INFIX CONGRUENCES ON A FREE MONOID

C. M. REIS

ABSTRACT. A congruence ρ on a free monoid X^* is said to be infix if each class C of ρ satisfies $u \in C$ and $xuy \in C$ imply xy = 1.

The main purpose of this paper is a characterization of commutative maximal infix congruences. These turn out to be congruences induced by homomorphisms τ from X^* to \mathbf{N}^0 , the monoid of nonnegative integers under addition, with $\tau^{-1}(0)=1$.

1. Introduction

Let X be a finite alphabet and X^* the free monoid on X. A subset T of X^* is an *infix code* if u and xuy in T imply xy=1. A congruence ρ on X^* is said to be *infix* (resp. f-disjunctive) if each ρ -class is an infix code (resp. a finite infix code). f-disjunctive congruences, which form a subset of the set of infix congruences, were introduced in [6] and it is, in part, the purpose of this paper to further study these congruences within the broader context of infix congruences. In addition, results analogous to those obtained in [6] for f-disjunctive congruences will be proved for infix congruences.

In $\S 2$ we prove some general results on infix congruences. In particular we show that the class of infix congruences is strictly larger than the class of f-disjunctive congruences. We also prove that commutative infix congruences are in fact f-disjunctive and that commutative maximal infix congruences are cancellative.

A congruence ρ on $X^* = \{a_1, a_2, \ldots, a_n\}^*$ is said to be *p-linear* if there exist positive integers l_1, l_2, \ldots, l_n such that $u \equiv v(\rho)$ if and only if $\sum_{i=1}^n l_i |u|_{a_i} = \sum_{i=1}^n l_i |v|_{a_i}$, where $|w|_{a_i}$ denotes the number of occurrences of the letter a_i in the word w. §3 is devoted to the characterization of commutative maximal infix congruences. These turn out to be precisely the *p*-linear congruences.

Throughout this paper, **R** will denote the real numbers, **Z** the integers and **N** the natural numbers. The length of a word $w \in X^*$ will be denoted by |w| while the syntactic congruence of a language L over X^* will be denoted by P_L . Recall that P_L is defined by $u \equiv v(P_L)$ if, for all $x, y \in X^*$, $xuy \in L$ if and only if $xvy \in L$. A congruence ρ will be said to be *principal* if $\rho = P_L$

Received by the editors December 1, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 20M05.

Key words and phrases. Infix congruences, free monoid, commutative maximal infix congruences.

for some language L. If $f: M \to T$ is a monoid homomorphism, then $\ker f$ is the congruence defined by $u \equiv v(\ker f)$ if f(u) = f(v).

As a general reference we recommend G. Lallement's book [5].

2. General results on infix congruences

In [6], it was shown that, given an f-disjunctive congruence ρ , there exists a principal f-disjunctive congruence P_L with $\rho \leq P_L$. Here we prove a somewhat weaker result for infix congruences. Although the proof is similar, we include it for the sake of completeness. We begin with a lemma.

Lemma 2.1. Let ρ be an infix congruence on X^* . Then any nontrivial submonoid M of X^* meets infinitely many ρ -classes.

Proof. Suppose M meets only finitely many ρ -classes, say \bar{w}_1 , \bar{w}_2 , ..., \bar{w}_n where \bar{w}_i is the ρ -class of the word $w_i \in M$. Then $\{\bar{w}_1, \bar{w}_2, \ldots, \bar{w}_n\}$ is a submonoid of X^*/ρ . Hence, \bar{w}_j , say, is idempotent, whence $w_j^2 \equiv w_j(\rho)$. Since ρ is infix, $w_j = 1$. It follows that for each \bar{w}_i , $\bar{w}_i^k = 1$ for some k. Hence $w_i = 1$ for all i. Thus M is the trivial monoid, a contradiction. \square

Definition 2.2. A language $L \subset X^*$ is said to be *dense* if $X^*wX^* \cap L \neq \emptyset$ for all $w \in X^*$.

Theorem 2.3. Let ρ be an infix congruence. Then there exists a dense language L such that $\rho \leq P_L$ and the restriction of ρ to L is P_L .

Proof. Let C_1 , C_2 , ... be the classes of ρ , so numbered that $m(C_i) \leq m(C_j)$ if i < j where $m(C_i) = \min\{|w| | w \in C_i\}$. Let $w_1 \leq w_2 \leq \cdots$ be a total ordering of X^+ , the free semigroup on X, and choose a certain subset of the set of all ρ -classes as follows:

Choose $D_1=C_{i_1}$ such that $X^*w_1X^*\cap C_{i_1}\neq\varnothing$ and let $\alpha_1=u_1w_1v_1\in D_1$. Choose $D_2=C_{i_2}$ such that $X^*\alpha_1w_2X^*\cap C_{i_2}\neq\varnothing$ and let $\alpha_2=u_2\alpha_1w_2v_2\in D_2$. Now, by Lemma 2.1, $X^*\alpha_2w_3X^*$ meets infinitely many ρ -classes; hence we may choose $D_3=C_{i_3}$ with $X^*\alpha_2w_3X^*\cap C_{i_3}\neq\varnothing$ and $|u_2\alpha_2w_2v_2|< m(D_3)$. Let $\alpha_3=u_3\alpha_2w_3v_3\in D_3$. Having chosen D_j , $3\leq j\leq n$ with $\alpha_j\in D_j$, $\alpha_j=u_j\alpha_{j-1}w_jv_j\in D_j$ and $|u_{j-1}u_{j-2}\cdots u_2\alpha_{j-1}w_2v_2\cdots w_{j-1}v_{j-1}|< m(D_j)$, choose $D_{n+1}=C_{i_{n+1}}$ with $X^*\alpha_nw_{n+1}X^*\cap C_{i_{n+1}}\neq\varnothing$ and $|u_nu_{n-1}\cdots u_2\alpha_nw_2v_2\cdots w_nv_n|< m(D_{n+1})$. Again, this can be done since $X^*\alpha_nw_{n+1}X^*$ meets infinitely many ρ -classes by Lemma 2.1. Let $\alpha_{n+1}=u_{n+1}\alpha_nw_{n+1}v_{n+1}\in D_{n+1}$. Now set $L=\bigcup_{j=1}^\infty D_j$. Clearly $\rho\leq P_L$ since ρ saturates L and P_L is the coarsest congruence saturating L. We now show that $D_r\not\equiv D_s(P_L)$ if $r\neq s$. Assuming r< s, we have

