ISOMETRIC DILATIONS FOR INFINITE SEQUENCES OF NONCOMMUTING OPERATORS

GELU POPESCU

ABSTRACT. This paper develops a dilation theory for $\{T_n\}_{n=1}^{\infty}$ an infinite sequence of noncommuting operators on a Hilbert space, when the matrix $[T_1, T_2, \dots]$ is a contraction. A Wold decomposition for an infinite sequence of isometries with orthogonal final spaces and a minimal isometric dilation for $\{T_n\}_{n=1}^{\infty}$ are obtained. Some theorems on the geometric structure of the space of the minimal isometric dilation and some consequences are given. This results are used to extend the Sz.-Nagy-Foiaş lifting theorem to this noncommutative setting.

This paper is a continuation of [5] and develops a dilation theory for an infinite sequence $\{T_n\}_{n=1}^{\infty}$ of noncommuting operators on a Hilbert space \mathscr{H} when $\sum_{n=1}^{\infty} T_n T_n^* \leq I_{\mathscr{H}}$ ($I_{\mathscr{H}}$ is the identity on \mathscr{H}).

Many of the results and techniques in dilation theory for one operator [8] and also for two operators [3, 4] are extended to this setting.

First we extend Wold decomposition [8, 4] to the case of an infinite sequence $\{V_n\}_{n=1}^{\infty}$ of isometries with orthogonal final spaces.

In §2 we obtain a minimal isometric dilation for $\{T_n\}_{n=1}^{\infty}$ by extending the Schaffer construction in [6, 4]. Using these results we give some theorems on the geometric structure of the space of the minimal isometric dilation. Finally, we give some sufficient conditions on a sequence $\{T_n\}_{n=1}^{\infty}$ to be simultaneously quasi-similar to a sequence $\{R_n\}_{n=1}^{\infty}$ of isometries on a Hilbert space $\mathscr X$ with $\sum_{n=1}^{\infty} R_n R_n^* = I_{\mathscr X}$.

In §3 we use the above-mentioned theorems to obtain the Sz.-Nagy-Foiaş lifting theorem [7, 8, 1, 4] in our setting.

In a subsequent paper we will use the results of this paper for studying the "characteristic function" associated to a sequence $\{T_n\}_{n=1}^{\infty}$ with $\sum_{n=1}^{\infty} T_n T_n^* \leq I_{\mathscr{H}}$.

1

Throughout this paper Λ stands for the set $\{1, 2, ..., k\}$ $(k \in \mathbb{N})$ or the set $\mathbb{N} = \{1, 2, ...\}$.

Received by the editors September 1, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 47A20; Secondary 47A45. Key words and phrases. Isometric dilation, Wold decomposition, lifting theorem.

For every $n \in \mathbb{N}$ let $F(n,\Lambda)$ be the set of all functions from the set $\{1,2,\ldots,n\}$ to Λ and

$$\mathscr{F} = \bigcup_{n=0}^{\infty} F(n, \Lambda), \text{ where } F(0, \Lambda) = \{0\}.$$

Let $\mathscr H$ be a Hilbert space and $\mathscr V=\{V_\lambda\}_{\lambda\in\Lambda}$ be a sequence of isometries on $\mathscr H$. For any $f\in F(n\,,\Lambda)$ we denote by V_f the product $V_{f(1)}V_{f(2)}\cdots V_{f(n)}$ and $V_0 = I_{\mathscr{Y}}$.

A subspace $\mathcal{L} \subset \mathcal{H}$ will be called wandering for the sequence \mathcal{V} if for any distinct functions $f, g \in \mathcal{F}$ we have

$$V_f \mathcal{L} \perp V_g \mathcal{L} \quad (\perp \text{ means orthogonal}).$$

In this case we can form the orthogonal sum

$$M_{\mathcal{F}}(\mathcal{L}) = \bigoplus_{f \in \mathcal{F}} V_f \mathcal{L}.$$

A sequence $\mathscr{V}=\{V_{\lambda}\}_{\lambda\in\Lambda}$ of isometries on \mathscr{H} is called a Λ -orthogonal shift if there exists in \mathscr{H} a subspace \mathscr{L} , which is wandering for \mathscr{V} and such that $\mathscr{H}=M_{\mathscr{F}}(\mathscr{L})$.

This subspace ${\mathscr L}$ is uniquely determined by ${\mathscr V}$: indeed we have ${\mathscr L}=$ $\mathscr{H} \ominus (\bigoplus_{i \in \Lambda} V_i \mathscr{H})$. The dimension of \mathscr{L} is called the multiplicity of the Λ orthogonal shift. One can show, by an argument similar to the classical unilateral shift, that a Λ-orthogonal shift is determined up to unitary equivalence by its multiplicity. It is easy to see that for $\Lambda = \{1\}$ we find again the classical unilateral shift.

Let us make some simple remarks whose proofs will be omitted.

Remark 1.1. If $\mathscr{V} = \{V_{\lambda}\}_{{\lambda} \in \Lambda}$ is a Λ -orthogonal shift on \mathscr{H} , with the wandering subspace \mathcal{L} , then for any $n \in \mathbb{N}$, $\lambda \in \Lambda$ and $f \in F(n, \Lambda)$ we have (a)

$$V_{\lambda}^* V_f = \begin{cases} V_{f(2)} V_{f(3)} \cdots V_{f(n)} & \text{if } f(1) = \lambda, \\ 0 & \text{if } f(1) \neq \lambda, \end{cases}$$

and $V_1^* \ell = 0 \ (\ell \in \mathcal{L})$.

(b) $\sum_{\lambda \in \Lambda} V_{\lambda} V_{\lambda}^* + P_{\mathcal{L}} = I_{\mathcal{H}}$, where $P_{\mathcal{L}}$ stands for the orthogonal projection from \mathcal{H} into \mathcal{L} .

Remark 1.2. If $\mathcal{V} = \{V_{\lambda}\}_{\lambda \in \Lambda}$ is a Λ -orthogonal shift on \mathcal{H} then

- (a) $\lim_{n\to\infty} \sum_{f\in F(n,\Lambda)} \|V_f^* h\|^2 = 0$, for any $h \in \mathcal{H}$.
- (b) $V_{\lambda}^{*k} \to 0$ (strongly) as $k \to \infty$, for any $\lambda \in \Lambda$.
- (c) There exists no nonzero reducing subspace $\mathcal{H}_0 \subset \mathcal{H}$ for each V_{λ} ($\lambda \in$ Λ) such that $(I_{\mathscr{H}} - \sum_{\lambda \in \Lambda} V_{\lambda} V_{\lambda}^*)|_{\mathscr{H}_0} = 0$.

Let us consider a model Λ -orthogonal shift.

Form the Hilbert space

$$l^{2}(\mathcal{F},\mathcal{H})=\left\{(h_{f})_{f\in\mathcal{F}}\,;\,\sum_{f\in\mathcal{F}}\left\|h_{f}\right\|^{2}<\infty\,,h_{f}\in\mathcal{H}\right\}.$$

We embed $\mathscr H$ in $l^2(\mathscr F,\mathscr H)$ as a subspace, by identifying the element $h\in\mathscr H$ with the element $(h_f)_{f\in\mathscr F}$, where $h_0=h$ and $h_f=0$ for any $f\in\mathscr F$, $f\neq 0$.

