is in $A(B_n)$. For more information on this problem, see 6.6 of [5].

We will use Leibenson's idea and a family of bounded projections given by Forelli and Rudin to solve a generalized version of Gleason's problem on B_n with X being the Bergman spaces or the Bloch space.

For any $r \geq 0$, let P_r be the operator defined by

$$P_r f(z) = \lambda_r \int_{B_r} \frac{(1-|w|^2)^r}{(1-\langle z,w\rangle)^{n+1+r}} f(w) dV(w),$$

where

$$\lambda_r^{-1} = \int_B (1 - |w|^2)^r dV(w).$$

When r = 0, P_r is just the Bergman projection of B_n , or the orthogonal projection from the Hilbert space $L^2(B_n, dV)$ onto the closed subspace $L^2(B_n)$. When r = m is a positive integer, we have

$$\lambda_m = (n+m)!/n!m!.$$

In particular, $\lambda_1 = n + 1$.

LEMMA 1. When r > 0, P_r is a (nonselfadjoint) bounded projection from $L^p(B_n, dV)$ onto $L^p_a(B_n)$ for all $1 \le p < \infty$. When r = 0, P_r is a selfadjoint bounded projection from $L^p(B_n, dV)$ onto $L^p_a(B_n)$ for all 1 .

PROOF. This is a special case of Theorem 7.1.4 of [5]. Also see [4]. \square

REMARK. The proof of Theorem 7.1.4 of [5] actually gives us a little more, that is, there exists a constant C (depending only on r and p) such that for all f in $L^p(B_n, dV)$ and

$$F(z) = \lambda_r \int_{B_r} \frac{(1-|w|^2)^r}{|1-\langle z,w\rangle|^{n+1+r}} |f(w)| \, dV(w)$$

we have $||F||_p \le C||f||_p$ $(1 \le p < \infty \text{ if } r > 0 \text{ and } 1 . We will need this fact later.$

An immediate consequence of Lemma 1 is the following.

COROLLARY 2. If r > 0, then P_r^* is bounded on $L^p(B_n, dV)$ for all $1 , where <math>P_r^*$ is given by

$$P_r^* f(z) = \lambda_r (1 - |z|^2)^r \int_{B_r} \frac{f(w) \, dV(w)}{(1 - \langle z, w \rangle)^{n+1+r}}.$$

We now look at Gleason's problem for the Bergman spaces and the Bloch space on B_n . To illustrate the ideas, we first solve the first-order Gleason's problem for the Bergman spaces and the Bloch space; then we will turn to higher order derivatives.

THEOREM 3. For any $1 \leq p < +\infty$, there exist bounded linear operators A_1, \ldots, A_n on $L^p_a(B_n)$ such that

$$f(z) = \sum_{k=1}^{n} z_k A_k f(z)$$

for all z in B_n and f in $L_a^p(B_n)$ with f(0) = 0.

PROOF. Let A_k $(1 \le k \le n)$ be defined by

$$A_k f(z) = \int_0^1 \frac{\partial f}{\partial z_k}(tz) dt.$$

Then for any holomorphic function f on B_n , we have

$$f(z) - f(0) = \sum_{k=1}^{n} z_k A_k f(z), \qquad z \in B_n.$$

 A_k is obviously linear, so it remains to show that A_k is bounded on $L_a^p(B_n)$ for $1 \le p < +\infty$.

Given $f \in L_a^p(B_n)$, by Lemma 1, we can write

$$f(z) = (n+1) \int_{B_{\pi}} \frac{(1-|w|^2)f(w) \, dV(w)}{(1-\langle z,w \rangle)^{n+2}}.$$

Differentiating under the integral, we get

$$\frac{\partial f}{\partial z_k}(z) = (n+1)(n+2) \int_{B_n} \frac{\bar{w}_k(1-|w|^2)f(w)}{(1-\langle z,w\rangle)^{n+3}} dV(w)$$

and so

$$\begin{split} A_k f(z) &= \int_0^1 \frac{\partial f}{\partial z_k}(tz) \, dt = (n+1)(n+2) \int_0^1 \, dt \int_{B_n} \frac{\bar{w}_k (1-|w|^2) f(w)}{(1-t\langle z,w\rangle)^{n+3}} \, dV(w) \\ &= (n+1)(n+2) \int_{B_n} \bar{w}_k (1-|w|^2) f(w) \, dV(w) \int_0^1 \frac{dt}{(1-t\langle z,w\rangle)^{n+3}} \\ &= (n+1) \int_{B_n} \frac{\bar{w}_k (1-|w|^2) f(w)}{(1-\langle z,w\rangle)^{n+2}} \cdot \frac{1-(1-\langle z,w\rangle)^{n+2}}{\langle z,w\rangle} \, dV(w). \end{split}$$

Note that

$$\frac{1-(1-\langle z,w\rangle)^{n+2}}{\langle z,w\rangle}$$

is a polynomial in z and \bar{w} . Thus we can find a constant C > 0 such that

$$|A_k f(z)| \le C(n+1) \int_{B_n} \frac{(1-|w|^2)|f(w)|}{|1-\langle z,w\rangle|^{n+2}} \, dV(w).$$

By the remark after Lemma 1, we see that A_k is bounded on $L_a^p(B_n)$ for all $1 \le p < +\infty$. \square

Recall that the Bloch space $\mathscr{B}(B_n)$ consists of holomorphic functions f with the property that $(1-|z|^2)|\nabla f(z)|$ is bounded on B_n , where $\nabla f(z) = (\partial f(z)/\partial z_1, \ldots, \partial f(z)/\partial z_n)$ is the analytic gradient of f. Define a norm $\|\cdot\|_{\mathscr{B}}$ on $\mathscr{B}(B_n)$ by

$$||f||_{\mathscr{B}} = |f(0)| + \sup_{z \in B_n} (1 - |z|^2) |\nabla f(z)|.$$

Then $\mathscr{B}(B_n)$ becomes a Banach space. Note that $||f||_{\mathscr{B}}$ is equivalent to $|f(0)| + \sum_{k=1}^n \sup_{z \in B_n} (1-|z|^2) |\partial f(z)/\partial z_k|$.

