HOMOGENEOUS CONTINUA IN EUCLIDEAN (n + 1)-SPACE WHICH CONTAIN AN n-CUBE ARE n-MANIFOLDS

JANUSZ R. PRAJS

ABSTRACT. Let X be a homogeneous continuum and let E^n be Euclidean n-space. We prove that if X is properly contained in a connected (n+1)-manifold, then X contains no n-dimensional umbrella (i.e. a set homeomorphic to the set $\{(x_1,\ldots,x_{n+1})\in E^{n+1}: x_1^2+\cdots+x_{n+1}^2\leq 1 \text{ and } x_{n+1}\leq 0 \text{ and either } x_1=\cdots=x_n=0 \text{ or } x_{n+1}=0\}$). Combining this fact with an earlier result of the author we conclude that if X lies in E^{n+1} and topologically contains E^n , then X is an n-manifold.

The main purpose of this paper is to prove the following theorem.

1. Theorem. Each homogeneous proper subcontinuum of a connected (n + 1)-manifold contains no n-dimensional umbrella.

The results of this paper are related to two classical results: the first one of S. Mazurkiewicz [M], and, the second one of R. H. Bing [B]. Namely, with the help of the result of [P], we give a full generalization of the result of [B] to all finite-dimensional cases (Theorem 7 below, and also, the statement formulated in the title). As it was emphasized in [P], the theorem of [B] may be obtained by combining two other theorems: 1° each homogeneous locally connected nondegenerate plane continuum is a simple closed curve (this is the result of [M]), 2° each homogeneous plane continuum that contains an arc is locally connected (this is the step really done in [B]), and thus 3° each homogeneous plane continuum that contains an arc is a simple closed curve. (Bing's proof did not follow this scheme.) One can easily observe that Theorem 1 implies the result of [M] (for n = 1). Thus this paper generalizes step 1° . Step 2° has already been extended in [P] to all finite-dimensional cases. Therefore we get Theorem 7 as a generalization of step 3° .

Finally, let us stress the fact that, similarly as in [P], the ε -push property (Theorem 4) plays a crucial role in the argument of the proof of Theorem 1. Probably, this is the real reason that the results of [P] and of this paper have not been earlier found.

Received by the editors June 9, 1987 and, in revised form, June 1, 1988.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 54F20; Secondary 54C25.

Key words and phrases. Continuum, Euclidean space, homogeneity, n-dimensional umbrella, n-manifold.

J. R. PRAJS

The author gratefully acknowledges a great deal of help from Professor J. J. Charatonik during the preparation of this paper.

All spaces considered here will be either Euclidean n-spaces E^n equipped with the usual Euclidean metric d, or (not necessarily compact) n-manifolds with a metric also denoted by d. The open ball of the space with center c and radius ε will be denoted by $B(c,\varepsilon)$. For two subsets A and B of the space we put $d(A, B) = \inf\{d(a, b): a \in A \text{ and } b \in B\}$. If M is an n-manifold, the symbol ∂M denotes its combinatorial boundary. An arc with end points a and b will often be denoted by ab. The symbol I means the unit segment [0,1]. Let a set A be homeomorphic to the cube I^n and let ab be an arc. If $A \cap ab = \{a\}$ and $a \notin \partial A$, then the union $A \cup ab$ will be called an *n*-dimensional umbrella. A set X is said to be homogeneous if for given $x, y \in X$ there is a homeomorphism $h: X \to X$ with h(x) = y. A mapping means a continuous function. A mapping (a homeomorphism) $f: X \to Y$ between subsets X and Y of the same space is called an ε -translation (an ε -homeomorphism) provided $d(x, f(x)) < \varepsilon$ for every $x \in X$. A point x is said to be accessible from a set V if there is an arc xy with $xy \setminus \{x\} \subset V$. A set C separates a set V between two points $p, q \in V$, if p and q lie in distinct components of $V \setminus C$.

We start with two lemmas, which we need to prove Theorem 1.

2. Lemma. If a point $c \in C \subset E^{n+1}$ has a neighborhood (in a set C) homeomorphic to E^n , then the number of components of $E^{n+1} \setminus C$ containing c in their closures is either one or two. Moreover, c is accessible from each of these components.

