DEFINABLE SETS IN ORDERED STRUCTURES. III

ANAND PILLAY AND CHARLES STEINHORN

ABSTRACT. We show that any o-minimal structure has a strongly o-minimal theory.

0. Introduction. In this paper we prove that an arbitrary o-minimal structure M is strongly o-minimal. This was proved in [1] in the case when the ordering on M is dense.

In §1 we show that for discrete M, o-minimal implies strongly o-minimal. This is, of course, a result on uniform finite bounds. The proof has some interesting differences with the dense case, partly because here one has to prove uniform bound results for functions defined on *finite* intervals. In [3] it was shown that strongly o-minimal discrete structures are "trivial", i.e. there are no definable functions other than translations in one variable. Thus, with the results of §1, discrete o-minimal structures lose their interest.

In §2 we show that the discrete and dense parts of an arbitrary o-minimal structure are "orthogonal", from which our main result follows.

Recall that the structure (M, <, ...) is said to be *o-minimal* if $<^m$ is a linear ordering, and every definable (with parameters) subset $X \subset M$ is a finite union of points and intervals (a, b) (where $a \in M \cup \{-\infty\}$, $b \in M \cup \{\infty\}$).

We use freely notation and results from previous papers on the subject [1, 2 and 3].

1. The discrete case. We say that the o-minimal structure M is discrete if every element a of M has an immediate successor S(a) and an immediate predecessor $S^{-1}(a)$. This is rather a strong definition, and our results here are valid for M satisfying a weaker notion of discrete, as we subsequently point out.

We now fix discrete o-minimal M.

DEFINITION 1.1. Let $X \subset M$. We say that X is *scattered* if for no $a \in M$ does X contain both a and S(a).

Note that by o-minimality, any definable scattered $X \subset M$ is finite. We are going to prove

THEOREM 1.2. Let $\varphi(\overline{x}, y) \in L(M)$ be such that, for every $\overline{a} \subset M$ $(l(\overline{a}) = l(\overline{x}))$, $\varphi(\overline{a}, y)^M$ is scattered. Then there is $N < \omega$ such that, for every \overline{a} , $|\varphi(\overline{a}, y)^M| < N$.

This will be proved by induction on $n = l(\overline{x})$. First we need some preliminary definitions.

Received by the editors October 1, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 03C45; Secondary 06F99.

The first author was partially supported by NSF Grant DMS-8601289.

The second author was partially supported by NSF Grant DMS-8606411.

DEFINITION 1.3. Let f be a definable function of one variable on the interval I = (a, b). We call f an order-preserving translation on I if for all c such that c and S(c) are both in I, f(S(c)) = S(f(c)). Similarly for f to be an order-reversing translation.

DEFINITION 1.4. Let $\varphi(x,y) \in L(M)$ be such that, for all $a \in M$, $\varphi(a,y)^M$ is scattered. We say that $a \in M$ is good for φ if for any b with $\models \varphi(a,b)$, one of the following holds.

- (i) $\vDash \varphi(S^{-1}(a), b) \land \varphi(S(a), b)$.
- (ii) for some $m \leq 0 \leq n, m, n \in \mathbb{Z}$, both m, n even, we have for $m \leq i \leq n$,

$$\vDash \varphi(a, S^{i}(b)) \quad \text{iff } i \text{ is even,}
\vDash \varphi(S^{-1}(a), S^{i-1}(b)) \quad \text{iff } i \text{ is even,}
\vDash \varphi(S(a), S^{i+1}(b)) \quad \text{iff } i \text{ is even,}$$

and for i = 1, 2,

$$\vdash \neg \varphi(a, S^{n+i}(b)) \land \neg \varphi(a, S^{m-1}(b))
\land \neg \varphi(S^{-1}(a), S^{n-1+i}(b)) \land \neg \varphi(S^{-1}(a), S^{m-1-i}(b))
\land \neg \varphi(S(a), S^{n+1+i}(b)) \land \neg \varphi(S(a), S^{m+1-i}(b)),$$