For each $\lambda \in \Lambda$ we define the operator S_{λ} on $l^2(\mathcal{F}, \mathcal{H})$ by $S_{\lambda}((h_f)_{f \in \mathcal{F}}) = (h_g')_{g \in \mathcal{F}}$, where $h_0' = 0$ and for $g \in F(n, \Lambda)$ $(n \ge 1)$

$$h'_g = \begin{cases} h_0 & \text{if } g \in F(1,\Lambda) \text{ and } g(1) = \lambda, \\ h_f & \text{if } g \in F(n,\Lambda) \text{ } (n \ge 2), \text{ } f \in F(n-1,\Lambda) \text{ and } g(1) = \lambda, \\ g(2) = f(1), \text{ } g(3) = f(2), \dots, g(n) = f(n-1), \\ 0 & \text{otherwise.} \end{cases}$$

It is easy to see that $\{S_{\lambda}\}_{{\lambda}\in\Lambda}$ is the Λ -orthogonal shift, acting on $l^2(\mathcal{F},\mathcal{H})$, with the wandering subspace \mathcal{H} .

This model plays an important role in this paper. The following theorem is our version of Wold decomposition for a sequence of isometries.

Theorem 1.3. Let $\mathcal{V} = \{V_{\lambda}\}_{{\lambda} \in \Lambda}$ be a sequence of isometries on a Hilbert space \mathcal{K} such that $\sum_{{\lambda} \in \Lambda} V_{\lambda} V_{\lambda}^* \leq I_{\mathcal{K}}$.

Then \mathscr{K} decomposes into an orthogonal sum $\mathscr{K}=\mathscr{K}_0\oplus\mathscr{K}_1$ such that \mathscr{K}_0 and \mathscr{K}_1 reduce each operator V_λ $(\lambda\in\Lambda)$ and we have $(I_\mathscr{K}-\sum_{\lambda\in\Lambda}V_\lambda V_\lambda^*)|_{\mathscr{K}_1}=0$ and $\{V_\lambda|_{\mathscr{K}_0}\}_{\lambda\in\Lambda}$ is a Λ -orthogonal shift acting on \mathscr{K}_0 .

This decomposition is uniquely determined, indeed we have

$$\mathscr{K}_1 = \bigcap_{n=0}^{\infty} \left(\bigoplus_{f \in F(n,\Lambda)} V_f \mathscr{K} \right) ;$$

$$\mathcal{K}_0 = M_{\mathcal{F}}(\mathcal{L})$$
, where $\mathcal{L} = \mathcal{K} \ominus (\bigoplus_{\lambda \in \Lambda} V_{\lambda} \mathcal{K})$.

Proof. It is easy to see that the subspace $\mathscr{L}=\mathscr{K}\ominus(\bigoplus_{\lambda\in\Lambda}V_{\lambda}\mathscr{K})$ is wandering for \mathscr{V} .

Now let $\mathscr{H}_0 = M_{\mathscr{F}}(\mathscr{L})$ and $\mathscr{H}_1' = \mathscr{H} \ominus \mathscr{H}_0$. Observe that $k \in \mathscr{H}_1'$ if and only if $k \perp \bigoplus_{f \in \mathscr{F}_n} V_f \mathscr{L}$ for every $n \in \mathbb{N}$, where \mathscr{F}_n stands for $\bigcup_{k=0}^n F(k,\Lambda)$.

We have

$$\begin{split} \mathcal{L} \oplus \left(\bigoplus_{f \in F(1,\Lambda)} V_f \mathcal{L} \right) \oplus \cdots \oplus \left(\bigoplus_{g \in F(n,\Lambda)} V_g \mathcal{L} \right) &= \left[\mathcal{H} \ominus \left(\bigoplus_{f \in F(1,\Lambda)} V_f \mathcal{H} \right) \right] \\ \oplus \left[\left(\bigoplus_{f \in F(1,\Lambda)} V_f \mathcal{H} \right) \ominus \left(\bigoplus_{f \in F(2,\Lambda)} V_f \mathcal{H} \right) \right] \\ \oplus \cdots \oplus \left[\left(\bigoplus_{f \in F(n,\Lambda)} V_f \mathcal{H} \right) \ominus \left(\bigoplus_{f \in F(n+1,\Lambda)} V_f \mathcal{H} \right) \right] \\ &= \mathcal{H} \ominus \left(\bigoplus_{f \in F(n+1,\Lambda)} V_f \mathcal{H} \right). \end{split}$$

Thus $k \in \mathcal{K}_1'$ if and only if $k \in \bigoplus_{f \in F(n+1,\Lambda)} V_f \mathcal{K}$ for every $n \in \mathbb{N}$. Since

$$\bigoplus_{f \in F(n,\Lambda)} V_f \mathcal{K} \supset \bigoplus_{f \in F(n+1,\Lambda)} V_f \mathcal{K} \qquad (n \in \mathbf{N})$$

it follows that

$$\mathcal{K}_{1}' = \bigcap_{n=0}^{\infty} \left(\bigoplus_{f \in F(n,\Lambda)} V_{f} \mathcal{K} \right) = \mathcal{K}_{1}.$$

Let us notice that

$$\begin{split} V_{\lambda} \mathcal{H}_{1} &\subset \bigcap_{n=0}^{\infty} \left(\bigoplus_{f \in F(n,\Lambda)} V_{\lambda} V_{f} \mathcal{H} \right) \subset \bigcap_{n=0}^{\infty} \left(\bigoplus_{g \in F(n+1,\Lambda)} V_{g} \mathcal{H} \right) = \mathcal{H}_{1} \,, \\ V_{\lambda}^{*} \mathcal{H}_{1} &\subset \bigcap_{n=1}^{\infty} \left(V_{\lambda}^{*} \left(\bigoplus_{\substack{g \in F(n,\Lambda) \\ g(1) = \lambda}} V_{g} \mathcal{H} \right) \right) = \bigcap_{n=1}^{\infty} \left(\bigoplus_{f \in F(n-1,\Lambda)} V_{f} \mathcal{H} \right) = \mathcal{H}_{1} \,. \end{split}$$

Therefore \mathscr{K}_1 reduces each V_{λ} $(\lambda \in \Lambda)$. Hence \mathscr{K}_0 also reduces each V_{λ} $(\lambda \in \Lambda)$.

Since $\mathscr{K}_1 \subset \bigoplus_{\lambda \in \Lambda} V_\lambda \mathscr{K}$ it follows that $(I_\mathscr{K} - \sum_{\lambda \in \Lambda} V_\lambda V_\lambda^*)|_{\mathscr{K}_1} = 0$. The fact that $\{V_\lambda|_{\mathscr{K}_0}\}_{\lambda \in \Lambda}$ is a Λ -orthogonal shift is obvious. The uniqueness of the decomposition follows by an argument similar to the classical Wold decomposition [8, Chapter I, Theorem 1.1]. The proof is completed.