The little Bloch space $\mathscr{B}_0(B_n)$ is the subspace of $\mathscr{B}(B_n)$ consisting of functions f with $(1-|z|^2)|\nabla f(z)| \to 0$ as $|z| \to 1^-$. It is well known that $\mathscr{B}_0(B_n)$ is the closure of the polynomials in $\mathscr{B}(B_n)$. If P is the Bergman projection and $\mathbf{C}(\bar{B}_n)$ is the space of continuous complex functions on \bar{B}_n , then we have $\mathscr{B}(B_n) = PL^{\infty}(B_n)$, $\mathscr{B}_0(B_n) = P\mathbf{C}(\bar{B}_n)$. See [7].

THEOREM 4. There exist bounded linear operators A_1, \ldots, A_n on $\mathscr{B}(B_n)$ such that

$$f(z) - f(0) = \sum_{k=1}^{n} z_k A_k f(z)$$

for all $f \in \mathcal{B}(B_n)$ and $z \in B_n$. Moreover, each A_k leaves the little Bloch space $\mathcal{B}_0(B_n)$ invariant.

PROOF. Let A_k be the operators defined in the proof of Theorem 3. We must prove that each A_k maps $\mathscr{B}(B_n)$ (or $\mathscr{B}_0(B_n)$) into $\mathscr{B}(B_n)$ (or $\mathscr{B}_0(B_n)$) boundedly. We prove the result for $\mathscr{B}(B_n)$. A similar proof can be given to $\mathscr{B}_0(B_n)$ using the equality $\mathscr{B}_0(B_n) = PC(\bar{B}_n)$.

Given $f \in \mathcal{B}(B_n)$, we can find a function $\varphi \in L^{\infty}(B_n)$ such that $f = P\varphi$ and $C^{-1}||f||_{\mathcal{B}} \leq ||\varphi||_{\infty} \leq C||f||_{\mathcal{B}}$, where C is some positive constant independent of f. (The function φ can even be explicitly written down, see [7].) Now

$$f(z) = \int_{B_n} \frac{\varphi(w) \, dV(w)}{(1 - \langle z, w \rangle)^{n+1}},$$

and differentiating under the integral gives

$$\frac{\partial f}{\partial z_k}(z) = (n+1) \int_{B_n} \frac{\bar{w}_k \varphi(w) \, dV(w)}{(1 - \langle z, w \rangle)^{n+2}}.$$

This implies that (by the proof of Theorem 3)

$$A_k f(z) = \int_0^1 \frac{\partial f}{\partial z_k}(tz) dt = \int_{B_n} \frac{\bar{w}_k \varphi(w)}{(1 - \langle z, w \rangle)^{n+1}} Q(z, w) dV(w),$$

where Q(z, w) is the polynomial (in z and \bar{w})

$$Q(z,w) = \frac{1 - (1 - \langle z, w \rangle)^{n+1}}{\langle z, w \rangle} = \sum_{k=0}^{n} (1 - \langle z, w \rangle)^{k}.$$

Write

$$Q(z, w) = \sum a_{\alpha, \beta} z^{\alpha} \bar{w}^{\beta}$$
 (finite sum).

Then

$$A_k f(z) = \sum a_{\alpha,\beta} z^{\alpha} \int_{B_n} \frac{\bar{w}_k \bar{w}^{\beta} \varphi(w)}{(1 - \langle z, w \rangle)^{n+1}} \, dV(w).$$

Since each function $\bar{w}_k \bar{w}^{\beta} \varphi(w)$ is still in $L^{\infty}(B_n)$ with sup-norm $\leq ||\varphi||_{\infty}$, and $\mathscr{B}(B_n) = PL^{\infty}(B_n)$, each function

$$\int_{B_n} \frac{\bar{w}_k \bar{w}^\beta \varphi(w)}{(1 - \langle z, w \rangle)^{n+1}} \, dV(w)$$

is in $\mathscr{B}(B_n)$ (as a function in z). Moreover, its norm in $\mathscr{B}(B_n)$ is at most a constant multiple of the norm of f in $\mathscr{B}(B_n)$ (by the inequality $C^{-1}||f||_{\mathscr{B}} \leq ||\varphi||_{\infty} \leq C||f||_{\mathscr{B}}$). It is also easy to see that multiplication by z^{α} is a bounded operator on $\mathscr{B}(B_n)$. Therefore, A_k is a bounded linear mapping on $\mathscr{B}(B_n)$ for all $1 \leq k \leq n$. This completes the proof of Theorem 4. \square

Next we generalize Theorems 3 and 4 to higher orders.

THEOREM 5. Suppose $m \ge 1$ and $1 \le p < +\infty$. Then for each $\alpha = (\alpha_1, \ldots, \alpha_n)$ with $|\alpha| = m$ there exists a bounded linear operator A_{α} on $L_a^p(B_n)$ such that if f and all its partial derivatives of order $\le m-1$ are zero at 0, then

$$f(z) = \sum_{|\alpha| = m} z^{\alpha} A_{\alpha} f(z)$$

for all z in B_n .

PROOF. For simplicity of notation, we prove the theorem for m=2 (the case m=1 is just Theorem 3). Given f holomorphic in B_n , by Theorem 3, we have

$$f(z) = f(0) + \sum_{i=1}^{n} z_i A_i f(z).$$

It is easy to see that

$$\frac{\partial f}{\partial z_i}(0) = A_i f(0) \qquad (1 \le i \le n).$$

Now applying Theorem 3 to each of the functions $A_i f$, we get

$$f(z) = f(0) + \sum_{i=1}^{n} z_i \left(\frac{\partial f}{\partial z_i}(0) + \sum_{j=1}^{n} z_j A_j A_i f(z) \right)$$
$$= f(0) + \sum_{i=1}^{n} \frac{\partial f}{\partial z_i}(0) z_i + \sum_{j=1}^{n} z_i z_j A_i A_j f(z).$$

Let $A_{ij} = A_i A_j$; then by Theorem 3, A_{ij} is bounded on all $L_a^p(B_n)$ $(1 \le p < +\infty)$. Moreover, if f(0) and all the first-order partial derivatives $(\partial f/\partial z_i)(0)$ are zero, then

$$f(z) = \sum_{i,j=1}^{n} A_{ij} f(z).$$

This completes the proof of Theorem 5. \square

Similarly, we can prove the following generalization of Theorem 4.