$$\alpha_s = u_s u_{s-1} \cdots u_{r+1} \alpha_r w_{r+1} v_{r+1} \cdots w_s v_s \in L$$

and thus $(u_s u_{s-1} \cdots u_{r+1}, w_{r+1} v_{r+1} \cdots w_s v_s)$ is a context of α_r . Now

$$\gamma = u_s u_{s-1} \cdots u_{r+1} \alpha_s w_{r+1} v_{r+1} \cdots w_s v_s \notin D_j$$

if $j \leq s$ since α_j is a proper factor of γ for $j \leq s$ and each D_j is infix. Moreover, $|\gamma| \leq |u_s u_{s-1} \cdots u_2 \alpha_s w_2 v_2 \dots w_s v_s| < m(D_t)$ for all t > s by our choice of the D_j 's. Hence $\gamma \notin L$ and $D_r \not\equiv D_s(P_L)$ proving that the D_j 's are P_L -classes. By our construction, it is clear that L is dense. \square

Remark. This construction of L does not always yield an infix congruence P_I .

Corollary 2.4. Let ρ be an infix, cancellative congruence on X^* . Then ρ is principal.

Proof. Let L be as in Theorem 2.3 and let $u \equiv v(P_L)$. Since L is dense, there exist $x, y \in X^*$ with $xuy \in L$. But $xuy \equiv xuy(\rho)$ since the restriction of ρ to L is P_L . Since ρ is cancellative, $u \equiv v(\rho)$, whence $\rho = P_L$. \square

It is tempting to conjecture that every infix congruence is f-disjunctive. The following shows that this is not the case.

Example 2.5. Let $w \in X^+$, $w = a_1^{m_1} a_2^{m_2} \cdots a_s^{m_s}$ where, for all i, $m_i > 0$, $a_i \in X$ and $a_i \neq a_{i+1}$. Then the *skeleton* of w, denoted $\mathrm{sk}(w)$, is the word $a_1 a_2 \cdots a_s$. Define $\mathrm{sk}(1) = 1$. For w as above, let I(w) denote $a_1^{m_1}$ and let F(w) denote $a_s^{m_s}$. Set I(1) = F(1) = 1. Now define a congruence ρ on X^* as follows:

$$u \equiv v(\rho)$$
 if $I(u) = I(v)$, $F(u) = F(v)$ and $sk(u) = sk(v)$.

We prove that each ρ -class is infix. Let $u \equiv v(\rho)$. If u = 1, $\operatorname{sk}(v) = 1$ whence v = 1 and thus $[1]_{\beta} = \{1\}$. If $|\operatorname{sk}(u)| = 1$, then $|\operatorname{sk}(v)| = 1$ and since I(u) = I(v), it follows that u = v. If $|\operatorname{sk}(u)| = 2$, since I(u) = I(v) and F(u) = F(v), we have u = v. Thus assume $|\operatorname{sk}(u)| > 2$. Then

$$u = b_1^{s_1} b_2^{s_2} \cdots b_n^{s_n}, \qquad v = b_1^{s_1} b_2^{t_2} \cdots b_{n-1}^{t_{n-1}} b_n^{s_n},$$

where all the exponents are positive, the b's are letters of X and $b_i \neq b_{i+1}$ for all i. Suppose u = pvq. If p contains a letter other than b_1 , the skeleton of v is changed, which is not possible. Hence p is a power of b_1 . But p cannot be a positive power of b_1 since I(u) = I(v). Thus p = 1. Similarly, q = 1. Clearly p has infinitely many infinite classes and is therefore infix but not f-disjunctive.

As a particular example of the above, let $X = \{a, b\}$. Then the ρ -classes are as follows:

- (1) Singleton classes: $[1]_{\rho}$, $[a^s]_{\rho}$, $[b^s]_{\rho}$, $[a^sb^t]_{\rho}$, $[b^ta^s]_{\rho}$ where s and t are positive integers. (2) Classes of the following four types, all infinite:
 - (i) $[a^i(ba)^s b^j]_a$, i, j, s positive;
 - (ii) $[b^i(ab)^s a^j]_o$, i, j, s positive;
 - (iii) $[a^{i}(ba)^{s}ba^{j}]_{a}$, i, j positive; s nonnegative;
 - (iv) $[b^{i}(ab)^{s}ab^{j}]_{a}$, i, j positive; s nonnegative.

We now consider maximal infix congruences and set the stage for a characterization in §3 of commutative maximal infix congruences.

Theorem 2.6. Let ρ be an infix congruence of X^* . Then there exists a congruence μ containing ρ such that μ is maximal subject to being infix.