Proof. Let a neighborhood A of c in C be homeomorphic to I^n , and let a ball $B(c,\xi)\subset E^{n+1}$ be such that $C\cap B(c,\xi)=A\cap B(c,\xi)$ and $\partial A\cap B(c,\xi)=\varnothing$. Further, let $\{A_0,A_1,\ldots\}$ be the family (finite or infinite) of all components of $A\cap B(c,\xi)$ with $c\in A_0$. By Proposition 3 of [P] the set A_0 separates $B(c,\xi)$ into exactly two components U_1^0 and U_2^0 . By the local connectedness of A there is a ball $B(c,\tau)$ with $A\cap B(c,\tau)\subset A_0$. Since no pair of points of $U_i^0\cap B(c,\tau)$ is separated by any A_n in $B(c,\xi)$ for $i\in\{1,2\}$ and $B(c,\xi)$ is homeomorphic to E^{n+1} , we see by Proposition 4 of [P] that A also does not separate $B(c,\xi)$ between such points. This implies that $c\in clU_i$ for the component U_i of $B(c,\xi)\backslash A$ containing $U_i^0\cap B(c,\tau)$, for $i\in\{1,2\}$, and c does not lie in the closure of any other component of $B(c,\xi)\backslash A$. Thus the number of components of $E^{n+1}\backslash C$ containing c in their closures is at most two, and, in fact, not less than one. Moreover, since A_0 is an ANR-set, the point c is accessible from both U_1^0 and U_2^0 (see [Bo, p. 217]). Finally, the desired accessibility of c follows by the previous argument.

3. Lemma. Let a set $A \subset E^{n+1}$ be homeomorphic to I^n . Given a point $c \in E^{n+1}$ and a number $\varepsilon > 0$ such that $d(c,A) < \varepsilon < d(c,\partial A)$, let A_1 denote a component of $A \cap B(c,\varepsilon)$. For two given points p and q of distinct components of $B(c,\varepsilon) \setminus A_1$ let pa and aq be arcs in $B(c,\varepsilon)$ such that $(pa \cup aq) \cap A_1 = \{a\}$

(compare Proposition 3 of [P] and Lemma 2). Then for every $\delta > 0$ such that

$$\delta < \frac{1}{2}\delta_{0} = \frac{1}{2}\min\{d(pa \cup aq, E^{n+1} \setminus B(c, \varepsilon)), d(\{p, q\}, A_{1})\}$$

and for every δ -homeomorphism $h: A_1 \to h(A_1) \subset E^{n+1}$ the component A_2 of $h(A_1) \cap B(c, \varepsilon - \delta)$ containing the point a' = h(a) separates $B(c, \varepsilon - \delta)$ between p and q.

Moreover, if $\delta < \delta_0/4$, there are arcs pa' and a'q in $B(c, \varepsilon - \delta - \delta_0/4)$ such that $(pa' \cup a'q) \cap A_2 = \{a'\}$.

Proof. By Proposition 5 of [P] the set $h(A_1)$ separates the ball $B(c, \varepsilon - \delta)$ between p and q. Therefore a component A_2 of $h(A_1) \cap B(c, \varepsilon - \delta)$ so does (see Proposition 4 of [P]). Again by Proposition 5 of [P], noting that A_2 is closed in $B(c, \varepsilon - \delta)$, we see that the set $h^{-1}(A_2) \subset A_1$ separates $B(c, \varepsilon - 2\delta)$ between p and q, and thus it intersects the set $pa \cup aq$. By the assumption the only point of this intersection is a, thus $a' = h(a) \in A_2$.

Let $\delta < \delta_0/4$. Put $\delta_1 = \varepsilon - \delta - \delta_0/4$. Suppose there is no arc pa' in $B(c, \delta_1)$ with $pa' \cap A_2 = \{a'\}$. Let A_3 be the component of $B(c, \delta_1) \cap A_2$ containing a'. Thus there is an arc $Z\subset B(c,\delta_1)$ with end points p and a' such that $Z \cap A_3 = \{a'\}$ (see Proposition 3 of [P] and Lemma 2). Let a point $z \in Z \setminus \{a'\}$ be such that the arc $za' \subset Z$ intersects A, in the single point a'. Thus, by the above assumption, A_2 separates the ball $\tilde{B}(c,\delta_1)$ between p and z. Therefore some component A_4 of $B(c, \delta_1) \cap A_2$ separates $B(c, \delta_1)$ between p and z (see Proposition 4 of [P]) and we have $A_4 \neq A_3$. Hence A_4 separates $B(c, \delta_1)$ between p and a'. By the proved part of the conclusion of this lemma the set A_3 separates the ball $B(c, \delta_1)$ between p and q (for h is also a $(\delta + \delta_0/4)$ homeomorphism). Therefore the set A_4 separates $B(c, \delta_1)$ between p and q. Thus, by Proposition 5 of [P], the set $h^{-1}(A_4)$ separates $B(c, \delta_1 - \delta)$ between p and q. By the assumption on δ we have $pa \cup aq \subset B(c, \varepsilon - \delta_0) \subset B(c, \delta_1 - \delta)$, therefore the set $h^{-1}(A_4) \subset A_1$ intersects the arc $pa \cup aq$ in a point distinct from a (for $a' = h(a) \notin A_4$), a contradiction. The argument for the existence of an arc a'q runs similarly.