Remark 1.4. The subspaces \mathcal{K}_0 , \mathcal{K}_1 from Wold decomposition can be described as follows:

$$\mathcal{H}_{0} = \left\{ k \in \mathcal{H} : \lim_{n \to \infty} \sum_{f \in F(n,\Lambda)} \left\| V_{f}^{*} k \right\|^{2} = 0 \right\},$$

$$\mathcal{H}_{1} = \left\{ k \in \mathcal{H} : \sum_{f \in F(n,\Lambda)} \left\| V_{f}^{*} k \right\|^{2} = \left\| k \right\|^{2} \text{ for every } n \in \mathbf{N} \right\}.$$

We call the sequence $\mathscr{V} = \{V_{\lambda}\}_{{\lambda} \in \Lambda}$ in Theorem 1.3 pure if $\mathscr{K}_1 = 0$, that is, if \mathscr{V} is a Λ -orthogonal shift on \mathscr{H} .

Let $\mathcal{T} = \{T_{\lambda}\}_{{\lambda} \in \Lambda}$ a sequence of contractions on a Hilbert space \mathscr{H} such that $\sum_{\lambda \in \Lambda} T_{\lambda} T_{\lambda}^* \leq I_{\mathcal{H}}$.

We say that a sequence $\mathscr{V} = \{V_{\lambda}\}_{{\lambda} \in \Lambda}$ of isometries on a Hilbert space $\mathscr{K} \supset \mathscr{K}$ is a minimal isometric dilation of \mathscr{T} if the following conditions hold:

- $\begin{array}{ll} \text{(a)} & \sum_{\lambda \in \Lambda} V_{\lambda} V_{\lambda}^{*} \leq I_{\mathscr{H}} \,. \\ \text{(b)} & \mathscr{H} \text{ is invariant for each } V_{\lambda}^{*} & (\lambda \in \Lambda) \text{ and } V_{\lambda}^{*}|_{\mathscr{H}} = T_{\lambda}^{*} & (\lambda \in \Lambda) \,. \end{array}$
- (c) $\mathscr{K} = \bigvee_{f \in \mathscr{F}} V_f \mathscr{K}$.

Let D_* on $\mathscr H$ and D on $\bigoplus_{\lambda \in \Lambda} \mathscr H_\lambda$ ($\mathscr H_\lambda$ is a copy of $\mathscr H$) be the positive operators uniquely defined by $D_* = (I_{\mathscr{H}} - \sum_{\lambda \in \Lambda} T_{\lambda} T_{\lambda}^*)^{1/2}$ and $D = D_T$, where T stands for the matrix $[T_1, T_2, ...]$ and $D_T = (I - T^*T)^{1/2}$.

Let us denote $\mathscr{D}_{\star} = \overline{D_{\star}\mathscr{H}}$ and $\mathscr{D} = \overline{D(\bigoplus_{1 \in \Lambda} \mathscr{H}_1)}$.

Theorem 2.1. For every sequence $\mathcal{T} = \{T_{\lambda}\}_{{\lambda} \in \Lambda}$ of noncommuting operators on a Hilbert space $\mathscr H$ such that $\sum_{\lambda\in\Lambda}T_\lambda T_\lambda^*\leq I_{\mathscr H}$, there exists a minimal isometric dilation $\mathscr V=\{V_\lambda\}_{\lambda\in\Lambda}$ on a Hilbert space $\mathscr K\supset\mathscr H$, which is uniquely determined up to an isomorphism.

Proof. Let us consider the Hilbert space $\mathcal{K} = \mathcal{K} \oplus l^2(\mathcal{F}, \mathcal{D})$. We embed \mathcal{K} and \mathscr{D} into \mathscr{K} in a natural way. For each $\lambda \in \Lambda$ we define the isometry $V,: \mathcal{K} \to \mathcal{K}$ by the relation

$$(2.1) V_{\lambda}(h \oplus (d_f)_{f \in \mathscr{F}}) = T_{\lambda}h \oplus (D(\underbrace{0, \dots, 0}_{\lambda - 1 \text{ times}}, h, 0, \dots) + S_{\lambda}(d_f)_{f \in \mathscr{F}})$$

where $\{S_{\lambda}\}_{\lambda\in\Lambda}$ is Λ -orthogonal shift on $l^2(\mathcal{F},\mathcal{D})$ (see §1). Obviously, for any λ , $\mu\in\Lambda$, $\lambda\neq\mu$ we have range $S_{\lambda}\perp$ range S_{μ} and

$$(T_{\mu}^*T_{\lambda}h, h') = -(D^2(\underbrace{0, \dots, 0}_{\lambda-1 \text{ times}}, h, 0, \dots), (\underbrace{0, \dots, 0}_{\mu-1 \text{ times}}, h', 0, \dots)).$$

Hence, taking into account (2.1), it follows that

range
$$V_{\lambda} \perp \text{range } V_{\mu} \qquad (\lambda, \mu \in \Lambda, \lambda \neq \mu)$$

therefore $\sum_{\lambda \in \Lambda} V_{\lambda} V_{\lambda}^* \leq I_{\mathcal{X}}$.

It is easy to show that \mathcal{H} is invariant for each V_1^* $(\lambda \in \Lambda)$ and $V_1^*|_{\mathcal{H}} = T_1^*$ $(\lambda \in \Lambda)$.

Finally, we verify that $\mathcal{V} = \{V_{\lambda}\}_{\lambda \in \Lambda}$ is the minimal isometric dilation of ${\mathscr T}$.

Let
$$\mathscr{H}_{\mathbf{l}}=\mathscr{H}\vee(\bigvee_{f\in F(1,\Lambda)}V_{f}\mathscr{H})$$
 and

$$\mathscr{H}_n = \mathscr{H}_{n-1} \vee \left(\bigvee_{f \in F(1,\Lambda)} V_f \mathscr{H}_{n-1} \right) \quad \text{if } n \geq 2.$$

It is easy to see that $\mathcal{H}_1 = \mathcal{H} \oplus \mathcal{D}$ and

$$\mathscr{H}_n = \mathscr{H} \oplus \mathscr{D} \oplus \left(\bigoplus_{f \in F(1,\Lambda)} S_f \mathscr{D}\right) \oplus \cdots \oplus \left(\bigoplus_{f \in F(n-1,\Lambda)} S_f \mathscr{D}\right) \quad \text{if } n \geq 2.$$

Clearly $\mathcal{H}_n \subset \mathcal{H}_{n+1}$ and we have

$$\bigvee_{1}^{\infty} \mathcal{H}_{n} = \mathcal{H} \oplus M_{\mathcal{T}}(\mathcal{D}) = \mathcal{H} \oplus l^{2}(\mathcal{F}, \mathcal{D}) = \mathcal{K}.$$

Therefore $\mathscr{K} = \bigvee_{f \in \mathscr{F}} V_f \mathscr{H}$.

Following Theorem 4.1 in [8, Chapter I] it is easy to show that the minimal isometric dilation $\mathscr V$ of $\mathscr T$ is unique up to a unitary operator. To be more precise, let $\mathscr V'=\{V_\lambda'\}_{\lambda\in\Lambda}$ be another minimal isometric dilation of $\mathscr T$, on a Hilbert space $\mathscr K'\supset\mathscr H$. Then there exists a unitary operator $U\colon\mathscr K\to\mathscr K'$ such that $V_\lambda'U=UV_\lambda$ $(\lambda\in\Lambda)$ and Uh=h for every $h\in\mathscr H$.

This completes the proof.