Proof. Let $\mathscr{F}=\{\tau\,|\,\tau \text{ is an infix congruence, }\tau\supset\rho\}$ and let $\{\tau_i\}$ be a chain in \mathscr{F} . Then $\bigcup\tau_i$ is a congruence and if $u\equiv puq(\bigcup\tau_i)$, then $u\equiv puq(\tau_i)$ for some i, whence p=q=1. Hence $\bigcup\tau_i\in\mathscr{F}$. By Zorn, \mathscr{F} has a maximal element μ . \square

Example 2.7. Referring back to Example 2.5 in the case $X = \{a, b\}$ it is easy to show, though tedious, that the congruence ρ is maximal infix. For, suppose that μ is an infix congruence with $\mu \supseteq \rho$. There are various cases to consider. We check here only two cases to give the flavour of the other computations necessary to establish the maximality of ρ .

Case (i). Suppose $a^{i}(ba)^{s}b^{j} \equiv a^{u}(ba)^{t}b^{v}(\mu)$, i, j and s positive. Then $ba(ba)^{s}ba \equiv ba(ba)^{t}ba(\mu)$.

Hence $(ba)^{s+2} \equiv (ba)^{t+2}(\mu)$. Since μ is infix, s = t and we have

$$a^{i}(ba)^{s}b^{j} \equiv a^{u}(ba)^{s}b^{v}(\mu)$$
.

Hence $(ba)^{s+1}b^j \equiv (ba)^{s+1}b^v(\mu)$. Again, since μ is infix, j = v. Similarly i = u.

Case (ii). Suppose $a^{i}(ba)^{s}ba^{j} \equiv b^{u}(ab)^{t}ab^{v}(\mu)$ where i, j, u and v are positive, s and t nonnegative.

Then $aba(ba)^sbaba \equiv ab(ab)^taba(\mu)$. Hence $(ab)^{s+3}a \equiv (ab)^{t+2}a(\mu)$. Since μ is infix, s+3=t+2. Thus $a^i(ba)^sba^j \equiv b^u(ab)^{s+1}ab^v(\mu)$. Therefore

$$ba(ba)^sba^j \equiv b^{u+1}(ab)^{s+1}ab^v(\mu)$$

and thus

$$b(ab)^{s+1}a^{j} \equiv b^{u+1}(ab)^{s+1}ab^{v}(\mu).$$

Hence

$$b(ab)^{s+1}ab \equiv b^{u+1}(ab)^{s+1}ab^{v+1}(u)$$
.

This contradicts the fact that μ is infix since u+1 and v+1 are at least 2. \square

We remark that the congruence ρ above is not cancellative. For example

$$ab^2a \equiv aba(\rho)$$
 but $ba \not\equiv a(\rho)$.

This is in sharp contrast to the situation when the congruence is commutative and maximal subject to being infix.

Theorem 2.8. Let μ be a commutative congruence maximal subject to being infix. Then μ is cancellative.

Proof. Define a congruence $\widehat{\mu}$ on X^* by $u \equiv v(\widehat{\mu})$ if there exists $w \in X^*$ with $wu \equiv wv(\mu)$. Clearly $\mu \leq \widehat{\mu}$ and $\widehat{\mu}$ is a congruence which is cancellative. Suppose now that $u \equiv xuy(\widehat{\mu})$. Then there exists $w \in X^*$ with $wu \equiv wxuy(\mu)$.

Since μ is commutative, $uw \equiv wuxy(\mu)$, thus proving that xy = 1 since μ is infix. Hence $\hat{\mu}$ is infix, whence $\mu = \hat{\mu}$. \square

We now give an example of a class of commutative congruences which are maximal infix. It will be seen in the next section that this class constitutes all commutative maximal infix congruences.

Example 2.9. Let $X = \{a_1, a_2, \ldots, a_n\}$ and let l_1, l_2, \ldots, l_n be positive integers. Let $|u|_{a_i}$ denote the number of occurrences of a_i in the word u. Define a congruence ρ by $u \equiv v(\rho)$ if $\sum l_i |u|_{a_i} = \sum l_i |v|_{a_i}$. ρ is in fact f-disjunctive since the l_i are all positive. It is clearly commutative and cancellative. Maximality will be proved in §3.

Definition 2.10. A congruence of the type described above will be called *p*-linear.

Given two words u and v in X^* we may ask under what conditions there exists an infix congruence ρ such that $u \equiv v(\rho)$. Clearly a necessary condition is that neither word be a factor of the other. That this is not sufficient is shown by the following example.

Example 2.11. Let $X = \{a, b\}$, u = ababa, $v = baba^2ba$ and let ρ be any congruence with $u \equiv v(\rho)$. Thus

$$v^{2} = baba\underline{ababa}baaba$$

$$\equiv babababa\underline{ababa}aba(\rho)$$

$$\equiv bab\underline{ababababaaba}aba(\rho)$$

$$\equiv babv^{2}aba(\rho)$$

showing that ρ is not infix.

At this writing, the author does not know of a necessary and sufficient condition for two words u and v to be congruent modulo an infix congruence. There is however a simple sufficient condition which we prove in Theorem 2.15 below.

Definition 2.12. On X^* define the partial order \leq by $u \leq v$ if $u = u_1 u_2 \cdots u_n$, $v = v_1 u_1 v_2 u_2 \cdots u_n v_{n+1}$, u_i , $v_i \in X^*$.

This partial order was studied in [3] by Haines. In particular, he proved that any collection of elements in X^* which are incomparable with respect to this partial order must be finite.

Definition 2.13 [7]. A subset T of X^* is a hypercode if T is a set of incomparable words relative to the partial order \leq .

Theorem 2.14. Let ρ be a commutative infix congruence on X^* . Then each ρ -class is a hypercode, whence ρ is f-disjunctive.