THEOREM 6. Suppose $m \geq 1$. Then for each $\alpha = (\alpha_1, \ldots, \alpha_n)$ with $|\alpha| = m$, there exists a bounded linear operator A_{α} on $\mathcal{B}(B_n)$ such that if f and all its partial derivatives of order $\leq m-1$ are zero at 0, then

$$f(z) = \sum_{|\alpha|=m} z^{\alpha} A_{\alpha} f(z)$$

for all z in B_n . Moreover, each A_{α} maps $\mathscr{B}_0(B_n)$ into $\mathscr{B}_0(B_n)$.

3. Characterizations of $L_a^p(B_n)$ for $1 . For any <math>m \ge 1$ and $|\alpha| = m$, we define the following operators:

$$S_{\alpha}f(z) = \bar{z}^{\alpha}f(z), \quad T_{\alpha}f(z) = (1 - |z|^2)^m \frac{\partial^m f}{\partial z^{\alpha}}(z),$$

$$P_m f(z) = \lambda_m \int_{B_n} \frac{(1 - |w|^2)^m}{(1 - \langle z, w \rangle)^{n+m+1}} f(w) \, dV(w).$$

 S_{α} and P_m are well-defined for all functions f in $L^1(B_n, dV)$, while T_{α} is only defined for holomorphic functions on B_n .

LEMMA 7. If $1 and <math>f \in L^p_a(B_n)$, then for all $m \ge 1$ and $|\alpha| = m$, the functions $T_\alpha f(z) = (1 - |z|^2)^m \partial^m f(z)/\partial z^\alpha$ are in $L^p(B_n, dV)$. Moreover, there is a constant C > 0 such that $||T_\alpha f||_p \le C||f||_p$ for all $f \in L^p_a(B_n)$.

PROOF. Given $f \in L_a^p(B_n)$ with 1 , we can write

$$f(z) = \int_{B_n} \frac{f(w) \, dV(w)}{(1 - \langle z, w \rangle)^{n+1}}.$$

Differentiating under the integral gives

$$\frac{\partial^m f}{\partial z^{\alpha}}(z) = (n+1)\cdots(n+m)\int_{B_n} \frac{\bar{w}^{\alpha}f(w)}{(1-\langle z,w\rangle)^{n+m+1}} dV(w).$$

This implies that

$$T_{\alpha}f(z) = (1 - |z|^{2})^{m} \frac{\partial^{m} f}{\partial z^{\alpha}}(z)$$

$$= (n+1)\cdots(n+m)(1 - |z|^{2})^{m} \int_{B_{n}} \frac{S_{\alpha}f(w) dV(w)}{(1 - \langle z, w \rangle)^{n+m+1}}$$

$$= \frac{(n+1)\cdots(n+m)}{\lambda_{m}} P_{m}^{*} S_{\alpha}f(z) = m! P_{m}^{*} S_{\alpha}f(z).$$

Since S_{α} and P_m^* are bounded operators on $L^p(B_n, dV)$ for all 1 , thus we have

$$||T_{\alpha}f||_{p} \leq m!||P_{m}^{*}S_{\alpha}||_{p}||f||_{p}.$$

This proves Lemma 7.

The next three lemmas will establish the converse of Lemma 7.

LEMMA 8. Let $1 \le p < +\infty$ and $m \ge 1$. Then there exists a constant C > 0 such that every function f in $L_a^p(B_n)$ can be written as

$$f(z) = f_0(z) + \sum_{|\alpha|=m} z^{\alpha} f_{\alpha}(z)$$

with f_0 a polynomial of order $\leq m-1$ and $||f_0||_p \leq C||f||_p$, $||f_{\alpha}|| \leq C||f||_p$.

PROOF. Let $f_0(z)$ be the (m-1)th order Taylor polynomial of f at 0. Let $g=f-f_0$. Then g and all its partial derivatives of order $\leq m-1$ are zero at 0. By Theorem 5, there are functions f_{α} in $L_a^p(B_n)$ such that

$$g(z) = \sum_{|\alpha|=m} z^{\alpha} f_{\alpha}(z)$$

and $||f_{\alpha}||_p \leq C_1||g||_p$ for all $|\alpha| = m$, where C_1 is a constant independent of f. So it remains to show that $||f_0||_p \leq C_2||f||_p$ for some other constant $C_2 > 0$.

Given f in $L_a^p(B_n)$, write f = Pf and differentiate under the integral; we get

$$\frac{\partial^{|\beta|} f}{\partial z^{\beta}}(0) = (n+1)\cdots(n+|\beta|) \int_{B_n} \bar{w}^{\beta} f(w) \, dV(w).$$

This implies that

$$\left|\frac{\partial^{|\beta|} f}{\partial z^{\beta}}(0)\right| \le (n+1)\cdots(n+|\beta|)||f||_p \qquad (1 \le p < +\infty).$$

Since $f_0(z)$ is a polynomial of order $\leq m-1$ with coefficients linearly depending on $(\partial^{|\beta|} f/\partial z^{\beta})(0)$, we must have $||f_0||_p \leq C_2||f||_p$ for some constant $C_2 > 0$ independent of f. This finishes the proof of Lemma 8. \square