Remark 2.2. For each $\lambda \in \Lambda$, $\bar{V}_{\lambda}^{*n} \to 0$ (strongly) as $n \to \infty$ if and only if $T_{\lambda}^{*n} \to 0$ (strongly) as $n \to \infty$.

From this remark and Theorem 2.1 one can easily deduce Proposition 1.1 in [5].

The following is a generalization of [2] or Theorem 1.2 in [8, Chapter II].

Propostion 2.3. Let $\mathscr{V} = \{V_{\lambda}\}_{{\lambda} \in \Lambda}$ be the minimal isometric dilation of $\mathscr{T} = \{T_{\lambda}\}_{{\lambda} \in \Lambda}$. Then \mathscr{V} is pure if and only if

(2.2)
$$\lim_{n \to \infty} \sum_{f \in F(n,\Lambda)} \|T_f^* h\|^2 = 0$$

for any $h \in \mathcal{H}$.

Proof. Assume that $\mathscr V$ is pure. Then, by Theorem 1.3 it follows that $\mathscr V$ is a Λ -orthogonal shift on the space $\mathscr K\supset\mathscr H$ of the minimal isometric dilation of $\mathscr F$.

Taking into account Remark 1.2 and the fact that for each $f \in \mathcal{F}$, $V_f^*|_{\mathscr{H}} = T_f^*$, we have

$$\lim_{n\to\infty}\sum_{f\in F(n,\Lambda)}\left\|T_f^*h\right\|^2=\lim_{n\to\infty}\sum_{f\in F(n,\Lambda)}\left\|V_f^*h\right\|^2=0\quad\text{for any }h\in\mathscr{H}.$$

Conversely, assume that (2.2) holds. We claim that

(2.3)
$$\lim_{n \to \infty} \sum_{f \in F(n,\Lambda)} \|V_f^* k\|^2 = 0 \quad \text{for any } k \in \mathcal{K} = \bigvee_{f \in \mathcal{F}} V_f \mathcal{K}.$$

By (2.2) we have

$$\lim_{n \to \infty} \sum_{f \in F(n, \Lambda)} \left\| V_f^* h \right\|^2 = 0 \qquad (h \in \mathcal{H}).$$

For each $k \in \bigvee_{f \in \mathcal{F}: f \neq 0} V_f \mathcal{H}$ and any $\varepsilon > 0$, there exists

$$k_{\varepsilon} = \sum_{g \in \mathcal{F}; g \neq 0}^{\prime} V_g h_g \qquad (h_g \in \mathcal{H})$$

such that $||k - k_{\varepsilon}|| < \varepsilon$. (Here \sum' stands for a finite sum.)

Since the isometries V_{λ} $(\lambda \in \Lambda)$ have orthogonal final spaces, it follows that

$$\lim_{n \to \infty} \sum_{f \in F(n,\Lambda)} \left\| \boldsymbol{V}_f^* \boldsymbol{k} \right\|^2 = \lim_{n \to \infty} \sum_{f \in F(n,\Lambda)} \left\| \boldsymbol{V}_f^* (\boldsymbol{k} - \boldsymbol{k}_{\varepsilon}) \right\|^2 \leq \left\| \boldsymbol{k} - \boldsymbol{k}_{\varepsilon} \right\|^2 < \varepsilon^2 \,,$$

for any $\varepsilon > 0$. Thus, (2.3) holds and by Remark 1.4 we have that $\mathscr V$ is pure. This completes the proof.

Corollary 2.4. If $\sum_{\lambda \in \Lambda} T_{\lambda} T_{\lambda}^* \leq r I_{\mathscr{H}}$, r < 1, then the minimal isometric dilation of $\mathscr{T} = \{T_{\lambda}\}_{\lambda \in \Lambda}$ is pure.

Now let us establish when the minimal isometric dilation $\mathcal{V}=\{V_{\lambda}\}_{{\lambda}\in\Lambda}$ cannot contain a Λ -orthogonal shift. The notations being the same as above we have

Proposition 2.5. $\sum_{\lambda \in \Lambda} V_{\lambda} V_{\lambda}^{*} = I_{\mathscr{X}}$ if and only if $\sum_{\lambda \in \Lambda} T_{\lambda} T_{\lambda}^{*} = I_{\mathscr{X}}$.

Proof. (\Rightarrow) Since $V_{\lambda}^*|_{\mathscr{H}} = T_{\lambda}^*$ ($\lambda \in \Lambda$) it follows that $\sum_{\lambda \in \Lambda} T_{\lambda} T_{\lambda}^* h = h$ ($h \in \mathscr{H}$).

(\Leftarrow) If $\sum_{\lambda \in \Lambda} T_{\lambda} T_{\lambda}^* = I_{\mathscr{H}}$ then $\sum_{f \in F(n,\Lambda)} \|T_f^* h\|^2 = \|h\|^2$ for any $n \in \mathbb{N}$ and $h \in \mathscr{H}$. Taking into account Theorem 1.3 let us assume that there exists $k \in \mathscr{H} \ominus (\bigoplus_{\lambda \in \Lambda} V_{\lambda} \mathscr{H})$, $k \neq 0$. Using Remark 1.4 it follows that

(2.4)
$$\lim_{n \to \infty} \sum_{f \in F(n,\Lambda)} \|V_f^* k\|^2 = 0.$$

On the other hand, since

$$\mathcal{H} = \mathcal{H} \vee \left(\bigvee_{\substack{f \in \mathcal{F} \\ f \neq 0}} V_f \mathcal{H} \right) \quad \text{and} \quad \bigvee_{\substack{f \in \mathcal{F} \\ f \neq 0}} V_f \mathcal{H} \subset \bigoplus_{\lambda \in \Lambda} V_{\lambda} \mathcal{H}$$

it follows that $k \in \mathscr{H}$ and by (2.4) that $\lim_{n \to \infty} \sum_{f \in F(n,\Lambda)} \|T_f^* k\|^2 = 0$, contradiction. Thus we have $\sum_{\lambda \in \Lambda} V_{\lambda} V_{\lambda}^* = I_{\mathscr{H}}$ and the proof is complete.

Dropping out the minimality condition in the definition of the isometric dilation of a sequence $\mathcal{F} = \{T_i\}_{i \in \Lambda}$, we can prove the following.

Proposition 2.6. For any sequence $\mathscr{T} = \{T_{\lambda}\}_{{\lambda} \in \Lambda}$ of operators on a Hilbert space \mathscr{H} such that $\sum_{{\lambda} \in \Lambda} T_{\lambda} T_{\lambda}^* \leq I_{\mathscr{H}}$ there exists an isometric dilation $\mathscr{V} = \{V_{\lambda}\}_{{\lambda} \in \Lambda}$ on a Hilbert space $\mathscr{H} \supset \mathscr{H}$ such that $\sum_{{\lambda} \in \Lambda} V_{\lambda} V_{\lambda}^* = I_{\mathscr{H}}$.