Proof. If
$$u_1 u_2 \cdots u_n \equiv v_1 u_1 v_2 u_2 \cdots u_n v_{n+1}(\rho)$$
, then
$$u_1 u_2 \cdots u_n \equiv u_1 u_2 \cdots u_n v_1 v_2 \cdots v_{n+1}(\rho)$$
.

Since ρ is infix, $v_1 v_2 \cdots v_{n+1} = 1$. \square

Theorem 2.15. Let u and v be words of X^+ , $u \neq v$. Then there exists a commutative, cancellative infix congruence with $u \equiv v(\rho)$ if and only if either |u| = |v| or there exist letters a_s , $a_t \in X$ with $|u|_{a_s} > |v|_{a_s}$ and $|u|_{a_t} < |v|_{a_t}$.

Proof. Suppose ρ is a commutative, cancellative infix congruence with $u \equiv v(\rho)$ and suppose, $|u| \neq |v|$ with |u| > |v|, say. Let $|u|_{a_i} = x_i$, $|v|_{a_i} = y_i$ for all i. Then

$$a_1^{x_1}a_2^{x_2}\cdots a_n^{x_n}\equiv a_1^{y_1}a_2^{y_2}\cdots a_n^{y_n}(\rho)$$
.

Since $\sum x_i > \sum y_i$, there exists s with $x_s > y_s$. If $x_i \ge y_i$ for all i, by cancellativity we would have

$$a_1^{x_1-y_1}a_2^{x_2-y_2}\cdots a_s^{x_s-y_s}\cdots a_n^{x_n-y_n}\equiv 1(\rho)$$
,

contradicting infixity of ρ . Hence there exists t with $x_t < y_t$. Conversely, if |u| = |v|, then the length congruence λ defined by $w \equiv x(\lambda)$ if |w| = |x| will do. Suppose now $|u| \neq |v|$ and $|u|_{a_s} > |v|_{a_s}$, $|u|_{a_t} \leq |v|_{a_t}$. Again, letting $|u|_{a_i} = x_i$, $|v|_{a_i} = y_i$, let $S = \{i \mid x_i - y_i \geq 0\}$ and let $T = \{i \mid x_i - y_i < 0\}$. By hypothesis $S \neq \emptyset \neq T$. Consider the nontrivial words $\prod_{i \in S} a_i^{x_i - y_i}$ and $\prod_{i \in T} a_i^{y_i - x_i}$ (the order in which the a_i appear is immaterial). Let $x_i - y_i = s_i$, for all $i \in S$, and let $y_i - x_i = t_i$ for all $i \in T$. Let l_1, l_2, \ldots, l_n be positive integers satisfying $\sum_{i \in S} l_i s_i = \sum_{i \in T} l_i t_i$. Then for some permutation π of $1, 2, \ldots, n$ the p-linear congruence p defined by $w \equiv x(p)$ if $\sum l_{\pi(i)} |w|_{a_i} = \sum l_{\pi(i)} |x|_{a_i}$ is the required congruence identifying u and v. \square

3. A CHARACTERIZATION OF COMMUTATIVE, MAXIMAL INFIX CONGRUENCES

It is the purpose of this section to prove that the commutative maximal infix congruences are precisely the *p*-linear congruences defined in 2.10. We begin by proving the easier half of this result.

Theorem 3.1. Every p-linear congruence ρ of X^* is maximal infix.

Proof. Let $X=\{a_1\,,a_2\,,\ldots\,,a_n\}$ and let $l_1\,,l_2\,,\ldots\,,l_n$ be n positive integers. Let ρ be the p-linear congruence defined by $u\equiv v(\rho)$ if $\sum l_i|u|_{a_i}=\sum l_i|v|_{a_i}$. Let μ be a maximal infix congruence with $\mu>\rho$. By Theorem 2.8, μ is cancellative. Since $\mu>\rho$, there exist $v\,,w\in X^*$ with $v\equiv w(\mu)$ but $v\not\equiv w(\rho)$. Let $v=a_1^{u_1}a_2^{u_2}\cdots a_n^{u_n}$, $w=a_1^{x_1}a_2^{x_2}\cdots a_n^{x_n}$. Since $v\not\equiv w(\rho)\,,\,l_1x_1+l_2x_2+\cdots+l_nx_n\not\equiv l_1u_1+l_2u_2+\cdots+l_nu_n$. Assume w.l.o.g. that $l_1x_1+l_2x_2+\cdots+l_nx_n\geqslant l_1u_1+\cdots+l_nu_n$. Since $a_1^{kl_2}\equiv a_2^{kl_1}(\mu)$ for all positive integers k,

$$a_1^{x_1+kl_2}a_2^{x_2}\cdots a_n^{x_n}\equiv a_1^{u_1}a_2^{kl_1+u_2}a_3^{u_3}\cdots a_n^{u_n}(\mu)$$

for all k. We may thus assume w.l.o.g. that $x_1 > u_1$. Similarly, since $a_2^{kl_3} \equiv a_3^{kl_2}(\mu)$ for all positive k,

$$a_1^{x_1}a_2^{x_2+kl_3}a_3^{x_3}\cdots a_n^{x_n}\equiv a_1^{u_1}a_2^{u_2}a_3^{u_3+kl_2}\cdots a_n^{u_n}(\mu)$$

for all k. Thus, again, we may assume that $x_1 > u_1$, $x_2 > u_2$. Continuing in this fashion, we may assume that $x_i > u_i$, i = 1, 2, ..., n - 1. If $x_n \ge u_n$,

$$a_1^{u_1}a_2^{u_2}\cdots a_n^{u_n}\cdot a_1^{x_1-u_1}a_2^{x_2-u_2}\cdots a_n^{x_n-u_n}\equiv a_1^{u_1}a_2^{u_2}\cdots a_n^{u_n}(\mu)$$