For any $m \ge 1$, $1 \le p < +\infty$, and f holomorphic in B_n , let

$$||f||_{m,p} = ||f_0||_p + \sum_{|\alpha|=m} ||T_{\alpha}f||_p,$$

where $f(z) = f_0(z) + \sum_{|\alpha|=m} z^{\alpha} f_{\alpha}(z)$ is the decomposition given in the proof of Lemma 8. By Lemmas 7 and 8, $|| \quad ||_{m,p}$ is a well-defined norm on $L_a^p(B_n)$ for 1 . Moreover, there exists a constant <math>C > 0 such that $||f||_{m,p} \le C||f||_p$ for all f in $L_a^p(B_n)$. Note that

$$||f_0||_p \sim \sum_{|\beta| < m-1} \left| \frac{\partial^{|\beta|} f}{\partial z^{\beta}}(0) \right|.$$

Thus

$$||f||_{m,p} \sim \sum_{|\beta| \leq m-1} \left| \frac{\partial^{|\beta|} f}{\partial z^{\beta}}(0) \right| + \sum_{|\alpha|=m} ||T_{\alpha} f||_{p}.$$

LEMMA 9. Suppose 1 . Then there exists a constant <math>C > 0 such that $||f||_p \le C||f||_{m,p}$ for all $f \in L^p_a(B_n)$.

PROOF. Given $f \in L^p_a(B_n)$, then by the duality $L^p_a(B_n)^* \cong L^q_a(B_n)$ $(\frac{1}{p} + \frac{1}{q} = 1)$, we have

$$||f||_p \le C_1 \sup\{|\langle f, g \rangle| \colon g \in L_a^q(B_n), \ ||g||_q = 1\},$$

where C_1 is a constant and the pairing \langle , \rangle is given by

$$\langle f, g \rangle = \int_{B_n} f(z) \overline{g(z)} \, dV(z).$$

For any $g \in L_a^q(B_n)$, by Lemma 8, we can write

$$g(z) = g_0(z) + \sum_{|\alpha|=m} z^{\alpha} g_{\alpha}(z)$$

or

$$g = g_0 + \sum_{|\alpha| = m} S_{\alpha}^* g_{\alpha}$$

with $||g_0||_q \leq C_2||g||_q$, $||g_\alpha||_q \leq C_2||g||_q$ for some constant $C_2 > 0$. Thus we have

$$\begin{split} \langle f,g \rangle &= \langle f,g_0 \rangle + \sum_{|\alpha|=m} \langle f,S_{\alpha}^*g_{\alpha} \rangle \\ &= \langle f_0,g_0 \rangle + \sum_{|\alpha|=m} \langle S_{\alpha}f,g_{\alpha} \rangle \\ &= \langle f_0,g_0 \rangle + \sum_{|\alpha|=m} \langle S_{\alpha}f,P_mg_{\alpha} \rangle \\ &= \langle f_0,g_0 \rangle + \sum_{|\alpha|=m} \langle P_m^*S_{\alpha}f,g_{\alpha} \rangle \\ &= \langle f_0,g_0 \rangle + \frac{1}{m!} \sum_{|\alpha|=m} \langle T_{\alpha}f,g_{\alpha} \rangle. \end{split}$$

This implies that

$$\begin{split} |\langle f,g\rangle| &\leq ||f_0||_p ||g_0||_q + \frac{1}{m!} \sum_{|\alpha|=m} ||T_\alpha f||_p ||g_\alpha||_q \\ &\leq \left[||f_0||_p + \frac{1}{m!} \sum_{|\alpha|=m} ||T_\alpha f||_p \right] C_2 ||g||_q \leq C_2 ||f||_{m,p} ||g||_q. \end{split}$$

Hence

$$||f||_p \le C_1 \sup\{|\langle f, g \rangle| : g \in L_a^p(B_n), ||g||_q = 1\}$$

 $\le C_1 C_2 ||f||_{m,p}.$

This completes the proof of Lemma 9. \Box

REMARK. Lemmas 7 and 9 imply that $|| \ ||_p$ and $|| \ ||_{m,p}$ are equivalent norms on $L^p_a(B_n)$ for all $1 and <math>m \ge 1$. However, they do not say that $||f||_{m,p} < +\infty$ implies $||f||_p < +\infty$. We needed the assumption $f \in L^p_a(B_n)$ to justify the "inner product" $\langle f,g \rangle$ and the applicability of all the operators $P_m, P_m^*, S_\alpha, S_\alpha^*$. The following lemma overcomes this difficulty.

LEMMA 10. Suppose $m \ge 1$, 1 , and <math>f is holomorphic in B_n . Then $||f||_{m,p} < +\infty$ implies $f \in L^p_a(B_n)$.

PROOF. Let $f_r(z) = f(rz)$, $r \in (0,1)$. Then f_r is in $L_a^p(B_n)$ for all $1 . Moreover, for <math>|\alpha| = m$,

$$\begin{split} \int_{B_n} |T_{\alpha} f_r(z)|^p \, dV(z) &= \int_{B_n} (1 - |z|^2)^{mp} \left| \frac{\partial^m f_r}{\partial z^{\alpha}}(z) \right|^p \, dV(z) \\ &= \int_{B_n} r^{mp} (1 - |z|^2)^{mp} \left| \frac{\partial^m f}{\partial z^{\alpha}}(rz) \right|^p \, dV(z) \\ &\leq r^{mp} \int_{B_n} (1 - r^2 |z|^2)^{mp} \left| \frac{\partial^m f}{\partial z^{\alpha}}(rz) \right|^p \, dV(z) \\ &= \frac{r^{mp}}{r^{2n}} \int_{|z| < r} (1 - |z|^2)^{mp} \left| \frac{\partial^m f}{\partial z^{\alpha}}(z) \right|^p \, dV(z) \\ &\leq \frac{r^{mp}}{r^{2n}} \int_{B_n} (1 - |z|^2)^{mp} \left| \frac{\partial^m f}{\partial z^{\alpha}}(z) \right|^p \, dV(z) \\ &= \frac{1}{r^{2n - mp}} \int_{B_n} |T_{\alpha} f(z)|^p \, dV(z). \end{split}$$

Thus we can find a constant $C_1 > 0$ such that

$$||T_{\alpha}f_{r}||_{p} \leq C_{1}||T_{\alpha}f||_{p}$$

for all $r \in [\frac{1}{2}, 1)$. It is easy to find another constant $C_2 > 0$ such that

$$||f_r||_{m,p} \leq C_2 ||f||_{m,p}$$

for all $r \in [\frac{1}{2}, 1)$. By Lemma 9,

$$||f_r||_p \le C_3 ||f||_{m,p}$$

for all $r \in [\frac{1}{2}, 1)$. Letting $r \to 1^-$, we get

$$||f||_p \le C_3 ||f||_{m,p} < +\infty.$$

This proves that f is in $L_a^p(B_n)$ if $||f||_{m,p} < +\infty$. \square Summarizing Lemmas 6-10, we have proved the main result of this section.