Now recall the theorem (the so-called ε -push property) which is a corollary to the well-known Effros theorem.

4. Theorem (Lemma 4 of [H, p. 37]). Let X be a homogeneous metric continuum. Then for every $\varepsilon > 0$ there is $\delta > 0$ (the so-called Effros number for the number ε) such that for two given points $x, y \in X$ with $d(x, y) < \delta$ there is an ε -homeomorphism $h: X \to X$ sending x to y.

Proof of Theorem 1. Let P be a homogeneous proper subcontinuum of a connected (n+1)-manifold M. Suppose, on the contrary, P contains an n-dimensional umbrella. By the intrinsic invariance of open sets in the Euclidean spaces, since ∂M is either an n-manifold or the empty set, P cannot be contained in ∂M . Because P is a boundary set in M, there is a point $a \in P \setminus \partial M$

J. R. PRAJS

accessible from $M \setminus P$. Let d be a metric on M such that the ball $B(a,1) \subset M$ is isometric to the appropriate ball of Euclidean (n+1)-space. By the homogeneity of P there is an n-dimensional umbrella $T \subset B(a,1) \cap P$ such that $T = A \cup ab$, where the set A is homeomorphic to I^n , ab is an arc with ends a and b, and $A \cap ab = \{a\} \subset A \setminus \partial A$. Let a number $\varepsilon > 0$ be such that $\partial A \cap B(a,\varepsilon) = \emptyset$. Without loss of generality we may assume that $ab \subset B(a,\varepsilon)$. Let A_1 be the component of $A \cap B(a,\varepsilon)$ containing a. Then A_1 separates the ball $B(a,\varepsilon)$ into exactly two components (see Proposition 3 of [P]): V_b with $ab \setminus \{a\} \subset V_b$, and V_c with some point $c \in V_c$. By the accessibility of a there is an arc $ap \subset B(a,\varepsilon)$ with $ap \cap P = \{a\}$. By Lemma 2 there is an arc $ac \subset B(a,\varepsilon)$ with $ac \setminus \{a\} \subset V_c$.

(1) For any arc
$$ax$$
 with $ax \setminus \{a\} \subset V_c$ we have $P \cap (ax \setminus \{a\}) \neq \emptyset$.

In fact, let $cx\subset V_c$ be an arc (may be degenerate if c=x), and $\{z_m\}$ be a sequence of points of $ab\setminus\{a\}$ converging to a. By the ε -push property (Theorem 4) there are ξ_m -homeomorphisms $g_m\colon P\to P$ with $g_m(z_m)=a$ and $\lim \xi_m=0$. By Proposition 5 of [P] the sets $g_m(A_1)$ separate the balls $B(a,\varepsilon-\xi_m)$ between c and b, and, do not intersect cx and some fixed ball $B(b,\xi)\subset V_b$ for sufficiently great m. Since $g_m(b)\in B(b,\xi)$, the sets $B(b,\xi)\cup g_m(bz_m)\cup ax\cup cx$ are connected for almost all m. Noting $g_m(bz_m)\cap g_m(A_1)=\varnothing$, where $bz_m\subset ab$, we see that the set $g_m(A_1)\subset P$ intersects $ax\setminus\{a\}$ for large m.