Proof. Taking into account Theorems 2.1 and 1.3, we show, without loss of generality, that the Λ -orthogonal shift $\mathscr{S} = \{S_{\lambda}\}_{\lambda \in \Lambda}$ on $\mathscr{H}_{0} = l^{2}(\mathscr{F}, \mathscr{E})$ (\mathscr{E} is

a Hilbert space) can be extended to a sequence $\mathscr{V}=\{V_{\lambda}\}_{\lambda\in\Lambda}$ of isometries on a Hilbert space $\mathscr{K}_0\supset\mathscr{K}_0$ such that

(2.5)
$$\sum_{\lambda \in \Lambda} V_{\lambda} V_{\lambda}^{*} = I_{\mathscr{H}_{0}} \quad \text{and} \quad V_{\lambda}|_{\mathscr{H}_{0}} = S_{\lambda} \qquad (\lambda \in \Lambda).$$

Consider the Hilbert space

$$\mathcal{K} = [l^2(\mathcal{F}, \mathcal{E}) \ominus \mathcal{E}] \oplus l^2(\mathcal{F}, \mathcal{E}).$$

We embed $l^2(\mathcal{F},\mathcal{E})$ into \mathcal{K} by identifying the element $\{e_f\}_{f\in\mathcal{F}}\in l^2(\mathcal{F},\mathcal{E})$ with the element $0\oplus\{e_f\}_{f\in\mathcal{F}}\in\mathcal{K}$.

with the element $0\oplus\{e_f\}_{f\in\mathcal{F}}\in\mathcal{K}$. Let us define the isometries V_λ $(\lambda\in\Lambda)$ on \mathcal{K} . For $\lambda\geq 2$ we set $V_\lambda=S_\lambda|_{l^2(\mathcal{F},\mathcal{E})\ominus\mathcal{E}}\oplus S_\lambda$.

Consider the countable set

$$\mathscr{F}' = \{ f \in \mathscr{F} \setminus F(1, \Lambda) : f(1) = 1 \} \cup F(1, \Lambda) \cup \{0\}$$

and a one-to-one map $\gamma: \mathcal{F} \setminus \{0\} \to \mathcal{F}'$.

For $\{e_f^*\}_{f \in \mathcal{F} \setminus \{0\}} \oplus \{e_f\}_{f \in \mathcal{F}} \in \mathcal{K}$ the isometry V_1 is defined as follows

$$\begin{split} V_1(0 \oplus \{e_f\}_{f \in \mathcal{F}}) &= 0 \oplus S_1(\{e_f\}_{f \in \mathcal{F}})\,, \\ V_1(\{e_f^*\}_{f \in \mathcal{T} \setminus \{0\}} \oplus 0) &= \{e_g^{\prime *}\}_{g \in \mathcal{T} \setminus \{0\}} \oplus \{e_g^{\prime}\}_{g \in \mathcal{F}}\,, \end{split}$$

where

$$e_g^{\prime *} = \begin{cases} e_f^* & \text{if } g = \gamma(f), \\ 0 & \text{otherwise} \end{cases}$$

and

$$e'_0 = e'_f$$
 if $\gamma(f) = 0$, $e'_g = 0$ if $g \in \mathcal{F} \setminus \{0\}$.

Now it is easy to see that the relations (2.5) hold.

Following the classification of contractions from [8] we give, in what follows, a classification of the sequences of contractions.

Let $\mathscr{T}=\{T_{\lambda}\}_{\lambda\in\Lambda}$ on a Hilbert space \mathscr{H} such that $\sum_{\lambda\in\Lambda}T_{\lambda}T_{\lambda}^{*}\leq I_{\mathscr{H}}$. Consider the following subspace of \mathscr{H} :

(2.6)
$$\mathcal{H}_{0} = \left\{ h \in \mathcal{H} : \lim_{n \to \infty} \sum_{f \in F(n,\Lambda)} \|T_{f}^{*}h\|^{2} = 0 \right\},$$
(2.7)
$$\mathcal{H}_{1} = \left\{ h \in \mathcal{H} : \sum_{f \in F(n,\Lambda)} \|T_{f}^{*}h\|^{2} = \|h\|^{2} \text{ for any } n \in \mathbb{N} \right\}.$$

Remark 2.7. The subspaces \mathcal{H}_0 and \mathcal{H}_1 are orthogonal and invariant for each operator T_{λ}^* $(\lambda \in \Lambda)$.

Proof. Taking into account Theorem 2.1, 1.3 and Remark 1.4 the proof is immediately.

Thus, the Hilbert space $\mathscr H$ decomposes into an orthogonal sum $\mathscr H=\mathscr H_0\oplus\mathscr H_1\oplus\mathscr H_2$.

For each $k \in \{0, 1, 2\}$ we shall denote by $C^{(k)}$ (respectively $C_{(k)}$) the set of all sequences $\mathcal{F} = \{T_{\lambda}\}_{\lambda \in \Lambda}$ on \mathcal{H} for which we have $\mathcal{H}_k = \{0\}$ (respectively $\mathcal{H} = \mathcal{H}_k$).

Let us mention that \mathcal{H}_1 is the largest subspace in \mathcal{H} on which the matrix

$$\begin{bmatrix} T_1^* \\ T_2^* \\ \vdots \end{bmatrix}$$

acts isometrically.

Consequently, a sequence $\mathcal{T} \in C^{(1)}$ will be also called completely noncoisometric (c.n.c).

In the particular case when $\mathcal{T} = \{T\}$ ($||T|| \le 1$) we have that $\mathcal{T} \in C^{(1)}$ if and only if T^* is completely nonisometric, that is, if there is no nonzero invariant subspace for T^* on which T^* is an isometry.

We continue this section with the study of the geometric structure of the space of the minimal isometric dilation.

For this, let $\mathscr{T}=\{T_{\lambda}\}_{\lambda\in\Lambda}$ be a sequence of operators on a Hilbert space \mathscr{H} such that $\sum_{\lambda\in\Lambda}T_{\lambda}T_{\lambda}^{*}\leq I_{\mathscr{H}}$ and $\mathscr{V}=\{V_{\lambda}\}_{\lambda\in\Lambda}$ be the minimal isometric dilation of \mathscr{T} on the Hilbert space $\mathscr{H}=\mathscr{H}\oplus l^{2}(\mathscr{F},\mathscr{D})$ (see Theorem 2.1).

Considering the subspaces of \mathcal{K}

$$\mathcal{L} = \bigvee_{\lambda \in \Lambda} (V_{\lambda} - T_{\lambda}) \mathcal{H} \quad \text{and} \quad \mathcal{L}_{\star} = \overline{\left(I_{\mathcal{H}} - \sum_{\lambda \in \Lambda} V_{\lambda} T_{\lambda}^{*}\right) \mathcal{H}}$$

we can generalize some of the results from [8, Chapter II, §§1,2] concerning the geometric structure of the space of the minimal isometric dilation.

Theorem 2.8. (i) The subspaces $\mathscr L$ and $\mathscr L_*$ are wandering subspaces for $\mathscr V$ and

$$\dim \mathcal{L} = \dim \mathcal{D}$$
; $\dim \mathcal{L}_{\bullet} = \dim \mathcal{D}_{\bullet}$.

(ii) The space \mathcal{K} can be decomposed as follows:

$$\mathcal{K} = \mathcal{R} \oplus M_{\mathcal{F}}(\mathcal{L}_{\star}) = \mathcal{K} \oplus M_{\mathcal{F}}(\mathcal{L}),$$

and the subspace \mathcal{R} reduces each operator V_1 $(\lambda \in \Lambda)$.

- (iii) $\mathcal{L} \cap \mathcal{L}_{\star} = 0$.
- (iv) The subspace \mathcal{R} reduces to $\{0\}$ if and only if $\mathcal{T} \in C_{(0)}$.