THEOREM 11. Suppose $1 and <math>m \ge 1$ is an integer, then a holomorphic function f on B_n is in $L^p_a(B_n)$ iff all the functions $(1-|z|^2)^m \partial^m f(z)/\partial z^\alpha$ $(|\alpha|=m)$ are in $L^p(B_n,dV)$. Moreover, $||\cdot||_p$ and $||\cdot||_{m,p}$ are equivalent norms on $L^p_a(B_n)$.

COROLLARY 12. Suppose $1 and <math>m \ge 1$. Then an analytic function f on \mathbf{D} is in $L^p_a(\mathbf{D})$ iff $(1-|z|^2)^m f^{(m)}(z)$ is in $L^p(\mathbf{D}, dV)$.

4. Characterizations of the Bloch space $\mathscr{B}(B_n)$. For $m \geq 1$ and f holomorphic in B_n , let

$$||f||_{m,\mathscr{B}} = \sum_{|\alpha| \le m-1} \left| \frac{\partial^{|\alpha|} f}{\partial z^{\alpha}}(0) \right| + \sum_{|\alpha| = m} \sup_{z \in B_n} \left| (1 - |z|^2)^m \frac{\partial^m f}{\partial z^{\alpha}}(z) \right|.$$

The main result of this section is that f belongs to $\mathscr{B}(B_n)$ iff $||f||_{m,\mathscr{B}} < +\infty$. Moreover, $|| \ ||_{\mathscr{B}}$ and $|| \ ||_{m,\mathscr{B}}$ are equivalent norms on $\mathscr{B}(B_n)$. A similar result will be proven for the little Bloch space $\mathscr{B}_0(B_n)$.

LEMMA 13. For any $m \ge 1$, there exists a constant C > 0 such that $||f||_{m,\mathscr{B}} \le C||f||_{\mathscr{B}}$ for all f in $\mathscr{B}(B_n)$.

PROOF. By [7], there exists a constant $C_1 > 0$ such that for any $f \in \mathcal{B}(B_n)$, we can find $\varphi \in L^{\infty}(B_n)$ with $f = P\varphi$ and $||\varphi||_{\infty} \leq C_1||f||_{\mathscr{B}}$. Also there exists a constant $C_2 > 0$ such that $||P\varphi||_{\mathscr{B}} \leq C_2||\varphi||_{\infty}$ for all φ in $L^{\infty}(B_n)$. Now suppose f is in $\mathscr{B}(B_n)$. Choose $\varphi \in L^{\infty}(B_n)$ such that $f = P\varphi$ with $||\varphi||_{\infty} \leq C_1||f||_{\mathscr{B}}$. Write

$$f(z) = \int_{B_n} \frac{\varphi(w) \, dV(w)}{(1 - \langle z, w \rangle)^{n+1}}$$

and differentiate under the integral. Then for any $|\alpha| = m$ we have

$$\frac{\partial^m f}{\partial z^{\alpha}}(z) = (n+1)\cdots(n+m)\int_{B_{-}} \frac{\bar{w}^{\alpha}\varphi(w)\,dV(w)}{(1-\langle z,w\rangle)^{n+m+1}}.$$

This implies that

$$T_{\alpha}f(z) = (1 - |z|^2)^m \frac{\partial^m f}{\partial z^{\alpha}}(z) = m! P_m^* S_{\alpha} \varphi(z).$$

Since S_{α} and P_m^* are bounded on $L^{\infty}(B_n)$ by Corollary 2, we have

$$||T_{\alpha}f||_{\infty} \le m!||P_{m}^{*}S_{\alpha}||_{\infty}||\varphi||_{\infty} \le C_{1}m!||P_{m}^{*}S_{\alpha}||_{\infty}||f||_{\mathscr{B}}$$

for all $\alpha = (\alpha_1, \ldots, \alpha_n)$ with $|\alpha| = m$. We also have

$$\left| \frac{\partial^{|\beta|} f}{\partial z^{\beta}}(0) \right| = (n+1) \cdots (n+|\beta|) \left| \int_{B_n} \bar{w}^{\beta} \varphi(w) \, dV(w) \right|$$

$$\leq (n+1) \cdots (n+|\beta|) ||\varphi||_{\infty}$$

$$\leq C_1(n+1) \cdots (n+|\beta|) ||f||_{\mathscr{B}}$$

for all $\beta = (\beta_1, \dots, \beta_n) \ge 0$. Therefore, we can find a constant C > 0 such that $||f||_{m,\mathscr{B}} \le C||f||_{\mathscr{B}}$ for all f in $\mathscr{B}(B_n)$. This completes the proof of Lemma 13. \square

LEMMA 14. Suppose $m \geq 1$, and f is holomorphic in B_n . Then $||f||_{m,\mathscr{B}} < +\infty$ implies that $f \in \mathscr{B}(B_n)$. Moreover, there exists a constant C > 0 such that $||f||_{\mathscr{B}} \leq C||f||_{m,\mathscr{B}}$ for all f in $\mathscr{B}(B_n)$.