By (1) we see that there is a sequence $\{a_m\}$ converging to a with $a_m \in P \cap ac \setminus \{a\}$, and also

$$ap\backslash\{a\}\subset V_b\,.$$

Let $pb \subset V_b$ be an arc, and let τ be a number such that

$$0<\tau<\tfrac{1}{2}\min\{d(ap\cup pb\cup ab\cup ac\,,M\backslash B(a\,,\varepsilon))\,,d(pb\cup\{c\}\,,A_1)\}\,.$$

Further, let $\psi>0$ be an Effros number for the number $\tau/4$ (see Theorem 4), and let $\varphi>0$ be an Effros number for the number ψ . Now, find a_k with $d(a,a_k)<\varphi$, and let $f\colon P\to P$ be a ψ -homeomorphism such that $f(a)=a_k$. Let A_2 denote the component of $B(a,\varepsilon-\tau/4)\cap f(A_1)$ containing f(a). By Lemma 3 this component separates the ball $B(a,\varepsilon-\tau/4)$ between c and b, and also between c and p (for obviously we have $\psi\leq \tau/4$). Moreover, the same lemma guarantees the existence of an arc $ca_k\subset B(a,\varepsilon-\tau/4-\tau/2)=B(a,\varepsilon-3\tau/4)$ with $ca_k\cap A_2=\{a_k\}$. Let r be the first point of the arc f(ab) (in the ordering from f(a) to f(b)) intersecting A_1 . Since $d(a,a_k)<\psi$, we may find a point $q\in a_k r\subset f(ab)$ with $a_k\neq q\neq r$ and $d(a,q)<\psi$.

Now consider the component U of $B(a,\varepsilon-\tau/4)\backslash(A_1\cup A_2)$ containing q. Observe that this component contains no point of the set $pb\cup\{c\}$. The point a_k lies in the closures of U and of the component U_c of $B(a,\varepsilon-\tau/4)\backslash(A_2\cup\operatorname{Bd} U)$ containing c, for there exist the arcs ca_k and $a_kq\subset f(ab)$. Since a_k has a neighborhood in $A_2\cup\operatorname{Bd} U$ homeomorphic to E^n , there is, by Lemma 2, no

other component of $B(a,\varepsilon-\tau/4)\backslash (A_2\cup\operatorname{Bd} U)$ containing a_k in its closure, in particular, a_k does not lie in the closure of the component U_b containing b. Let B be a connected open neighborhood of a_k in A_2 with a positive distance from $A_1\cup\operatorname{Bd} U_b$. Then

(3) the set $(A_2 \cup \operatorname{Bd} U) \setminus B$ separates the ball $B(a, \varepsilon - \tau/4)$ between c and b.

For every $x \in qb' \cap \operatorname{Bd} U \subset A_1 \backslash A_2$, where b' = f(b) and $qb' \subset f(ab)$, find an open connected neighborhood B_x of x in $A_1 \backslash A_2$ such that

$$\operatorname{cl}(\bigcup\{B_x\colon x\in qb'\cap\operatorname{Bd}U\})\cap\operatorname{cl}A_2=\varnothing.$$

Put $B_1 = \bigcup \{B_x \colon x \in qb' \cap \operatorname{Bd} U\}$. Since $A_2 \subset (A_2 \cup \operatorname{Bd} U) \setminus B_1$, we get

(4) the set
$$(A_2 \cup \operatorname{Bd} U) \setminus B_1$$
 separates the ball $B(a, \varepsilon - \tau/4)$ between c and b .

We also have

(5) the set
$$(A_2 \cup \operatorname{Bd} U) \setminus (B \cup B_1)$$
 does not separate the ball $B(a, \varepsilon - \tau/4)$ between c and b .

For, the segment between b and f(b) does not intersect $A_1 \cup A_2$, and, the arc $ca_k \cup f(ab)$ does not intersect $(A_2 \cup \operatorname{Bd} U) \setminus (B \cup B_1)$.

Now, find a $(\tau/4)$ -homeomorphism $h: P \to P$ such that h(q) = a. Then we obtain

(6) the set
$$h(A_2 \cup \operatorname{Bd} U) \setminus h(B \cup B_1)$$
 does not separate the ball $B(a, \varepsilon - 2\tau/4)$ between c and b .

In fact, if not, then the set

$$h^{-1}(h(A_2 \cup \operatorname{Bd} U) \setminus h(B \cup B_1)) = (A_2 \cup \operatorname{Bd} U) \setminus (B \cup B_1)$$

would separate $B(a,\varepsilon-3\tau/4)$ between c and b (see Proposition 5 of [P]), an impossibility, for the segment between b and f(b), as well as the arc $ca_k \cup f(ab)$, lie in $B(a,\varepsilon-3\tau/4) \setminus ((A_2 \cup \operatorname{Bd} U) \setminus (B \cup B_1))$.

By Proposition 5 of [P] and by (3) and (4) we have

(7) each of sets
$$h(A_2 \cup \operatorname{Bd} U) \setminus h(B)$$
 and $h(A_2 \cup \operatorname{Bd} U) \setminus h(B_1)$ separates the ball $B(a, \varepsilon - 2\tau/4)$ between c and b .