contradicting the fact that μ is infix. Thus assume that $x_n < u_n$. Since μ is cancellative we have

$$a_1^{x_1-u_1}a_2^{x_2-u_2}\cdots a_{n-1}^{x_{n-1}-u_{n-1}}\equiv a_n^{u_n-x_n}(\mu)$$

where $l_1(x_1-u_1)+\cdots+l_{n-1}(x_{n-1}-u_{n-1})>l_n(u_n-x_n)$. Let $s_i=x_i-u_i$, i=1, 2, \ldots , n-1, $s_n=u_n-x_n$. Then we have

$$a_1^{s_1}a_2^{s_2}\cdots a_{n-1}^{s_{n-1}}\equiv a^{s_n}(\mu)$$
 with $l_1s_1+\cdots+l_{n-1}s_{n-1}>l_ns_n$.

Now

$$a_n^{l_i s_i} \equiv a_i^{l_n s_i}(\mu)$$
, $i = 1, 2, ..., n-1$.

Thus

$$a_1^{l_n s_1} \cdot a_2^{l_n s_2} \cdots a_{n-1}^{l_n s_{n-1}} \equiv a_n^{l_1 s_1 + l_2 s_2 + \cdots + l_{n-1} s_{n-1}}(\mu)$$
.

But

$$a_1^{l_n s_1} a_2^{l_n s_2} \cdots a_{n-1}^{l_n s_{n-1}} \equiv a_n^{l_n s_n}(\mu)$$
 ,

whence

$$a_n^{l_1s_1+l_2s_2+\cdots+l_{n-1}s_{n-1}} \equiv a_n^{l_ns_n}(\mu)$$
.

But $l_1s_1+l_2s_2+\cdots+l_{n-1}s_{n-1}>l_ns_n$, contradicting the fact that μ is infix. Hence ρ is maximal infix. \square

Remark. If ρ is commutative, cancellative and infix, then ρ is not necessarily maximal infix. For example, the congruence ρ defined by $u \equiv v(\rho)$ if $|u|_{a_i} = |v|_{a_i}$ for all $a_i \in X$ is clearly commutative, cancellative and infix but $\rho \lneq \lambda$, λ the length congruence.

To prove that every commutative maximal congruence is p-linear, we need several lemmas, some involving ideas from linear topological spaces.

We start with the following simple lemma.

Lemma 3.2. Let ρ be a commutative cancellative congruence on X^* . Then ρ is infix if and only if $[1]_{\rho} = \{1\}$.

Proof. The necessity is clear. Assume that $[1]_{\rho} = \{1\}$. If $u \equiv xuy(\rho)$, then, by commutativity, $u \equiv uxy(\rho)$, whence $xy \equiv 1(\rho)$ by cancellativity. Therefore xy = 1 and ρ is infix. \square

We now start proving a series of results which properly belong to functional analysis. We refer the reader to [4] for a more general discussion.

Definition 3.3. (a) Let **R** denote the real numbers. A *cone* C is a subset of \mathbb{R}^n such that (i) $C + C \subset C$; (ii) $aC \subset C$ for all nonnegative real numbers a.

(b) Let $\alpha \in \mathbb{R}^n$, $\alpha \neq 0$. The set of vectors γ such that $\alpha \cdot \gamma \geq 0$ is called a half-space. Here " \cdot " denotes the usual dot product.

Lemma 3.4 [4]. Let C be a cone of \mathbb{R}^n , $C \neq \mathbb{R}^n$. Then C is contained in a half-space.

Proof. We may assume w.l.o.g. that the interior C^0 of C is not empty. Choose $\xi \in C^0$. If $-\xi \in C$, then $0 = \xi + (-\xi) \in C^0$ since translation by $-\xi$ is a homeomorphism. Thus an open neighbourhood of 0 is contained in C. But since $aC \subset C$ for all nonnegative real numbers a, it follows that $C = \mathbb{R}^n$, a contradiction. Therefore $-\xi \notin C$. Applying Zorn's Lemma, there exists a cone M maximal subject to $-\xi \notin M$ and $\xi \in M^0$. Now let $\alpha \notin M$. Then by the maximality of M, $-\xi \in M + \operatorname{sp}^+\{\alpha\}$ where $\operatorname{sp}^+\{T\}$ denotes the set of all linear combinations of vectors of T with nonnegative coefficients. Hence $-\xi = \mu + b\alpha$, $\mu \in M$, b > 0. Therefore $-\alpha = (1/b)(\xi + \mu)$. Since $\xi \in M^0$ and both translation by μ and multiplication by 1/b are homeomorphisms it follows that $-\alpha \in M^0$. Thus

$$\mathbf{R}^{n} = (M \cup -M^{0}) \cap (-M \cup M^{0}) = (M \cap (-M)) \cup M^{0} \cup -M^{0}.$$