PROOF. Suppose $||f||_{m,\mathscr{B}} < +\infty$. Then it is clear that $||f||_{m,p} < +\infty$ for all $1 \leq p < +\infty$. By Lemma 10, we have $f \in L^2_a(B_n)$. Since $L^1_a(B_n)^* \cong \mathscr{B}(B_n)$ (see [7] for example) with the usual integral pairing, it suffices to show that f induces a bounded linear functional on $L^1_a(B_n)$. Note that $L^2_a(B_n)$ is dense in $L^1_a(B_n)$, so it suffices to produce a constant C > 0 such that $|\langle f, g \rangle| = |\int_{\Omega} f(z) \overline{g(z)} \, dV(z)| \leq C||f||_{m,\mathscr{B}}||g||_1$ for all g in $L^2_a(B_n)$. (C is independent of f and g.)

Given $g \in L_a^2(B_n)$, write

$$g = g_0 + \sum_{|\alpha| = m} S_{\alpha}^* g_{\alpha}$$

with $||g_0||_1 \le C_1||g||_1$, $||g_\alpha||_1 \le C_1||g||_1$ (by Lemma 8) for some constant $C_1 > 0$ (independent of g). Now

$$\begin{split} \langle f, g \rangle &= \langle f, g_0 \rangle + \sum_{|\alpha| = m} \langle f, S_{\alpha}^* g_{\alpha} \rangle \\ &= \langle f_0, g_0 \rangle + \sum_{|\alpha| = m} \langle P_m^* S_{\alpha} f, g_{\alpha} \rangle \\ &= \langle f_0, g_0 \rangle + \frac{1}{m!} \sum_{|\alpha| = m} \langle T_{\alpha} f, g_{\alpha} \rangle. \end{split}$$

It follows that

$$|\langle f, g \rangle| \le |\langle f_0, g_0 \rangle| + \frac{1}{m!} \sum_{|\alpha|=m} ||T_{\alpha} f||_{\infty} ||f_{\alpha}||_1.$$

It is also easy to see that

$$|\langle f_0, g_0 \rangle| \le ||f_0||_{\infty} ||g_0||_1 \le C_2 \left(\sum_{|\beta| \le m-1} \left| \frac{\partial^{|\beta|} f}{\partial z^{\beta}}(0) \right| \right) ||g_0||_1.$$

Therefore, we can find a constant $C_3 > 0$ such that

$$|\langle f, g \rangle| \leq C_3 ||f||_{m,\mathscr{B}} ||g||_1$$

for all g in $L_a^2(B_n)$. This shows that $f \in \mathcal{B}(B_n)$ and $||f||_{\mathcal{B}} \leq C||f||_{m,\mathcal{B}}$ for some constant C > 0 independent of f. This completes the proof of Lemma 4. \square

Combining Lemmas 13 and 14, we have proved the following

THEOREM 15. Given $m \geq 1$ and f holomorphic in B_n , we have $f \in \mathcal{B}(B_n)$ iff the functions $(1-|z|^2)^m \partial^m f(z)/\partial z^\alpha$ ($|\alpha|=m$) are all in $L^\infty(B_n)$. Moreover, $||\cdot||_{\mathscr{B}}$ and $||\cdot||_{m,\mathscr{B}}$ are equivalent norms on $\mathscr{B}(B_n)$.

We prove a similar result for the little Bloch space $\mathcal{B}_0(B_n)$.

THEOREM 16. Given $m \ge 1$ and f holomorphic in B_n , we have $f \in \mathscr{B}_0(B_n)$ iff all the functions $(1-|z|^2)^m \partial^m f(z)/\partial z^\alpha$ ($|\alpha|=m$) are in $C_0(B_n)$, that is,

$$(1-|z|^2)^m \partial^m f(z)/\partial z^\alpha \to 0 \qquad (|z| \to 1^-)$$

for all $|\alpha| = m$.

PROOF. If f is a polynomial, then clearly $(1-|z|^2)^m \partial^m f(z)/\partial z^\alpha \to 0$ ($|z| \to 1^-$) for all $|\alpha| = m$. Since the little Bloch space $\mathcal{B}_0(B_n)$ is generated by the polynomials, and by Theorem 15,

$$\sup_{z \in B_n} (1 - |z|^2)^m \left| \frac{\partial^m f}{\partial z^\alpha}(z) \right| \le C||f||_{\mathscr{B}},$$

it follows that $(1-|z|^2)^m \partial^m f(z)/\partial z^\alpha \to 0 \ (|z| \to 1^-)$ for all f in $\mathcal{B}_0(B_n)$ and $|\alpha| = m$.

Conversely, suppose $f \in \mathcal{B}(B_n)$ and $(1-|z|^2)^m \partial^m f(z)/\partial z^\alpha \to 0$ $(|z| \to 1^-)$ for all $|\alpha| = m$. Then it follows that

$$\sup_{z \in B_n} (1 - |z|^2)^m \left| \frac{\partial^m f}{\partial z^\alpha}(z) - \frac{\partial^m f_r}{\partial z^\alpha}(z) \right| \to 0 \qquad (r \to 1^-),$$

where $f_r(z) = f(rz)$. By Theorem 15, this implies $||f - f_r||_{\mathscr{B}} \to 0$ $(r \to 1^-)$. Since f_r is in $\mathscr{B}_0(B_n)$ and $\mathscr{B}_0(B_n)$ is closed in $\mathscr{B}(B_n)$. We must have $f \in \mathscr{B}_0(B_n)$. This proves Theorem 16. \square

5. Characterizations of the Bergman space $L_a^1(B_n)$. Let $m \geq 1$ and f be a holomorphic function in B_n . We determined in §3 and §4 exactly when the functions $(1-|z|^2)^m \partial^m f(z)/\partial z^\alpha$ $(|\alpha|=m)$ are in $L^p(B_n,dV)$ for 1 . We settle the case <math>p=1 in this section.

LEMMA 17. There exists a constant C > 0 such that

$$\int_{B_n} \frac{(1-|z|^2)^m}{|1-\langle z,w\rangle|^{n+m+2}} \, dV(z) \le \frac{C}{1-|w|^2}$$

for all w in B_n .