The following statement contradicts the previous one, so it completes the proof of Theorem 1.

One of the sets
$$h(A_2 \cup \operatorname{Bd} U) \setminus h(B)$$
 and
(8)
$$h(A_2 \cup \operatorname{Bd} U) \setminus h(B_1) \text{ fails to separate the ball } B(a, \varepsilon - 2\tau/4) \text{ between } c \text{ and } b.$$

Indeed, by (6) there is an arc cb in $B(a, \varepsilon - 2\tau/4) \setminus (h(A_2 \cup \text{Bd } U) \setminus h(B \cup B_1))$. By (7) this arc intersects the set $h(B \cup B_1)$. Since $d(B, B_1) > 0$, we have

148 J. R. PRAJS

 $d(h(B),h(B_1))>0. \text{ This implies that going from } c \text{ to } b \text{ along the arc } cb, \text{ we may find a point } y\in cb \text{ such that either } y\in h(B) \text{ and } cy\cap h(B_1)=\varnothing \text{ or } y\in h(B_1) \text{ and } cy\cap h(B)=\varnothing, \text{ where } cy\subset cb. \text{ If } y\in h(B), \text{ then let } ya'\subset h(B) \text{ be an arc (where } a'=h(a_k)=hf(a)), \text{ and put } J(y,a)=ya'\cup h(a_kq), \text{ where } a_kq\subset f(ab). \text{ If } y\in h(B_1), \text{ then } y\in h(B_x) \text{ for some } x\in qb'\cap \text{Bd } U, \text{ where } b'=f(b) \text{ and } qb'\subset f(ab). \text{ Let } yx'\subset h(B_x) \text{ be an arc, where } x'=h(x), \text{ and put } x'a=h(xq), \text{ where } xq\subset f(ab). \text{ Then put } J(y,a)=yx'\cup x'a. \text{ Thus in the former case we get } J(y,a)\cap (h(A_2\cup \text{Bd } U)\backslash h(B))=\varnothing, \text{ and, in the latter case we have } J(y,a)\cap (h(A_2\cup \text{Bd } U)\backslash h(B_1))=\varnothing. \text{ But since both considered homeomorphisms are } (\tau/4)\text{-homeomorphisms, the set } h(A_2\cup \text{Bd } U) \text{ does not intersect the arc } pb. \text{ By the assumption on } pa \text{ the set } h(A_2\cup \text{Bd } U)\subset P \text{ does not intersect the arc } pa. \text{ Therefore the connected set } cy\cup J(y,a)\cup pa\cup pb\subset B(a,\varepsilon-2\tau/4) \text{ does not intersect either } h(A_2\cup \text{Bd } U)\backslash h(B) \text{ or } h(A_2\cup \text{Bd } U)\backslash h(B_1). \text{ Thus we have } (8).$

The proof of Theorem 1 is complete.

A simple proof of the next fact is left to the reader.

5. Fact. A homogeneous locally connected continuum that topologically contains the cube I^n and contains no n-dimensional umbrella, is an n-manifold.

Further, we get the following immediate consequence of Theorem 1.

6. Corollary. A proper homogeneous locally connected subcontinuum of a connected (n+1)-manifold, that topologically contains the cube I^n , is an n-manifold.

It was proved in [P] that each homogeneous subcontinuum of E^{n+1} , which topologically contains I^n is locally connected. Thus we have the conclusion that forms the title of the paper.

7. Theorem. Each homogeneous continuum that lies in the Euclidean space E^{n+1} and topologically contains the cube I^n is an n-manifold.

REFERENCES

- [B] R. H. Bing, A simple closed curve is the only homogeneous bounded plane continuum that contains an arc, Canad. J. Math. 12 (1960), 209-230.
- [Bo] K. Borsuk, Theorem of retracts, PWN, Warsaw, 1967.
- [H] C. L. Hagopian, Homogeneous plane continua, Houston J. Math. 1 (1975), 35-41.
- [M] S. Mazurkiewicz, Sur les continus homogènes, Fund. Math. 5 (1924), 137-146.
- [P] J. R. Prajs, Homogeneous continua in Euclidean (n + 1)-space which contain an n-cube are locally connected, Trans. Amer. Math. Soc. 307 (1988), 383–394.

Institute of Mathematics, Opole Pedagogical University, ul. Oleska 48,45-951 Opole, Poland