We prove that $M\cap (-M)$, M^0 and $-M^0$ are mutually disjoint and that $M\cap (-M)$ is a hyperplane, i.e., a subspace of dimension n-1. Let $\alpha\in M\cap -M^0$. Then $\alpha\in M$ and $-\alpha\in M^0$, showing that $0\in M^0$, whence, as before $M=\mathbb{R}^n$, a contradiction. Therefore $M\cap -M^0=\emptyset$ and consequently $-M\cap M^0=\emptyset$. Hence the three sets $M\cap -M$, M^0 and $-M^0$ are disjoint. Clearly $M\cap -M$ is a subspace. We show that it is a hyperplane by proving that each $\alpha\in \mathbb{R}^n$ is a linear combination of ξ and some element of $M\cap (-M)$. Let $\alpha\in -M^0$. Then $\{t\mid t\alpha+(1-t)\xi\in M^0\}$ and $\{t\mid t\alpha+(1-t)\xi\in -M^0\}$ are nonintersecting sets, open in [0,1] and which do not cover [0,1] since [0,1] is connected. Hence there exists t_0 with $0< t_0<1$ such that $t_0\alpha+(1-t_0)\xi\notin M^0\cup -M^0$. Hence $t_0\alpha+(1-t_0)\xi\in M\cap (-M)$ since $\mathbb{R}^n=M\cap (-M)\cup M^0\cup -M^0$. Therefore, α is a linear combination of the fixed vector ξ and a vector of $M\cap (-M)$. If $\alpha\in M^0$, $-\alpha\in -M^0$ and again $-\alpha$, and thus α , is a linear combination of ξ and an element of $M\cap -M$. Hence $M\cap -M$ is indeed a hyperplane and C lies in the half-space M. \square

Definition 3.5. Let $\alpha_1, \alpha_2, \ldots, \alpha_k$ be vectors of \mathbb{R}^n and let S be a subset of \mathbb{R} containing 0. We shall say that the set $\{\alpha_1, \alpha_2, \ldots, \alpha_k\}$ of vectors has property P with respect to S if the following holds: $\sum c_i \alpha_i = 0$ and $c_i \in S$ for all i imply $c_i = 0$ for all i.

Corollary 3.6. Let $\{\alpha_1, \alpha_2, \dots, \alpha_k\}$ be a set of vectors of \mathbf{R}^n having property P with respect to \mathbf{R}^+ , where \mathbf{R}^+ denotes the nonnegative real numbers. Then there exists a nonzero vector α such that $\alpha \cdot \alpha_i \geq 0$ for all i.

Proof. $C = \operatorname{sp}^+\{\alpha_1, \alpha_2, \dots, \alpha_k\}$ is a cone. If β and $-\beta \in C$, then $\beta = \sum b_i \alpha_i$, $-\beta = \sum b_i' \alpha_i$, with b_i and b_i' nonnegative. Thus $0 = \sum (b_i + b_i') \alpha_i$ whence $b_i + b_i' = 0$ for all i. Since b_i and b_i' are nonnegative for all i, it

follows that $b_i = b_i' = 0$ for all i. Hence, for all $\gamma \in C$, $\gamma \neq 0$, $-\gamma \notin C$ showing that $C \neq \mathbb{R}^n$. By Lemma 3.4, C is contained in a half-space determined by the hyperplane $\alpha \cdot \xi = 0$. By choosing α with the appropriate sign, we may assume $\alpha \cdot \alpha_i \geq 0$ for all i. \square

Corollary 3.7. Let $\{\alpha_1, \alpha_2, \dots, \alpha_k\}$ be vectors of \mathbb{R}^n with property P with respect to \mathbb{R}^+ . Then there exists a vector β such that $\beta \cdot \alpha_i > 0$ for all i.

Proof. By the previous result, there exists $\alpha \neq 0$ with $\alpha \cdot \alpha_i \geq 0$ for all i. Let β be a vector with $\beta \cdot \alpha_i > 0$ for the largest number of α_i 's. Let S be the set of those α_i with $\beta \cdot \alpha_i > 0$ and T the set of those α_i with $\beta \cdot \alpha_i = 0$ (note that S could be \varnothing). Let $V = \operatorname{sp}\{\alpha_i \mid \alpha_i \in T\}$. Then $\dim V = t \leq n-1$. By the previous result, there exists a hyperplane H of V with T contained in the half-space determined by H. Now $H = \widehat{H} \cap V$ where \widehat{H} is a hyperplane of \mathbb{R}^k given by $\gamma \cdot \zeta = 0$, say. Clearly T lies on one side of \widehat{H} and we may assume $\gamma \cdot \alpha_i \geq 0$ for all $\alpha_i \in T$. If $\gamma \cdot \alpha_i = 0$ for all $\alpha_i \in T$, $V = \operatorname{sp}\{\alpha_i \mid \alpha_i \in T\} \subset \widehat{H}$, whence $V = \widehat{H} \cap V = H$, a contradiction. Thus $\gamma \cdot \alpha_i > 0$ for some $\alpha_i \in T$. By multiplying γ by a suitable positive scalar we may assume $||\gamma|| < \beta \cdot \alpha_i /||\alpha_i||$ for all $\alpha_i \in S$. (Here, $||\cdot||$ denotes the usual Euclidean norm). Consider now $\beta + \gamma$. If $\alpha_i \in T$, $(\beta + \gamma) \cdot \alpha_i = \beta \cdot \alpha_i + \gamma \cdot \alpha_i = \gamma \cdot \alpha_i$ and if $\alpha_i \in S$, $(\beta + \gamma) \cdot \alpha_i = \beta \cdot \alpha_i + \gamma \cdot \alpha_i$. But by the Cauchy-Schwarz inequality,

$$|\gamma \cdot \alpha_i| \leq ||\gamma|| \, ||\alpha_i|| \leq \beta \cdot \alpha_i / ||\alpha_i|| \cdot ||\alpha_i|| = \beta \cdot \alpha_i \, .$$

Hence if $\alpha_i \in S$, $(\beta + \gamma) \cdot \alpha_i = \beta \cdot \alpha_i + \gamma \cdot \alpha_i > 0$. But for at least one $\alpha_j \in T$, $\beta \cdot \alpha_j > 0$, whence $(\beta + \gamma)\alpha_j > 0$. The maximality of S is thus contradicted proving that $\beta \cdot \alpha_i > 0$ for all i. \square

Corollary 3.8. Given vectors α_1 , α_2 , ..., α_k in \mathbb{Z}^n with property P with respect to \mathbb{N}^0 , then there exists a vector $\alpha \in \mathbb{Z}^n$ such that $\alpha \cdot \alpha_i > 0$ for all i.

Proof. We first need to show that property P with respect to \mathbb{N}^0 implies property P with respect to \mathbb{R}^+ . Suppose by way of contradiction that this is not the case. We may assume w.l.o.g. that there exist real numbers r_i , $i=1,2,\ldots,k$, all nonzero, such that $\sum r_i\alpha_i=0$. Define a linear transformation $T:\mathbb{R}^k\to \operatorname{sp}\{\alpha_1,\alpha_2,\ldots,\alpha_k\}$ by $T:(c_1,c_2,\ldots,c_k)\to \sum_{i=1}^k c_i\alpha_i$. The kernel of T has a basis $\beta_1,\beta_2,\ldots,\beta_s$ where $\beta_i\in\mathbb{Z}^k$. Let $(r_1,r_2,\ldots,r_k)=\sum b_i\beta_i$ and let $N((r_1,r_2,\ldots,r_k);\delta)$ be a neighbourhood of (r_i,r_2,\ldots,r_k) of radius $\delta>0$ such that $N((r_1,r_2,\ldots,r_k);\delta)\subset\{(x_1,x_2,\ldots,x_k)|x_i>0\}$. Choose rationals p_i/q_i so that $|p_i/q_i-b_i|<\delta/\sum ||\beta_i||$ for all i. Then

$$\begin{split} \left\| (r_1, r_2, \dots, r_n) - \sum (p_i/q_i)\beta_i \right\| &= \left\| \sum (b_i - p_i/q_i)\beta_i \right\| \\ &\leq \sum |b_i - p_i/q_i| \, ||\beta_i|| < \delta \, . \end{split}$$

Hence

$$\gamma = \sum (p_i/q_i)\beta_i \in N((r_1, r_2, \dots, r_k); \delta) \subset \{(x_1, x_2, \dots, x_k) \, | \, x_i > 0\}.$$

But $\gamma \in \ker T$ and γ has positive rational coordinates. Therefore some positive multiple of γ , say (c_1, c_2, \ldots, c_k) , has positive integral coordinates. But $\sum c_i \alpha_i = 0$, a contradiction. Therefore $\operatorname{sp}^+\{\alpha_1, \alpha_2, \ldots, \alpha_k\}$ has the property in the hypothesis of Corollary 3.7. Hence, by Corollary 3.7, there exists $\beta \in \mathbb{R}^n$ with $\beta \cdot \alpha_i > 0$ for all i. But, by continuity of the dot product, there exists a vector α' with rational coordinates such that $\alpha' \cdot \alpha_i > 0$ for all i. Multiplying α' by a suitable positive integer yields a vector $\alpha \in \mathbb{Z}^n$ with $\alpha \cdot \alpha_i > 0$ for all i. \square

The next theorem is the cornerstone of the proof that each commutative maximal infix congruence is p-linear.

Theorem 3.9. Let $M = \langle m_1, m_2, \dots, m_k \rangle$ be a finitely generated cancellative, commutative monoid with trivial group of units. Then there exists a homomorphism $\chi: M \to \mathbb{N}^0$ given by

$$\chi: \prod (m_i^{c_i}) \to \sum_{i=1}^k l_i c_i$$
, l_i positive integers.

Proof. Let G be the group of fractions of M. Then G is generated, qua group, by m_1, m_2, \ldots, m_k . Thus $G \approx T \oplus \mathbf{Z}^n$ where $k \geq n$, T is a finite abelian group and $n \geq 1$ since M is aperiodic. Let $\varphi(m_i) = (t_i, \alpha_i)$, $i = 1, 2, \ldots, k$. Suppose that $\sum_{i=1}^k c_i \alpha_i = 0$, $c_i \in \mathbf{N}^0$ and let $p \in \mathbf{N}$ with pT = (0). Then $\varphi(\prod m_i^{c_i p}) = (0, \sum p c_i \alpha_i) = (0, 0)$. Since φ is injective, it follows that $\prod m_i^{c_i p} = 1$. But since the group of units of M is trivial, we have $c_i p = 0$ for all i and thus $c_i = 0$ for all i. Letting π denote the projection of G onto \mathbf{Z}^n , the mapping $\psi = \pi \varphi|_M$ is a monoid homomorphism of M to \mathbf{Z}^n . Let $V = \{\sum_{i=1}^k c_i \alpha_i | c_i \in \mathbf{N}^0\}$. We now prove that there exists a monoid homomorphism $\tau \colon V \to \mathbf{N}^0$ given by $\tau(\sum_{i=1}^k c_i \alpha_i) = \sum_{i=1}^k l_i c_i$ where the l_i are positive integers. Since $\{\sum_{i=1}^k r_i \alpha_i | r_i \in \mathbf{R}\} = \mathbf{R}^n$, we may assume w.l.o.g. that $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ forms a basis. Let $\alpha_j = \sum_{i=1}^n b_{ji} \alpha_i$, for all j, $j \geq n+1$ where the b_{ji} are rational since the α 's are all in \mathbf{Z}^n . Let $\beta_j = (b_{j1}, b_{j2}, \ldots, b_{jn})$, $j \geq n+1$. We now show that the system of inequalities $\beta_j \cdot \xi > 0$, $j \geq n+1$, has a solultion $t = (p_1, p_2, \ldots, p_n)$ where each p_i is a positive integer. Let \mathcal{E}_i , $i = 1, 2, \ldots, n$, be the standard basis of \mathbf{R}^n and consider the set $\{\mathcal{E}_1, \mathcal{E}_2, \ldots, \mathcal{E}_n, \beta_{n+1}, \ldots, \beta_k\}$. Let $c_1\mathcal{E}_1 + c_2\mathcal{E}_2 + \cdots + c_n\mathcal{E}_n + c_{n+1}\beta_{n+1} + \cdots + c_k\beta_k = 0$, $c_i \in \mathbf{N}^0$. Then $c_i + \sum_{j=n+1}^k c_j b_{ji} = 0$ for $i = 1, 2, \ldots, n$. Now

$$\begin{split} \sum_{i=1}^{k} c_{i} \alpha_{i} &= \sum_{i=1}^{n} c_{i} \alpha_{i} + \sum_{j=n+1}^{k} \sum_{i=1}^{n} c_{j} b_{ji} \alpha_{i} \\ &= \sum_{i=1}^{n} \left(c_{i} + \sum_{j=n+1}^{k} c_{j} b_{ji} \right) \alpha_{i} = 0. \end{split}$$

Hence $c_i=0$ for all $i,\ 1\leq i\leq k$, since $\{\alpha_1,\alpha_2,\ldots,\alpha_k\}$ has property P with respect to \mathbf{N}^0 . Thus the set of vectors $\{\mathcal{E}_1,\mathcal{E}_2,\ldots,\mathcal{E}_n,\beta_{n+1},\ldots,\beta_k\}$ has property P with respect to \mathbf{N}^0 . By Corollary 3.8, there exists a vector $\mathcal{H}=(q_1,q_2,\ldots,q_n)\in\mathbf{Z}^n$ such that $\mathcal{H}\cdot\mathcal{E}_i>0$ for all $i,\ 1\leq i\leq k$, and $\mathcal{H}\cdot\beta_j>0$ for all $j,\ n+1\leq j\leq k$. Since $\mathcal{H}\cdot\mathcal{E}_i=q_i$, it follows that all the q_i are positive integers. Since $\mathcal{H}\cdot\beta_j$ is rational for all j, an appropriate positive integral multiple, say (p_1,p_2,\ldots,p_n) , of \mathcal{H} is such that $(p_1,p_2,\ldots,p_n)\cdot\beta_j$ is a positive integer for all j. Now define a linear transformation $T:\mathbf{R}^n\to\mathbf{R}$ by setting $T(\alpha_i)=p_i$, $i=1,2,\ldots,n$. Then $T(\alpha_j)=(p_1,p_2,\ldots,p_n)\cdot\beta_j\in\mathbf{N}$ for $j\geq n+1$. Hence the restriction τ of T to V is a monoid homomorphism from V to \mathbf{N}^0 . Let $\chi=\tau\psi$. Then

$$\chi(\pi m_i^{c_i}) = \sum_{i=1}^n p_i c_i + \sum_{j=n+1}^k [(p_1, p_2, \dots, p_n) \cdot \beta_j] c_j.$$

Hence, setting $l_i = p_i$, i = 1, 2, ..., n, and $l_j = (p_1, ..., p_n) \cdot \beta_j$, $j \ge n + 1$, we have that the l_i are positive integers and $\chi(\prod m_i^{c_i}) = \sum_{i=1}^k l_i c_i$. \square

We are now able to prove the result we have been aiming for.

Theorem 3.10. Let μ be a commutative maximal infix congruence on $X^* = \{a_1, a_2, \dots, a_n\}^*$. Then μ is p-linear.

Proof. By Theorem 2.8, X^*/μ is cancellative. Also, since μ is infix, the group of units is trivial. By the preceding theorem, there exists a homomorphism $\chi: X^*/\mu \to \mathbb{N}^0$ given by $\chi(\prod \overline{a}_i^{c_i}) = \sum l_i c_i$ where the l_i are positive integers and \overline{a}_i is the μ -class of a_i . Let $\nu: X^* \to X^*/\mu$ be the quotient homomorphism. Then $\ker \chi \nu \geq \mu$ and $\ker \chi \nu$ is cancellative. But since $[1]_{\ker \chi \nu} = \{1\}$, by Lemma 3.2, $\ker \chi \nu$ is infix. Hence $\ker \chi \nu = \mu$ by maximality of μ . Thus $a_1^{x_1} a_2^{x_2} \cdots a_n^{x_n} \equiv a_1^{u_1} a_2^{u_2} \cdots a_n^{u_n}(\mu)$ if and only if

$$\chi\nu(a_1^{x_1}a_2^{x_2}\cdots a_n^{x_n})=\chi\nu(a_1^{u_1}a_2^{u_2}\cdots a_n^{u_n})$$

i.e., if and only if

$$\sum l_i x_i = \sum l_i u_i. \quad \Box$$

REFERENCES

- 1. S. Eilenberg, Automata, languages and machines, vol. A, Academic Press, 1974.
- 2. Y. Q. Guo, H. J. Shyr and G. Thierrin, f-disjunctive languages, Internat. J. Comput. Math. 18 (1986), 219-237.
- 3. L. H. Haines, On free monoids partially ordered by embedding, J. Combin. Theory 6 (1969), 94-98.
- 4. J. L. Kelley and I. Namioka, Linear topological spaces, Van Nostrand, Princeton, N.J., 1963.
- 5. G. Lallement, Semigroups and combinatorial applications, Wiley, 1979.
- 6. C. M. Reis, A note on f-disjunctive languages, Semigroup Forum 36 (1987), 159-165.
- 7. G. Thierrin and H. J. Shyr, Hypercodes, Inform. and Control 24 (1974), 45-54.

Department of Mathematics, University of Western Ontario, London, Ontario, Canada