PROOF. For any $a \in B_n$, there exists a biholomorphic mapping φ_a of B_n with the following properties:

- $(1) \varphi_a(0) = a, \varphi_a(a) = 0;$
- (2) $\varphi_a^2 = \mathrm{Id};$
- (3) The real Jacobian of φ_a is $((1-|a|^2)/|1-\langle a,z\rangle|^2)^{n+1}$.

See 2.2 of [5]. Now fix $w \in B_n$ and perform the change of variable $z \mapsto \varphi_w(z)$. Then we get

$$\int_{B_n} \frac{(1-|z|^2)^m}{|1-\langle z,w\rangle|^{n+m+2}} dV(z)$$

$$= \int_{B_n} \frac{(1-|\varphi_w(z)|^2)^m}{|1-\langle \varphi_w(z),w\rangle|^{n+m+2}} \left(\frac{1-|w|^2}{|1-\langle z,w\rangle|^2}\right)^{n+1} dV(z).$$

By Theorem 2.2.2 of [5],

$$1 - |\varphi_w(z)|^2 = \frac{(1 - |w|^2)(1 - |z|^2)}{|1 - \langle z, w \rangle|^2},$$

$$1 - \langle \varphi_w(z), w \rangle = 1 - \langle \varphi_w(z), \varphi_w(0) \rangle = \frac{1 - |w|^2}{1 - \langle z, w \rangle}.$$

Putting these into the above integral, we get

$$\int_{B_n} \frac{(1-|z|^2)^m}{|1-\langle z,w\rangle|^{n+m+2}} \, dV(z) = \frac{1}{1-|w|^2} \int_{B_n} \frac{(1-|z|^2)^m}{|1-\langle z,w\rangle|^{n+m}} \, dV(z).$$

By 1.4.10 of [5] (with t = m, c = -1), there exists a constant C > 0 such that

$$\int_{B_n} \frac{(1-|z|^2)^m dV(z)}{|1-\langle z,w\rangle|^{n+m}} \le C$$

for all w in B_n . This completes the proof of Lemma 17. \square

LEMMA 18. There exists a constant C > 0 such that $||f||_{m,1} \le C||f||_1$ for all f in $L_a^1(B_n)$.

PROOF. Given $f \in L_a^1(B_n)$, write

$$f(z) = (n+1) \int_{B_{-}} \frac{(1-|w|^2)f(w)}{(1-\langle z,w\rangle)^{n+2}} \, dV(w).$$

Differentiating under integral gives

$$\frac{\partial^m f}{\partial z^{\alpha}}(z) = (n+1)(n+2)\cdots(n+m+1)\int_{B_n} \frac{\bar{w}^{\alpha}(1-|w|^2)f(w)}{(1-\langle z,w\rangle)^{n+m+2}} dV(w).$$

This implies

$$\left|\frac{\partial^m f}{\partial z^{\alpha}}(z)\right| \leq (n+1)(n+2)\cdots(n+m+1)\int_{B_n} \frac{(1-|w|^2)|f(w)|}{|1-\langle z,w\rangle|^{n+m+2}} dV(w)$$

and

$$\begin{split} \int_{B_n} (1-|z|^2)^m \left| \frac{\partial^m f}{\partial z^\alpha}(z) \right| \, dV(z) &\leq (n+1)(n+2) \cdots (n+m+1) \\ & \cdot \int_{B_n} (1-|z|^2)^m \, dV(z) \int_{B_n} \frac{(1-|w|^2)|f(w)| \, dV(w)}{|1-\langle z,w\rangle|^{n+m+2}} \\ &= (n+1)(n+2) \cdots (n+m+1) \int_{B_n} (1-|w|^2)|f(w)| \, dV(w) \\ & \cdot \int_{B_n} \frac{(1-|z|^2)^m}{|1-\langle z,w\rangle|^{n+m+2}} \, dV(z). \end{split}$$

By Lemma 17, there exists a constant $C_1 > 0$ such that

$$\int_{B_n} (1-|z|^2)^m \left| \frac{\partial^m f}{\partial z^\alpha}(z) \right| dV(z) \le C_1 \int_{B_n} |f(z)| dV(z)$$

for all f in $L_a^1(B_n)$. This implies that

$$||f||_{m,1} \le C||f||_1$$

for some constant C > 0 and all f in $L_a^1(B_n)$. \square

LEMMA 19. There exists a constant C > 0 such that $||f||_1 \le C||f||_{m,1}$ for all f in $L_a^1(B_n)$.

PROOF. Since $L_a^2(B_n)$ is dense in $L_a^1(B_n)$ and $|| \quad ||_{m,1}$ is dominated by $|| \quad ||_1$ by Lemma 18, it suffices to find a constant C>0 such that $||f||_1 \leq C||f||_{m,1}$ for all f in $L_a^2(B_n)$. Given f in $L_a^1(B_n)$, the Hahn-Banach extension theorem gives a linear functional F on $L_a^1(B_n)$ with norm 1 and $||f||_1 = |F(f)|$. Since $L_a^1(B_n)^* \cong \mathscr{B}(B_n)$ and the Bloch norm is equivalent to the norm in $L_a^1(B_n)^*$, there must be a constant $C_1>0$ such that for any $f\in L_a^2(B_n)$, there exists $g\in \mathscr{B}(B_n)$ with $||g||_{\mathscr{B}}\leq C_1$ and

$$||f||_1 = |\langle f, g \rangle| = \left| \int_B f(z) \overline{g(z)} \, dV(z) \right|.$$

By Theorem 6 and the proof of Lemma 8, we can write $g = g_0 + \sum_{|\alpha|=m} S_{\alpha}^* g_{\alpha}$ with $||g_0||_{\mathscr{B}} \leq C_2 ||g||_{\mathscr{B}}$ and $||g_{\alpha}||_{\mathscr{B}} \leq C_2 ||g||_{\mathscr{B}}$. Mimicking the proof of Lemma 9 or Lemma 14, we can find a constant $C_3 > 0$ such that $||f||_1 \leq C_3 ||f||_{m,1} ||g||_{\mathscr{B}} \leq C_1 C_3 ||f||_{m,1}$ for all f in $L_a^2(B_n)$. This completes the proof of Lemma 19. \square

LEMMA 20. If
$$||f||_{m,1} < +\infty$$
, then $f \in L^1_a(B_n)$.