(iii) for some $m \leq 0 \leq n, m, n \in \mathbf{Z}$, both even, we have for $m \leq i \leq n$

$$\vDash \varphi(a, S^{i}(b)) \quad \text{iff } i \text{ is even,} \\
\vDash \varphi(S^{-1}(a), S^{i+1}(b)) \quad \text{iff } i \text{ is even,} \\
\vDash \varphi(S(a), S^{i-1}(b)) \quad \text{iff } i \text{ is even,} \\$$

and for i = 1, 2,

$$\vdash \neg \varphi(a, S^{n+i}(b)) \land \neg \varphi(a, S^{m-i}(b)) \land \neg \varphi(S^{-1}(a), S^{n+1+i}(b))
\land \neg \varphi(S^{-1}(a), S^{m+1-i}(b))
\land \neg \varphi(S(a), S^{n-1+i}(b)) \land \neg \varphi(S(a), S^{m-1-i}(b)).$$

We say also that $a \in M$ is bad for φ if it is not good for φ . If the pair (a,b) is such that $\models \varphi(a,b)$ and (i), (ii), (iii) all fail for (a,b) we say that (a,b) is a nasty point for φ .

REMARK 1.5. As $\varphi(a,y)^m$ is finite for all a (in Definition 1.4) we see that conditions (i), (ii), (iii) are each definable conditions on the pair (a,b). Condition (i) can be represented by the picture

$$b \rightarrow \times \times \times \times$$

Condition (ii) can be represented by

Similarly for condition (iii). (Here \times represents a point on the graph of φ , and \circ a point not on the graph of φ .)

To prove Theorem 1.2 we will prove by induction on n the following statements (1.6 being a restatement of the theorem).

- $(1.6)_n$ If $\varphi(\overline{x}, y) \in L(M)$, $l(\overline{x}) = n$ and for all $\overline{a} \subset M$ $\varphi(\overline{a}, y)^M$ is scattered then there is $N < \omega$ such that, for all $\overline{a} \in M$, $|\varphi(\overline{a}, y)^M| < N$.
- $(1.7)_n$ Let $f(\overline{z}, x)$ be a (partial) definable function with $l(\overline{z}) = n$. Then there is $N < \omega$ such that, for any \overline{a} there are $c_1 < \cdots < c_k \in M$ with $k \leq N$ and $c_1 = -\infty$, $c_k = +\infty$ such that, for any $(c_i, c_{i+1}) \neq \emptyset$, $f(\overline{a}, x)$ is either undefined on (c_i, c_{i+1}) or $f(\overline{a}, x) \upharpoonright (c_i, c_{i+1})$ is constant or a translation.
- $(1.8)_n$ Let $\varphi(\overline{z}, x, y) \in L(M)$ with $l(\overline{z}) = n$ be such that, for each \overline{c}, a in M, $\varphi(\overline{c}, a, y)^M$ is scattered. Then there is $N < \omega$ such that, for all $\overline{c} \subset M$

$$|\{a \in M : a \text{ is bad for } \varphi(\overline{c}, x, y)\}| < N.$$

PROOF OF (1.6) FOR n = 1. So we have $\varphi(x, y) \in L(M)$ such that, for all $a \in M$, $\varphi(a, y)^M$ is scattered (and so finite).

CLAIM 1.9. Only finitely many $a \in M$ are bad for $\varphi(x, y)$.

PROOF OF CLAIM. We suppose not and get a contradiction. So by o-minimality there is an infinite interval $I=(a_1,a_2)$ (= $\{x\in M:a_1< x< a_2\}$) such that every $a\in I$ is bad for φ . Now for $a\in I$, let f(a)= the first b such that the pair (a,b) is a nasty point for φ . By Theorem 4.2 [2] there is an infinite subinterval of I which we again call I such that $f\upharpoonright I$ is either constant or an order-preserving or reversing bijection of I with another interval. Clearly $f\upharpoonright I$ cannot be constant (as (i) of Definition 1.4 fails for (a,f(a))). So let us assume f to be nonconstant and order preserving. Now define for $a\in I$

$$g(a) = \text{the greatest } b \text{ such that } b \ge f(a), \models \varphi(a, b)$$

and $\models \neg \varphi(a, S^2(b)), \text{ and for every } c \text{ with } f(a) \le c \le b,$
 $\models \varphi(a, c) \text{ or } \models \varphi(a, S(c)).$

(*) Note that for every $a \in I$, g(a) is defined, f(a) < g(a) and $g(a) = S^m(f(a))$ for some even $m \in \mathbb{Z}^+$.

Again, for some infinite subinterval of I which we again call $I, g \upharpoonright I$ is constant, or an order-preserving or reversing bijection of I with another interval. If g were

order preserving, then easily, for any $a \in I$, (a, f(a)) satisfies (ii) of Definition 1.4 contradicting (a, f(a)) being nasty for φ .

If g
times I were constant, pick a
times I such that $S^{-1}(a)
times I$. By (*) $g(a) = S^m(f(a))$ for some even $m
times \mathbf{Z}^+$. But then $g(S^{-1}(a)) = g(a) = S^m(f(a)) = S^{m+1}(S^{-1}(f(a))) = S^{m+1}(f(S^{-1}(a)))$ (as f is an order-preserving translation), which contradicts (*), m+1 being odd.

If g were order reversing on I, we can pick $a \in I$ such that $S^m(a) \in I$ for all $m \in \mathbf{Z}^-$. Let $b = S^2(f(a))$. Then clearly for $m \in \mathbf{Z}^-$, $\models \varphi(S^m(a), b)$ if and only if m is even. So the formula $\varphi(x, b)$ cannot define a finite union of intervals and points, contradicting o-minimality.

Thus the assumption that f is order preserving leads to a contradiction. A similar argument shows that f cannot be order reversing.

This completes the proof of Claim 1.9.

CLAIM 1.10. Let $c_1, c_2 \in M$ be such that, for all $a \in (c_1, c_2)$, a is good for $\varphi(x, y)$. Then there is $k < \omega$ such that, for all $a \in (c_1, c_2)$, $|\varphi(a, y)^M| = k$.

PROOF. If not, then by the o-minimality there is $a \in (c_1, c_2)$ such that $S(a) \in (c_1, c_2)$ and $|\varphi(a, y)^M| \neq |\varphi(S(a), y)^M|$. On the other hand, it is clear from Definition 1.4 that if a is good for φ then $|\varphi(S^i(a), y)^M| \geq |\varphi(a, y)^M|$ for i = 1, -1. So we get a contradiction, proving Claim 1.10.

Now, clearly from Claims 1.9 and 1.10 it follows that for some $N < \omega$, $|\varphi(a, y)^M| < N$ for all $a \in M$. So we have proved 1.6 for n = 1.

We now proceed with the induction steps.

PROOF OF $(1.7)_n$ ASSUMING $(1.6)_n$. So we are given an M-definable (partial) function $f(\overline{z}, x)$ where $l(\overline{z}) = n$. We first define certain sets depending on \overline{z} .

$$A_{-1}(\overline{z}) = \{x : f(\overline{z}, S^{-1}(x)) \text{ is defined and } f(\overline{z}, x) \text{ is undefined} \},$$

$$A_{0}(\overline{z}) = \{x : f(\overline{z}, x) \text{ is undefined and } f(\overline{z}, S(x)) \text{ is defined} \},$$

$$A_{1}(\overline{z}) = \{x : f(\overline{z}, S^{-1}(x)) = f(\overline{z}, x) = f(\overline{z}, S(x)) \},$$

$$A_{2}(\overline{z}) = \{x : f(\overline{z}, S^{-1}(x)) < f(\overline{z}, x) < f(\overline{z}, S(x)) \},$$

$$A_{3}(\overline{z}) = \{x : f(\overline{z}, S^{-1}(x)) > f(\overline{z}, x) > f(\overline{z}, S(x)) \},$$

$$A_{4}(\overline{z}) = \{x : f(\overline{z}, S^{-1}(x)) = f(\overline{z}, x) < f(\overline{z}, S(x)) \},$$

$$A_{5}(\overline{z}) = \{x : f(\overline{z}, S^{-1}(x)) = f(\overline{z}, x) > f(\overline{z}, S(x)) \},$$

$$A_{6}(\overline{z}) = \{x : f(\overline{z}, S^{-1}(x)) < f(\overline{z}, x) = f(\overline{z}, S(x)) \},$$

$$A_{7}(\overline{z}) = \{x : f(\overline{z}, S^{-1}(x)) < f(\overline{z}, x) = f(\overline{z}, S(x)) \},$$

$$A_{8}(\overline{z}) = \{x : f(\overline{z}, S^{-1}(x)) < f(\overline{z}, x) \text{ and } f(\overline{z}, x) > f(\overline{z}, S(x)) \}.$$

$$A_{9}(\overline{z}) = \{x : f(\overline{z}, S^{-1}(x)) > f(\overline{z}, x) \text{ and } f(\overline{z}, x) < f(\overline{z}, S(x)) \}.$$

The notation in $A_1(\overline{z})$ to $A_9(\overline{z})$ is supposed to imply that $f(\overline{z}, S^{-1}(x)), f(\overline{z}, x)$ and $f(\overline{z}, S(x))$ are well defined.

Note that each of $A_{-1}(\overline{z})$, $A_0(\overline{z})$ and $A_4(\overline{z})$ to $A_9(\overline{z})$ defines a scattered set. Thus by $(1.6)_n$ we obtain some $N_1 < \omega$ such that, for all \overline{z} ,

$$\left| A_{-1}(\overline{z}) \cup A_0(\overline{z}) \cup \bigcup_{i=4}^9 A_i(\overline{z}) \right| < N_1.$$

Thus we easily obtain, for each \overline{z} , elements $d_1(\overline{z}) < \cdots < d_k(\overline{z})$ uniformly definable from \overline{z} , for some $k < N_1$ such that for each $1 \le i < i + 1 \le k$, either $f(\overline{z}, x) \upharpoonright (d_i(\overline{z}), d_{i+1}(\overline{z}))$ is undefined or $(S(d_i(\overline{z})), S^{-1}(d_{i+1}(\overline{z}))) \subseteq A_j(\overline{z})$ for j = 1, 2 or 3. Clearly, if $(S(d_i(\overline{z})), S^{-1}(d_{i+1}(\overline{z}))) \subseteq A_1(\overline{z})$ then $f(\overline{z}, x) \upharpoonright (d_i(\overline{z}), d_{i+1}(\overline{z}))$ is constant.

We can also assume that if $(S(d_i(\overline{z})), S^{-1}(d_{i+1}(\overline{z}))) \subset A_2(\overline{z})$ then $f(\overline{z}, x) \upharpoonright (d_i(\overline{z}), d_{i+1}(\overline{z}))$ is order preserving. Analogously for $A_3(\overline{z})$. Now, fixing m with $1 \leq m \leq N_1$, let

$$B_2^m(\overline{z}) = \{x : (S(d_m(\overline{z})), S^{-1}(d_{m+1}(\overline{z}))) \subseteq A_2(\overline{z}) \text{ and } S(d_m(\overline{z})) < x < S^{-1}(d_{m+1}(\overline{z})) \text{ and } f(\overline{z}, S(x)) > S(f(\overline{z}, x)) \}.$$

Similarly $B_3^m(\overline{z}) = \{x: (S(d_m(\overline{z})), S^{-1}(d_{m+1}(\overline{z}))) \subseteq A_3(\overline{z}) \text{ and } S(d_m(\overline{z})) < x < S^{-1}(d_{m+1}(\overline{z})) \text{ and } f(\overline{z}, S(x)) < S^{-1}(f(\overline{z}, x))\}.$ Note that for each \overline{z}, m and i = 2 or $3, f(\overline{z}, x) \upharpoonright B_i^m(\overline{z})$ is one-to-one and its range is a scattered set. Thus by $(1.6)_n$ there is $N_2 < \omega$ such that, for every \overline{z} ,

$$\left| \bigcup_{\substack{i=2,3\\1 \le i \le N_1}} B_i^j(\overline{z}) \right| < N_2.$$

Now for any \overline{a} if we enumerate

$$\{d_m(\overline{a}): m < N_1\} \cup \bigcup_{\substack{i=2,3\\1 \le m \le N_1}} B_i^m(\overline{a}) \quad \text{as } c_1, \dots, c_k$$

with $k < N_1 + N_2$ we see that on each (c_i, c_{i+1}) $f(\overline{z}, x)$ is either undefined, constant, or an order-preserving or reversing translation. This proves $(1.7)_n$.

Now $(1.8)_n$ is easily proved form $(1.7)_n$ by going through the proof of Claim 1.9 and replacing the use of Theorem 4.2 of [2] by $(1.7)_n$.

So it remains to give

PROOF OF $(1.6)_{n+1}$ ASSUMING $(1.6)_n$ AND $(1.8)_n$. Let $\varphi(\overline{x}, y) \in L(M)$ be such that $l(\overline{x}) = n+1$ and for every \overline{a} , $\varphi(\overline{a}, y)^M$ is scattered. We will write \overline{x} as $\overline{z}^{\wedge}x$ where $l(\overline{z}) = n$. So we rewrite φ as $\varphi(\overline{z}, x, y)$. By $(1.8)_n$ there is $N < \omega$ such that, for every \overline{c} with $l(\overline{c} = n, |\{a \in M : a \text{ is bad for } \varphi(\overline{c}, x, y)\}| \leq N$. For $1 \leq i \leq N$, let $g_i(\overline{z}) = \text{the } i\text{th bad point for } \varphi(\overline{z}, x, y)$. For $1 \leq i \leq N$ let

$$\psi_0^i(\overline{z}, y)$$
 be $\varphi(\overline{z}, g_i(\overline{z}), y)$
 $\psi_{-1}^i(\overline{z}, y)$ be $\varphi(\overline{z}, S^{-1}(g_i(\overline{z})), y)$, and $\psi_1^i(\overline{z}, y)$ be $\varphi(\overline{z}, S(g_i(\overline{z})), y)$.

Note that for given \bar{c} with $l(\bar{c}) = n$ and for a with $g_i(\bar{c}) < a < g_{i+1}(\bar{c})$, it follows from Claim 1.10 that

$$|\varphi(\overline{c}, a, y)^{M}| = |\varphi(\overline{c}, S(g_{i}(\overline{c})), y)^{M}| = |\varphi(\overline{c}, S^{-1}(g_{i+1}(\overline{c})), y)^{M}|.$$

Thus, for any \overline{c} , a,

$$|\varphi(\overline{c},a,y)^M| \leq \max\{|\psi_j^i(\overline{c},y)^M|: 1 \leq i \leq N, \ -1 \leq j \leq 1\}.$$

Now, applying $(1.6)_n$ to the $\psi_j^i(\overline{z},y)$ we obtain our uniform bound for $\varphi(\overline{z},x,y)$, completing the proof of $(1.6)_{n+1}$.

This completes the proof of Theorem 1.2, and by standard arguments Theorem 1.2 implies that M is strongly o-minimal. (Namely, given $\varphi(\overline{x}, y)$, let $\psi_1(\overline{x}, y)$ be $\neg \varphi(\overline{x}, y) \land \varphi(\overline{x}, S(y))$, $\psi_2(\overline{x}, y)$ be $\neg \varphi(\overline{x}, y) \land \varphi(\overline{x}, S^{-1}(y))$ and $\psi_3(\overline{x}, y)$ be $\varphi(\overline{x}, y) \land \varphi(\overline{x}, S^{-1}(y)) \land \neg \varphi(\overline{x}, S(y))$. For any \overline{a} each of $\psi_1(\overline{a}, y), \psi_2(\overline{a}, y), \psi_3(\overline{a}, y)$ defines a scattered set. So by Theorem 1.2 for some $N < \omega$, for every $\overline{a}, \varphi(\overline{a}, y)$ is a union of at most N intervals and points; thus the same is true in any $M^1 \equiv M$.)

Let us finally remark that trivial modifications of the above proofs show the results of this section to be valid if we consider o-minimal structures M which are discrete in the following broad sense: for all but finitely many $a \in M$, a has an immediate successor and an immediate predecessor.

2. Mixed o-minimal structures. Here we will show that an arbitrary o-minimal structure M is strongly o-minimal. This will be done by breaking M into a continuous (or dense) part, and a discrete part, showing that these parts of M have no interaction with each other and then applying [1] and §1 of this paper.

We must first say some words about relativised o-minimal structures. So let M be an arbitrary structure, and $\chi(x)$ a formula over \varnothing such that $\chi(x)^M$ carries a \varnothing -definable linear ordering <. We will say that $\chi(x)$ is o-minimal in M if every definable (in M) subset X of χ^M is a finite union of points and intervals (with endpoints). Then the proofs in [1] and §1 of this paper give:

- FACT 2.1. Let $\chi(x)$ be o-minimal in M with $(\chi^{\overline{M}}, <)$ a dense ordering without endpoints. Then for any formula $\varphi(x, \overline{y}) \in L(M)$ there is $N < \omega$ such that, for any $\overline{b} \subset \chi^M$, $(\varphi(x, \overline{b}) \wedge \chi(x))^M$ is a union of at most N intervals and points. Moreover the definable (in M) subsets of $(\chi(x)^M)^n$ satisfy all the results of [1] (i.e. in terms of decomposition into definable cells, etc.)
- FACT 2.2. Let $\chi(x)$ be o-minimal in M with $(\chi^M, <)$ discrete in the broad sense of §1 of this paper. Then again for any $\varphi(x, \overline{y}) \in L(M)$ there is $N < \omega$ such that, for any $\overline{b} \subset \chi^M$, $(\varphi(x, \overline{b}) \wedge \chi(x))^M$ is a union of at most N intervals and points.

Now let (M, <, ...) be an arbitary (but fixed) o-minimal structure. Let c(M) (= the continuous part of M) = $\{x \in M : \exists a < x < b \text{ such that } (a, b) \text{ is dense without first or last element}\}$. Let d(M) (= the discrete part of M) = M - c(M). Then by o-minimality of M it is easy to check that c(M) is either empty or the disjoint finite union of \emptyset -definable intervals A_i on each of which < is dense without endpoints and with each A_i o-minimal in M. Similarly, d(M) is empty or a finite disjoint union of \emptyset -definable (possibly finite) intervals A_i such that each A_i is discrete (in the broad sense) and o-minimal in M.

It is convenient to consider L as a 2-sorted language with variables x denoting elements in c(M) and y denoting elements in d(M).

We will prove

PROPOSITION 2.3. For any L-formula $\varphi(\overline{x}, \overline{y})$, there is $\varphi^1(\overline{x}, \overline{y})$ which is a finite Boolean combination of formulae $\psi(\overline{x})$ and formulae $\chi(\overline{y})$ such that $M \models \varphi(\overline{x}, \overline{y}) \leftrightarrow \varphi^1(\overline{x}, \overline{y})$.

To simplify the exposition, we make the following

Assumption. c(M) is dense and o-minimal in M, and d(M) is discrete and o-minimal in M.

Remember in the following that $x, x_1 \cdots$ range over c(M), and $y, y_1 \cdots$ over d(M).

LEMMA 2.4. Let $\varphi(x, y_1, \ldots, y_n) \in L(M)$. Then $X = \{a \in c(M): \exists b_1, \ldots, b_n \in d(M), a \text{ is a boundary point for } \varphi(x, b_1 \cdots b_n)^M\}$ is finite.

PROOF. By induction on n.

n=1. Assume, by way of contradiction, X to be infinite. Clearly we can find an (infinite of course) interval $I \subset X$ such that for each $a \in X$ there is $b \in d(M)$ such that a is not a boundary point for $\varphi(x,b)^M$. But then, by discreteness of d(M), there is a definable function $f: I \to d(M)$ such that, for all $a \in I$, a is a boundary point for $\varphi(x, f(a))^M$. By Theorem 4.2 of [2] there is (infinite) $I' \subset I$ such that $f \upharpoonright I'$ is constant, say $f(a) = c \ \forall a \in I'$. But this means that $\varphi(x,c)^M$ has an infinite number of boundary points, which is impossible.

 $n \Rightarrow n+1$. If X were infinite then arguing as in the case n=1, we could find infinite interval $I \subset X$ and definable function $f: I \to d(M)$ such that, for each $a \in I$, $\exists b_1, \ldots, b_n$ [a is a boundary point of $\varphi(x, b_1, \ldots, b_n, f(a))^M$]. Again on some infinite $I' \subset I$, f is constant, and we get a contradiction to the induction hypothesis. This proves the lemma.

LEMMA 2.5. Let $\varphi(x_1,\ldots,x_n,\overline{y})\in L(A)$, $A\subset M$. Let X be an A-definable open cell in $(c(M))^n$. Then there is a finite decomposition of X into A-definable cells X_i such that for each i, if $\overline{a}_1,\overline{a}_2\in X_i$ and $\overline{b}\in d(M)$ then $\models \varphi(\overline{a}_1,\overline{b})\leftrightarrow \varphi(\overline{a}_2,\overline{b})$.

PROOF. Again by induction on n. When n = 1, the lemma follows easily from Lemma 2.4.

Now suppose the lemma is proved for n; we prove it for n+1. So let X be an open A-definable cell, $X \subset c(M)^{n+1}$. (Note that the projection of X onto the first n coordinates is an open A-definable cell in $c(M)^n$.) Let

$$Z_1 = \{ (\overline{x}, x_{n+1}) \in X : \exists \text{ neighborhood } O \text{ of } \overline{x} \text{ in } c(M)^n \text{ such that}$$

$$\forall \overline{x}^1, \overline{x}^2 \in O \ \forall \overline{y} \in d(M), \varphi(\overline{x}^1, x_{n+1}, \overline{y}) \leftrightarrow \varphi(\overline{x}^2, x_{n+1}, \overline{y}) \}.$$

Let

$$Z_2 = \{(\overline{x}, x_{n+1}) \in X : \exists \text{ open interval } I \text{ containing } x_{n+1} \text{ such that } \}$$

$$\forall x^1, x^2 \in I \ \forall \overline{y} \in d(M)\varphi(\overline{x}, x^1, \overline{y}) \leftrightarrow \varphi(\overline{x}, x^2, \overline{y}) \}.$$

By 3.5 of [1] there is an A-definable decomposition P of X which partitions Z_1 and Z_2 . If $Y \in P$ is a cell with dim Y = k < n+1, the Y is A-definably homeomorphic to an open cell in $c(M)^k$ so we can use the induction hypothesis. So let us take $Y \in P$, Y open.

CLAIM (I). $Y \subset Z_1, Y \subset Z_2$.

PROOF. To show that $Y \subset Z_1$, we must find a point $(\overline{a},b) \in Y$ with $(\overline{a},b) \in Z_1$. Let B be an open box, $B \subset Y$. Let $(\overline{a},b) \in B$. Let $B_1 = \{\overline{a}^1 : (\overline{a}^1,b) \in B\}$. So B_1 is an open box in $c(M)^n$. By induction hypothesis there is an open cell $W \subset B_1$ such that, for all $\overline{a}_1, \overline{a}_2 \in W \ \forall \overline{y} \in d(M), \ \varphi(\overline{a}_1,b,\overline{y}) \leftrightarrow \varphi(\overline{a}_2,b,\overline{y})$. So choosing $\overline{a}^1 \in W$, we see that $(\overline{a}^1,b) \in Z_1$. Similarly $Y \subset Z_2$.

CLAIM (II). $\forall \overline{a}_1, \overline{a}_2 \text{ in } Y, \forall \overline{b} \text{ in } d(M), \varphi(\overline{a}_1, \overline{b}) \leftrightarrow \varphi(\overline{a}_2, \overline{b}).$

PROOF. If not, then for some $\overline{b} \in d(M)$, $\varphi(\overline{x}, \overline{b})$ defines a proper nonempty subset of Y. As Y is definably connected (see [1]) there is $\overline{a}^* \in Y$ such that \overline{a}^* is a boundary point for $\varphi(\overline{x}, \overline{b})^M \cap Y$. Let B be an open box in Y, with $\overline{a}^* \in B$. Thus

(*)
$$\varphi(\overline{x}, \overline{b})^M \cap B$$
 is a proper nonempty subset of B .

Now let $\overline{a}_1, \overline{a}_2 \in B$. Write \overline{a}_1 as $\overline{c}_1^{\wedge} d_1$, and \overline{a}_2 as $\overline{c}_2^{\wedge} d_2$. As $Z_1 \supset Y$ it is easy to see that $\varphi(\overline{c}_1^{\wedge} d_1, \overline{b}) \leftrightarrow \varphi(\overline{c}_2^{\wedge} d_1, \overline{b})$, and as $Z_2 \supset Y$ we also have $\varphi(\overline{c}_2^{\wedge} d_1, \overline{b}) \leftrightarrow \varphi(\overline{c}_2^{\wedge} d_2, \overline{b})$. Thus $\varphi(\overline{a}_1, \overline{b}) \leftrightarrow \varphi(\overline{a}_2, \overline{b})$, which contradicts (*), proving Claim (II).

Clearly, Claim (II) and earlier remarks suffice to prove the lemma.

PROOF OF PROPOSITION 2.3. So let $\varphi(\overline{x}, \overline{y})$ be an L-formula, with $l(\overline{x}) = n$ say. Take X to be $(c(M))^n$ in Lemma 2.5. Let X_i as given by Lemma 2.5 be defined by the L-formula $\psi_i(\overline{x})$ (i = 1, ..., k say). Then by Lemma 2.5, we have $M \models \varphi(\overline{x}, \overline{y}) \leftrightarrow \bigvee_{i=1}^k (\psi_i(\overline{x}) \land (\exists \overline{x})(\psi_i(\overline{x}) \land \varphi(\overline{x}, \overline{y}))$.

The strong o-minimality of M now follows immediately from Proposition 2.3 and Facts 2.1 and 2.2.

REFERENCES

- J. Knight, A. Pillay and C. Steinhorn, Definable sets in ordered structures. II, Trans. Amer. Math. Soc. 295 (1986), 593-605.
- 2. A. Pillay and C. Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc. 295 (1986), 565-592.
- A. Pillay and C. Steinhorn, Discrete o-minimal structures, Ann. Pure Appl. Logic 34 (1987), 275-290.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NOTRE DAME, NOTRE DAME, INDIANA 46556

DEPARTMENT OF MATHEMATICS, VASSAR COLLEGE, POUGHKEEPSIE, NEW YORK 12601