Proof. The Wold decomposition (see Theorem 1.3) for the minimal isometric dilation $\mathscr V$ on the space $\mathscr K=\mathscr K\oplus l^2(\mathscr F,\mathscr D)$ gives $\mathscr K=\mathscr R\oplus M_{\mathscr F}(\mathscr L'_\star)$, where $\mathscr R=\bigcap_{n=0}^\infty[\bigoplus_{f\in F(n,\Lambda)}V_f\mathscr K]$ reduces each operator V_λ $(\lambda\in\Lambda)$ and $\mathscr L'_\star=\mathscr K\ominus(\bigoplus_{\lambda\in\Lambda}V_\lambda\mathscr K)$ is a wandering subspace for $\mathscr V$.

It is easy to see that $\mathscr{L}'_{\star}=\mathscr{L}_{\star}$ and that the operator $\Phi_{\star}\colon \mathscr{L}_{\star}\to \mathscr{D}_{\star}$ defined by

$$\Phi_{\star}\left(I_{\mathscr{H}} - \sum_{\lambda \in \Lambda} V_{\lambda} T_{\lambda}^{\star}\right) h = D_{\star} h \qquad (h \in \mathscr{H})$$

is unitary. Hence it follows that $\dim \mathcal{L}_{\star} = \dim \mathcal{D}_{\star}$. Equation (2.1) yields

$$\sum_{\lambda \in \Lambda} (V_{\lambda} - T_{\lambda}) h_{\lambda} = 0 \oplus D((h_{\lambda})_{\lambda \in \Lambda}) \quad \text{for } (h_{\lambda})_{\lambda \in \Lambda} \in \bigoplus_{\lambda \in \Lambda} \mathscr{H}_{\lambda}$$

 $(\mathcal{H}_{\lambda} \text{ is a copy of } \mathcal{H})$.

By this relation we deduce that there exists a unitary operator $\Phi: \mathcal{L} \to \mathcal{D}$ defined by equation

$$\Phi\left(\sum_{\lambda\in\Lambda}(V_{\lambda}-T_{\lambda})h_{\lambda}\right)=D((h_{\lambda})_{\lambda\in\Lambda})$$

and hence that $\dim \mathcal{L} = \dim \mathcal{D}$.

The fact that $\mathscr L$ is a wandering subspace for $\mathscr V$ and that $\mathscr H\perp M_{\mathscr F}(\mathscr L)$ follows from the form of the isometries V_λ $(\lambda\in\Lambda)$ defined by (2.1).

Taking into account the minimality of $\hat{\mathcal{K}}$ it follows that $\mathcal{K}=\mathcal{H}\oplus M_{\mathcal{F}}(\mathcal{L})$. Let us now show that $\mathcal{L}\cap\mathcal{L}_*=0$. First we need to prove that

(2.8)
$$\mathscr{L}_{\star} \oplus \left(\bigoplus_{\lambda \in \Lambda} V_{\lambda} \mathscr{H}\right) = \mathscr{H} \oplus \mathscr{L}.$$

This follows from the fact that, for an element $u \in \mathcal{K}$, the possibility of a representation of the form

$$u = \left(I_{\mathscr{H}} - \sum_{\lambda \in \Lambda} V_{\lambda} T_{\lambda}^{*}\right) h_{0} + \sum_{\lambda \in \Lambda} V_{\lambda} h_{\lambda}, \qquad h_{0} \in \mathscr{H}, \ (h_{\lambda})_{\lambda \in \Lambda} \in \bigoplus_{\lambda \in \Lambda} \mathscr{H}_{\lambda},$$

is equivalent to the possibility of a representation of the form

$$u = h^{(0)} + \sum_{\lambda \in \Lambda} (V_{\lambda} - T_{\lambda}) h^{(\lambda)}, \qquad h^{(0)} \in \mathcal{H}, \ (h^{(\lambda)})_{\lambda \in \Lambda} \in \bigoplus \mathcal{H}_{\lambda}.$$

Indeed, we have only to set

$$h_0 = h^{(0)} - \sum_{\lambda \in \Lambda} T_{\lambda} h^{(\lambda)}, \quad h_{\lambda} = T_{\lambda}^* h^{(0)} + h^{(\lambda)}$$

and, conversely,

$$h^{(0)} = \sum_{\lambda \in \Lambda} T_{\lambda} h_{\lambda} + \left(I_{\mathscr{H}} - \sum_{\lambda \in \Lambda} T_{\lambda} T_{\lambda}^{*} \right) h_{0}, \quad h^{(\lambda)} = h_{\lambda} - T_{\lambda}^{*} h_{0}.$$

Thus (2.8) holds. On the other hand, since

$$\mathscr{L} \subset \left(\bigoplus_{\lambda \in \Lambda} V_{\lambda} \mathscr{H}\right) \vee \mathscr{H} \quad \text{and} \quad \bigoplus_{\lambda \in \Lambda} V_{\lambda} \mathscr{H} \subset \mathscr{L} \oplus \mathscr{H}$$

we have that $\mathscr{H} \vee (\bigoplus_{\lambda \in \Lambda} V_{\lambda} \mathscr{H}) = \mathscr{H} \oplus \mathscr{L}$. This relation and (2.8) show that $\mathscr{L} \cap \mathscr{L}_{\star} = \{0\}$.

The statement (iv) is contained in Proposition 2.3. The proof is complete.

Propostion 2.9. For every sequence $\mathcal{T} = \{T_{\lambda}\}_{{\lambda} \in \Lambda}$ of operators on \mathcal{H} and for its minimal isometric dilation $\mathcal{V} = \{V_{\lambda}\}_{{\lambda} \in \Lambda}$ on \mathcal{H} , we have

$$(2.9) M_{\mathcal{F}}(\mathcal{L}) \vee M_{\mathcal{F}}(\mathcal{L}_*) = \mathcal{K} \ominus \mathcal{K}_1$$

where \mathcal{H}_1 is given by (2.7).

In particular, if \mathcal{T} is c.n.c., then

$$(2.10) M_{\mathcal{F}}(\mathcal{L}) \vee M_{\mathcal{F}}(\mathcal{L}_{\star}) = \mathcal{K}.$$

Proof. Taking into account Theorem 2.8 and that $\mathscr{H}_1 \subset \mathscr{R}$ it follows that $\mathscr{H}_1 \perp M_{\mathscr{F}}(\mathscr{L}) \vee M_{\mathscr{F}}(\mathscr{L}_{\star})$.

Now let $k \in \mathcal{K}$ be such that $k \perp M_{\mathcal{F}}(\mathcal{L})$ and $k \perp M_{\mathcal{F}}(\mathcal{L}_{\star})$.

From the same theorem it follows that $k \in \mathcal{H}$ and $k \perp V_f \mathcal{L}_*$ for every $f \in \mathcal{F}$. Hence we have

$$0 = \left(k, V_f \left(I_{\mathscr{T}} - \sum_{\lambda \in \Lambda} V_{\lambda} T_{\lambda}^{\star}\right) h\right) = \left(T_f^{\star} k, h\right) - \sum_{\lambda \in \Lambda} \left(T_{\lambda}^{\star} T_f^{\star} k, T_{\lambda}^{\star} h\right)$$

for every $h \in \mathcal{H}$.

Choosing $h = T_f^* k$ $(f \in \mathcal{F})$ we obtain

$$||T_f k||^2 = \sum_{\lambda \in \Lambda} ||T_{\lambda}^* T_f^* k||^2$$

for any $f \in \mathcal{F}$.

Hence we deduce

$$\sum_{g \in F(n, \Lambda)} \|T_g^* k\|^2 = \|k\|^2$$

for any $n \in \mathbb{N}$. We conclude that $k \in \mathcal{H}_1$. Conversely, for every $k \in \mathcal{H}_1$ it is easy to see that $k \perp M_{\mathcal{F}}(\mathcal{L}) \vee M_{\mathcal{F}}(\mathcal{L}_*)$. The relation (2.10) follows because for \mathcal{F} c.n.c. we have $\mathcal{H}_1 = \{0\}$.

The last aim of this section is to generalize some of the results from [8, Chapter II, §3]. Throughout $\mathscr{V}=\{V_{\lambda}\}_{\lambda\in\Lambda}$ is the minimal isometric dilation of $\mathscr{T}=\{T_{\lambda}\}_{\lambda\in\Lambda}$. The space of the minimal isometric dilation is

(2.11)
$$\mathcal{K} = \mathcal{R} \oplus M_{\mathcal{R}}(\mathcal{L}_{\cdot}) = \mathcal{H} \oplus l^{2}(\mathcal{F}, \mathcal{D}).$$

Proposition 2.10. For every $h \in \mathcal{H}$ we have

(2.12)
$$P_{\mathcal{R}}h = \lim_{n \to \infty} \sum_{f \in F(n,\Lambda)} V_f T_f^* h$$

and consequently

(2.13)
$$||P_{\mathcal{A}}h||^2 = \lim_{n \to \infty} \sum_{f \in F(n,\Lambda)} ||T_f^*h||^2$$

where $P_{_{\mathcal{R}}}$ denotes the orthogonal projection of ${\mathscr{K}}$ into ${\mathscr{H}}$.

Proof. An easy computation shows that

$$\left\| \sum_{f \in F(n+1,\Lambda)} V_f T_f^* h - \sum_{f \in F(n,\Lambda)} V_f T_f^* h \right\|^2$$

$$= \sum_{f \in F(n+1,\Lambda)} \| T_f^* h \|^2 - \sum_{f \in F(n,\Lambda)} \| T_f^* h \|^2 \le 0$$

for every $n \in \mathbb{N}$. This implies the convergence of $\{\sum_{f \in F(n,\Lambda)} V_f T_f^* h\}_{n=1}^{\infty}$ the sequence in \mathscr{K} . Setting

$$k = \lim_{n \to \infty} \sum_{f \in F(n,\Lambda)} V_f T_f^* h,$$

let us show that $k = P_{\mathscr{R}}h$, i.e. $k \perp M_{\mathscr{F}}(\mathscr{L}_{\star})$ and $h - k \in M_{\mathscr{F}}(\mathscr{L}_{\star})$. Since for every $g \in \mathscr{F}$ there exists $n_0 \in N$ such that

$$\sum_{f \in F(n,\Lambda)} V_f T_f^* h \perp V_g \mathcal{L}_*$$

for any $n \ge n_0$, it follows that $k \perp M_{\mathscr{F}}(\mathscr{L}_{\star})$.

On the other hand we have

$$h - \sum_{f \in F(n,\Lambda)} V_f T_f^* h = \left(I_{\mathscr{R}} - \sum_{\lambda \in \Lambda} V_{\lambda} T_{\lambda}^* \right) h + \sum_{f \in F(1,\Lambda)} V_f \left(I_{\mathscr{R}} - \sum_{\lambda \in \Lambda} V_{\lambda} T_{\lambda}^* \right) T_f^* h$$
$$+ \dots + \sum_{f \in F(n-1,\Lambda)} V_g \left(I_{\mathscr{R}} - \sum_{\lambda \in \Lambda} V_{\lambda} T_{\lambda}^* \right) T_g^* h \in M_{\mathscr{F}}(\mathscr{L}_*)$$

and therefore

$$h - k = \lim_{n \to \infty} \left(h - \sum_{f \in F(n,\Lambda)} V_f T_f^* h \right) \in M_{\mathcal{F}}(\mathcal{L}_*).$$

This ends the proof.

Proposition 2.11. Let $\mathscr{T} = \{T_{\lambda}\}_{{\lambda} \in \Lambda}$ be a sequence of operators on \mathscr{H} such that the matrix $[T_1, T_2, \ldots]$ is an injection. Then $\overline{P_{\mathscr{R}}\mathscr{H}} = \mathscr{R}$.

Proof. Let us suppose that there exists $k \in \mathcal{R}$, $k \neq 0$ such that $k \perp P_{\mathcal{R}} \mathcal{H}$, or equivalently, such that $k \perp M_{\mathcal{T}}(\mathcal{L}_{\star})$ and $k \perp \mathcal{H}$.

By Theorem 2.8 we have $\mathscr{K}=\mathscr{H}\oplus M_{\mathscr{T}}(\mathscr{L})$. It follows that $k\in M_{\mathscr{T}}(\mathscr{L})$ and hence $k=\sum_{f\in\mathscr{F}}V_fl_f$ where $l_f\in\mathscr{L}$ $(f\in\mathscr{F})$ and $\sum_{f\in\mathscr{F}}\left\|l_f\right\|^2<\infty$. Since $k\neq 0$ there exists $f_0\in\mathscr{F}$, such that $V_{f_0}l_{f_0}\neq 0$ and

$$V_{f_0}^*k = l_{f_0} + \sum_{\substack{g \in \mathcal{F} \\ g \neq 0}} V_g l_g' \qquad (l_g' \in \mathcal{L}).$$

One can easily show that for every $g\in \mathcal{F}$, $g\neq 0$, $V_g\mathcal{L}\perp\mathcal{L}_*$. Since $V_{f_0}^*k\perp\mathcal{L}_*$ it follows that $l_{f_0}\perp\mathcal{L}_*$. By the relation (2.8) we deduce that $l_{f_0}\in\bigoplus_{\lambda\in\Lambda}V_\lambda\mathcal{H}$.

Therefore, there exists a nonzero $\bigoplus_{\lambda \in \Lambda} h_{\lambda} \in \bigoplus_{\lambda \in \Lambda} \mathscr{H}_{\lambda}$ such that $l_{f_0} = \sum_{\lambda \in \Lambda} V_{\lambda} h_{\lambda}$. Since $\mathscr{L} \perp \mathscr{H}$, it follows that $\sum_{\lambda \in \Lambda} T_{\lambda} h_{\lambda} = 0$ which is a contradiction with the hypothesis.

Thus $\overline{P_{\mathscr{R}}\mathscr{H}} = \mathscr{R}$ and the proof is complete.

For each $\lambda \in \Lambda$ let us denote by R_{λ} the operator $V_{\lambda}|_{\mathscr{R}}$. Taking into account the Wold decomposition (Theorem 1.3) we have $\sum_{\lambda \in \Lambda} R_{\lambda} R_{\lambda}^* = I_{\mathscr{R}}$.

The following theorem is a generalization of Proposition 3.5 in [8, Chapter II].

Proposition 2.12. Let $\mathscr{T}=\{T_{\lambda}\}_{{\lambda}\in\Lambda}$ a sequence of operators on \mathscr{H} such that $\mathscr{T}\in C^{(0)}$ and the matrix $[T_1,T_2,\ldots]$ is an injective contraction.

Then \mathcal{T} is quasi-similar to $\{R_{\lambda}\}_{{\lambda}\in\Lambda}$, i.e., there exists a quasi-affinity Y from \mathcal{R} to \mathcal{H} such that $T_1Y=YR_1$ for every $\lambda\in\Lambda$.

Proof. According to Proposition 2.10 we have

$$\begin{aligned} V_{\lambda}^* P_{\mathscr{R}} h &= \lim_{n \to \infty} \sum_{f \in F(n,\Lambda)} V_{\lambda}^* V_f T_f^* h \\ &= \lim_{n \to \infty} \sum_{g \in F(n-1,\Lambda)} V_g T_g^* T_{\lambda}^* h = P_{\mathscr{R}} T_{\lambda}^* h \end{aligned}$$

for all $h \in \mathcal{H}$ and each $\lambda \in \Lambda$.

Setting $X = P_{\mathscr{R}}|_{\mathscr{X}}$ it follows that $R_{\lambda}^* X = X T_{\lambda}^*$ for every $\lambda \in \Lambda$. Let us show that X is a quasi-affinity.

Since $\mathcal{T} \in C^{(0)}$ we have that

$$\lim_{n \to \infty} \sum_{f \in F(n, \Lambda)} \|T_f^* h\|^2 = 0 \quad \text{for every nonzero } h \in \mathcal{H}.$$

By Proposition 2.10 we deduce that $P_{\mathscr{R}}h \neq 0$ for every nonzero $h \in \mathscr{H}$, i.e., X is an injection.

On the other hand, Proposition 2.11 shows that $\overline{X}\mathcal{H} = \mathcal{R}$.

If we take $Y = X^*$, this finishes the proof.

3

In this section we extend the Sz.-Nagy-Foiaş lifting theorem [7, 8, 1, 4] to our setting.

Let $\mathscr{T} = \{T_{\lambda}\}_{{\lambda} \in \Lambda}$ be a sequence of operators on \mathscr{H} with $\sum_{{\lambda} \in \Lambda} T_{\lambda} T_{\lambda}^* \leq I_{\mathscr{H}}$ and $\mathscr{V} = \{V_{\lambda}\}_{{\lambda} \in \Lambda}$ be the minimal isometric dilation of the Hilbert space $\mathscr{H} = \mathscr{H} \oplus l^2(\mathscr{F}, \mathscr{D})$ (see Theorem 2.1).

Consider the following subspaces of \mathcal{K}

$$\mathscr{H}_1 = \mathscr{H} \vee \left(\bigvee_{f \in F(1,\Lambda)} V_f \mathscr{H} \right)$$

and

$$\mathscr{H}_n = \mathscr{H}_{n-1} \vee \left(\bigvee_{f \in F(1,\Lambda)} V_f \mathscr{H}_{n-1} \right) \quad \text{for } n \geq 2.$$

Note that $\mathcal{H}_n \subset \mathcal{H}_{n+1}$ and that all the space \mathcal{H}_n $(n \ge 1)$ are invariant for each operator V_{λ}^{*} $(\lambda \in \Lambda)$.

As in [7, 8, 1, 4] the *n*-stepped dilation of \mathcal{T} is the sequence $\mathcal{T}_n = \{(T_{\lambda})_n\}_{\lambda \in \Lambda}$ of operators defined by $(T_{\lambda})_n^* = V_{\lambda}^*|_{\mathscr{S}_n}$ $(n \ge 1, \lambda \in \Lambda)$. One can easily show that \mathscr{V} is the minimal isometric dilation on \mathscr{T}_n and

that \mathcal{T}_{n+1} is the one-step dilation of \mathcal{T}_n .

Let us observe that $\mathcal{H}_1 = \mathcal{H} \oplus \mathcal{D}$ and

$$\mathscr{H}_n = \mathscr{H} \oplus \mathscr{D} \oplus \left(\bigoplus_{f \in F(1,\Lambda)} S_f \mathscr{D}\right) \oplus \cdots \oplus \left(\bigoplus_{f \in F(n-1,\Lambda)} S_f \mathscr{D}\right) \qquad (n \ge 2)$$

where $\mathcal{S} = \{S_i\}_{i \in \Lambda}$ is the Λ -orthogonal shift acting on $l^2(\mathcal{F}, \mathcal{D})$.

Now Lemma 2 and Theorem 3 in [4] can be easily extended to our setting. Thus, we omit the proofs in what follows.

Lemma 3.1. Let P_n be the orthogonal projection from \mathcal{K} into \mathcal{H}_n . Then $\bigvee_{n\geq 1} \mathscr{H}_n \stackrel{...}{=} \mathscr{K}$ and for each $\lambda \in \Lambda$ we have

$$(T_{\lambda})_{n}^{*}P_{n} \to V_{\lambda}^{*}$$
 (strongly) as $n \to \infty$.

Let $\mathscr{T}' = \{T'_{\lambda}\}_{{\lambda} \in \Lambda}$ be another sequence of operators on a Hilbert space \mathscr{H}' with $\sum_{{\lambda} \in \Lambda} T'_{\lambda} T'^{**}_{\lambda} \leq I_{\mathscr{H}'}$ and $\mathscr{V}' = \{V'_{\lambda}\}_{{\lambda} \in \Lambda}$ be the minimal isometric dilation of \mathcal{T}' acting on the Hilbert space $\mathcal{H}' = \mathcal{H}' \oplus l^2(\mathcal{F}, \mathcal{D}')$.

Theorem 3.2. Let $A: \mathcal{H} \to \mathcal{H}'$ be a contraction such that for each $\lambda \in \Lambda$ $T'_{\lambda}A = AT_{\lambda}$. Then there exists a contraction $B: \mathcal{K} \to \mathcal{K}'$ such that for each $\lambda \in \Lambda$ $V_1'B = BV_1$ and $B^*|_{\mathscr{Z}'} = A^*$.

REFERENCES

- 1. R. G. Douglas, P. S. Muhly and C. M. Pearcy, Lifting commuting operators, Michigan Math. J. 15 (1968), 385-395.
- 2. C. Foiaș, A remark on the universal model for contractions of G. C. Rota, Comm. Acad. R. P. Romane 13 (1963), 349-352.
- 3. A. E. Frazho, Models for noncommuting operators, J. Funct. Anal. 48 (1982).
- 4. ____, Complements to models for noncommuting operators, J. Funct. Anal. 59 (1984), 445-461.
- 5. G. Popescu, Models for infinite sequences of noncommuting operators, INCREST preprint, no. 23/1986.
- 6. J. J. Schaffer, On unitary dilations of contractions, Proc. Amer. Math. Soc. 6 (1955), 322.
- 7. B. Sz.-Nagy and C. Foias, Dilation des commutants, C. R. Acad. Sci. Paris Sér. A 266 (1968), 201-212.
- 8. ____, Harmonic analysis on operators on Hilbert space, North-Holland, Amsterdam, 1970.