PROOF. It follows from Lemma 19 and the proof of Lemma 10. □ Summarizing Lemmas 18–20, we have proved the following theorem.

THEOREM 21. Suppose $m \ge 1$ and f is holomorphic in B_n . Then $f \in L^1_a(B_n)$ iff all the functions $(1-|z|^2)^m \partial^m f(z)/\partial z^\alpha$ ($|\alpha|=m$) are in $L^1(B_n,dV)$. Moreover, the norms $||\cdot||_{m,1}$ and $||\cdot||_1$ are equivalent on $L^1_a(B_n)$.

6. Results on the polydisc. In this section, we state the corresponding characterizations for the Bergman spaces $L_a^p(\mathbf{D}^n)$ $(1 \leq p < +\infty)$ of the polydisc \mathbf{D}^n . To simplify notation and avoid technicality, we restrict out attention to the case n=2. For a holomorphic function $f(z_1,z_2)$ on \mathbf{D}^2 , we write

$$T_1 f(z_1) = (1 - |z_1|^2) \frac{\partial f}{\partial z_1}(z_1, 0), \qquad z_1 \in \mathbf{D},$$

$$T_2 f(z_2) = (1 - |z_2|^2) \frac{\partial f}{\partial z_2}(0, z_2), \qquad z_2 \in \mathbf{D},$$

$$T f(z_1, z_2) = (1 - |z_1|^2) (1 - |z_2|^2) \frac{\partial^2 f}{\partial z_1 \partial z_2}(z_1, z_2), \qquad (z_1, z_2) \in \mathbf{D}^2.$$

For $1 \le p \le \infty$ and f holomorphic in \mathbf{D}^2 , let

$$||f||_{p}^{*} = |f(0,0)| + ||T_{1}f||_{L^{p}(\mathbf{D},dA)} + ||T_{2}f||_{L^{p}(\mathbf{D},dA)} + ||Tf||_{L^{p}(\mathbf{D}^{2},dV)}.$$

We characterize the Bergman spaces of the bidisc in the following theorem:

THEOREM 22. Suppose $1 \leq p < \infty$ and f is holomorphic in \mathbf{D}^2 , then $f \in L^p_a(\mathbf{D}^2)$ iff the functions $(1-|z_1|^2)\partial f(z_1,0)/\partial z_1$, $(1-|z_2|^2)\partial f(0,z_2)/\partial z_2$, and $(1-|z_1|^2)(1-|z_2|^2)\partial^2 f(z_1,z_2)/\partial z_1\partial z_2$ are in $L^p(\mathbf{D}^2,dV)$. Moreover, $|| \quad ||_p$ and $|| \quad ||_p^*$ are equivalent norms on $L^p_a(\mathbf{D}^2)$.

The proof of Theorem 22 follows essentially the same lines of the proof of Theorem 11. Lemma 8 is to be replaced by the decomposition

$$f(z_1, z_2) = f(z_1, 0) + f(0, z_2) + z_1 z_2 h(z_1, z_2)$$

when f(0,0) = 0. There exists a constant C > 0 such that $||h||_p \le C||f||_p$ for all f, see Lemma 15 of [7]. Also h in the above decomposition is unique. The bounded projection we use for Theorem 22 is given by

$$Qf(z_1, z_2) = 4 \int_{\mathbf{D} \times \mathbf{D}} \frac{(1 - |w_1|^2)(1 - |w_2|^2)}{(1 - z_1 \bar{w}_1)^3 (1 - z_2 \bar{w}_2)^3} f(w_1, w_2) dV(w_1, w_2).$$

Q is bounded on $L^p(\mathbf{D}^2, dV)$ for all $1 \le p < \infty$; thus Q^* is bounded on $L^p(\mathbf{D}^2, dV)$ for all 1 , where

$$Q^*f(z_1,z_2)=4(1-|z_1|^2)(1-|z_2|^2)\int_{\mathbf{D}\times\mathbf{D}}\frac{f(w_1,w_2)}{(1-z_1\bar{w}_1)^3(1-z_2\bar{w}_2)^3}\,dV(w_1,w_2).$$

Let S be the operator defined by

$$Sf(z_1,z_2)=\overline{z_1}\overline{z_2}f(z_1,z_2).$$

Then it is easy to check that for $f \in L^p(\mathbf{D}^2, dV)$, we have

$$Q^*Sf(z_1, z_2) = (1 - |z_1|^2)(1 - |z_2|^2)\frac{\partial^2 f}{\partial z_1 \partial z_2}(z_1, z_2),$$

i.e., $Q^*S = T$. This corresponds to the formula $T_{\alpha} = m! P_m^* S_{\alpha}$ in the proof of Lemma 7. We omit the details of the proof of Theorem 22. The space of analytic functions $f(z_1, z_2)$ on \mathbf{D}^2 with $||f||_{\infty}^* < +\infty$ was studied in [7]. It was shown there that the space is strictly larger than the Bloch space $\mathscr{B}(\mathbf{D}^2)$ of the bidisc. Interested readers can also refer to [7] for more information on the bidisc.

REFERENCES

- 1. Sheldon Axler, Bergman spaces and their operators, Lecture Notes at the Indiana University Function Theoretic Operator Theory Conference, November 1985.
- R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in L^p, Astérisque 77 (1980).
- 3. Peter Duren, Theory of H^p spaces, Academic Press, New York, 1970.
- F. Forelli and W. Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974), 593-602.
- 5. Walter Rudin, Function theory in the unit ball of \mathbb{C}^n , Springer, Berlin, 1980.
- A. Zabulionsis, Differential operators in spaces of analytic function, Lithuanian Math. J. 24 (1984), 32-36.
- 7. Kehe Zhu, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, J. Funct. Anal. (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON 98195

Current address: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada