GELFER FUNCTIONS, INTEGRAL MEANS, **BOUNDED MEAN OSCILLATION, AND UNIVALENCY**

SHINJI YAMASHITA

ABSTRACT. A Gelfer function f is a holomorphic function in $D = \{|z| < 1\}$ such that f(0) = 1 and $f(z) \neq -f(w)$ for all z, w in D. The family G of Gelfer functions contains the family P of holomorphic functions f in D with f(0) = 1 and $\operatorname{Re} f > 0$ in D. If f is holomorphic in D and if the L^2 mean of f' on the circle $\{|z| = r\}$ is dominated by that of a function of G as $r \to 1-0$, then $f \in BMOA$. This has two recent and seemingly different results as corollaries. A core of the proof is the fact that $\log f \in BMOA$ if $f \in G$. Besides the properties obtained concerning $f \in G$ itself, we shall investigate some families of functions where the roles played by P in Univalent Function Theory are replaced by those of G. Some exact estimates are obtained.

1. Introduction

Let Γ be the family of functions f holomorphic in the disk $D = \{|z| < 1\}$ having the Gelfer property that

(1.1)
$$f(z) + f(w) \neq 0 \text{ for all } z, w \in D.$$

In particular, f never vanishes in D. We call a member of $G = \{g/g(0); g \in A\}$ Γ } a Gelfer function in honor of S. A. Gelfer [10]. We shall use the following notation in [8] for f holomorphic in D:

$$M_{p}(r\,,\,f) = \left\{ \begin{array}{l} \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} \left| f(re^{it}) \right|^{p} \, dt \right\}^{1/p} \;, \quad \text{if } 0$$

where $0 \le r < 1$ and $\|f\|_p = \lim_{r \to 1} M_p(r, f)$ for 0 .Let <math>BMOA be the family of functions f holomorphic in D with finite BMOA norm:

$$||f||_* = \sup_{w \in D} ||f_w||_2 + |f(0)| < \infty,$$

where $f_w(z) = f((z+w)/(1+\overline{w}z)) - f(w)$. Then BMOA is a Banach space. We shall investigate the BMOA property and univalency in conjunction with the Gelfer property. A typical result, among others, is the following.

Received by the editors September 30, 1988.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 30C45, 30D50, 30D55; Secondary 30C55, 30C80, 31A05.

Theorem 1. Let f be holomorphic in D and let $g \in \Gamma$. Suppose that .

$$\limsup_{r \to 1} M_2(r, f')/M_2(r, g) < \infty.$$

Then $f \in BMOA$.

Although this theorem is a weak form of J. A. Cima and K. E. Petersen's [5, Theorem 2.1], it reveals the mechanism by which the following is derived:

Corollary A (see [3, Theorem]). Suppose that a holomorphic function f in D satisfies

(1.2)
$$\int_0^{2\pi} |\operatorname{Re} f'(re^{it})| dt = O(1) \quad \text{as } r \to 1.$$

Then $f \in BMOA$.

Note that [5] is not referred to in [3] and the proof is different from the present one. Less obvious is the following

Corollary B (see [4, p. 357]). Let f be holomorphic in D and close-to-convex of order $\beta > 0$. Then $\log f' \in BMOA$.

It should be emphasized that even under the strong condition of univalency of f holomorphic in D, the boundary behavior of $\log f'$ may be very pathological; see [17; 22, Theorem 2]. The statement $\log f' \in BMOA$ for each univalent f in D is therefore false.

In §2, emphasis is placed on the similarity of the family Π of holomorphic functions f with real part $\operatorname{Re} f > 0$ in D and the subfamily $P = \{f \in \Pi; f(0) = 1\}$ to Γ and G, respectively. Clearly, $\Pi \subset \Gamma$ and $P \subset G$. We shall prove, for example, $\Gamma \subset H^P$, the Hardy class, for all $P \in G$. We shall in the derivation of Corollary B will be played by the fact that $\log f \in BMOA$ if $f \in \Gamma$. Proofs of Theorem 1 and Corollary A will be given in §3. As is known, P is important in Univalent Function Theory. We can generalize some families of functions by replacing P by G. Therefore, for instance, a normalized f is called Gelfer-convex if f in §5 we shall give a short theory of univalent functions in terms of Gelfer functions. One of our tools is an improvement of Gelfer's theorem, in a sharp form, on the positiveness of the real part of Gelfer functions. Some problems are summarized in §6.

2. Gelfer functions

We summarize here some known properties of $f \in G$, most of which are due to Gelfer [10]. (See [9, pp. 266-267; 13, II, pp. 73-76 and 82-83].) Let N be the family of functions f holomorphic in D with the normalization f(0) = 0, f'(0) = 1, and let S be the family of $f \in N$ univalent in D [9, p. 9].

We suppose that $f \in G$ and $z \in D$ in the following properties (G1)-(G8). The function $\lambda(z) = (1+z)/(1-z)$, or its rotation $\lambda(e^{i\theta}z)$, θ a real constant,

shows the sharpness in the estimates. Note that

$$\begin{split} \lambda(z) - 1 &= 2z/(1-z)\,, \qquad \lambda'(z)/\lambda(z) = 2/(1-z^2)\,, \\ |\lambda(z)| &\leq \lambda(|z|)\,, \qquad |\lambda(z) - 1| \leq \lambda(|z|) - 1\,, \\ |\lambda'(z)/\lambda(z)| &\leq \lambda'(|z|)/\lambda(|z|). \end{split}$$

- (G1) f never assumes 0 and -1 in D. Furthermore, $1/f \in D$.
- (G2) We may find a univalent $F \in G$ such that f is subordinate to F.

This is [10, Theorem 1]. Here, g is subordinate to h in D if there exists a holomorphic function φ with $|\varphi| < 1$, $\varphi(0) = 0$, and $g = h \circ \varphi$ in D.

- (G3) If f is univalent, then so is f^2 . Furthermore, $(f^2 1)/\{2f'(0)\} \in S$.
- (G4) If φ is holomorphic and $|\varphi| < 1$ in D, then $f \circ \varphi / f(\varphi(0)) \in G$.

$$(G5) |f(z)| \le \lambda(|z|).$$

$$|\arg f(z)| \le \log \lambda(|z|) \qquad (\arg f(0) = 0).$$

(G6)
$$|f'(z)/f(z)| \le \lambda'(|z|)/\lambda(|z|).$$

(G7)
$$|f(z) - 1| \le \lambda(|z|) - 1$$
.

(G8)
$$|f'(0)| \le \lambda'(0) = 2.$$

In particular, (G7) is observed in [10, (13), p. 37]; see Lemma 5.1 in §5 for an extension.

We denote the Hardy class by H^p ; this is the family of holomorphic f in D with $\|f\|_p < \infty$, 0 . It is familiar that

$$\Pi\subset \bigcap_{0< p<1} H^p\,;$$

see [8, p. 13]. We shall show that $\,\Pi$ can be actually replaced by a larger family $\,\Gamma$. This follows from

Theorem 2. If $f \in G$, then $f \in H^p$ for all p, 0 . Furthermore, <math>f is outer [8, p. 24],

(2.1)
$$f(z) = \exp\left\{\frac{1}{2\pi} \int_0^{2\pi} \lambda(e^{-it}z) \log |f(e^{it})| dt\right\},$$

and

(2.2)
$$||f||_p \le 2^{(1/p)-1} + \left\{ 2p\Gamma(p)\Gamma(1-p) \right\}^{1/p}, \qquad 0$$

We note that $f(e^{it}) = \lim_{r \to 1-0} f(re^{it})$ in (2.1) is the radial limit of f finite at almost every point e^{it} and $\Gamma(\cdot)$ in (2.2) is the gamma function. Obviously, $\lambda \in G$ is not in H^1 .

Proof of Theorem 2. We remember the Prawitz inequality [9, p. 61] for $g \in S$:

(2.3)
$$M_p^p(r, g) \le p \int_0^r t^{-1} M_{\infty}^p(t, g) dt,$$

where $0 and <math>0 \le r < 1$.

Assume first that f is univalent in D. Then, $(f-1)/f'(0) \in S$, which, together with (2.3) and (G7), shows that

$$M_p^p(r, f-1) \le p \int_0^r t^{-1} M_\infty^p(t, f-1) dt \le 2^p p \int_0^1 t^{p-1} (1-t)^{-p} dt$$

= $2^p p \Gamma(p) (1-p)$ for $0 .$

Therefore, we obtain, in view of 0 , that

$$||f||_{p}^{p} \le 1 + ||f - 1||_{p}^{p} \le 1 + 2^{p} p \Gamma(p) \Gamma(1 - p),$$

whence (2.2); see [8, pp. 37 and 57] for the calculation.

In the general case we consider (G2), together with the Littlewood subordination theorem [8, p. 10; 9, p. 191; 13, II, pp. 178–179], to obtain (2.2).

Finally, if $f \in G$, then $1/f \in G$, so that f has the singular factor $\equiv 1$ by the familiar argument [8, p. 51]. This completes the proof. Q.E.D.

The celebrated Fefferman-Stein criterion for BMO functions yields that if f is holomorphic in D, then $f \in BMOA$ if and only if f = g + ih, where g and h are holomorphic with bounded Re g and Re h in D; see [6, Theorem A'] for example. A version of this is, therefore, that $f \in BMOA$ if and only if there exist a constant k > 0 and functions g, $h \in \Pi$ such that $f = k(\log g + i \log h)$. In view of the right-hand side a problem arises: $\log f \in BMOA$ if $f \in \Gamma$? We can restrict the problem, without loss of generality, to $f \in G$, and the answer is in the affirmative.

Theorem 3. If $f \in G$, then both $\log f$ and $\log(1+f)$ are in BMOA. More precisely,

As will be soon observed, the equality in (2.4) is attained by $f = \lambda$ or 1 - z; we have no answer for the sharpness of (2.5).

For the proof of Theorem 3 we recall the identity

due to N. Danikas [7] and the one

(2.7)
$$\|\log(\chi(z)/z)\|_{*} = 2\|\log\lambda\|_{*} = 2\|\log\lambda\|_{2},$$

where $\chi = (\lambda^2 - 1)/4$ is the Koebe function, due to D. Girela [11, p. 119] (see [12] also); actually, Girela obtained the results in terms of $BMOA_p$ norm. Combination of (2.6) and (2.7) yields

$$2\|\log \lambda\|_{\star} = \|\log(\chi(z)/z)\|_{\star} = \sqrt{2}\pi$$
.

Girela [11, Theorems 4 and 5] found some quantitative versions of A. Baernstein's results [1] (see [6] also) which we express in our norm:

(i) If $f \in S$, then

$$\|\log(f(z)/z)\|_{\star} \leq \|\log(\chi(z)/z)\|_{\star}$$
.

(ii) If f is univalent and zero-free in D with f(0) = 1, then

$$\|\log f\|_{\star} \leq 2\|\log \lambda\|_{\star}$$
.

We may replace the right-hand sides of the estimates in (i) and (ii) by the constant $\sqrt{2}\pi$. The equality in (i) (in (ii)) is attained by χ (by λ^2)

Lemma 2.1. Let f, g, and φ be holomorphic in D. Suppose that $|\varphi| < 1$ and $f = g \circ \varphi$ in D. Then

$$\|f_w\|_2 \le \|g_{\varphi(w)}\|_2 \quad \textit{for each } w \in D \, .$$

In particular, if $\varphi(0) = 0$ further, or if f is subordinate to g, then we have $||f||_{+} \le ||g||_{+}$ from (2.8), together with f(0) = g(0).

Proof of Lemma 2.1. We remember [21, pp. 106–107] that for $F \in H^2$ and for $\zeta \in D$,

$$(2.9) \qquad (|F|^2)_P(\zeta) - |F(\zeta)|^2 = \frac{2}{\pi} \iint_D \left(\log \left| \frac{1 - \overline{\zeta}z}{z - \zeta} \right| \right) |F'(z)|^2 dx dy,$$

where z=x+iy and $(|F|^2)_P(\zeta)$ is the value at ζ of the Poisson integral of $|F(e^{it})|^2$, or the value at ζ of the least harmonic majorant of the subharmonic function $|F|^2$ in D. Applying (2.9) to F_{ζ} and $\zeta=0$, and then making a change of variable in the right-hand side, we have

$$||F_{\xi}||_{2}^{2} = (|F|^{2})_{P}(\xi) - |F(\xi)|^{2}.$$

Now,

$$({|f|}^2)_P(w) = ({|g \circ \varphi|}^2)_P(w) \le ({|g|}^2)_P(\varphi(w))$$

by the subharmonicity of $\left|g\right|^2$. Applying (2.10) to F=g and $\xi=\varphi(w)$, we then have

$$\|g_{\varphi(w)}\|_{2}^{2} \ge (|f|^{2})_{P}(w) - |f(w)|^{2} = \|f_{w}\|_{2}^{2}.$$

This completes the proof. Q.E.D.

Proof of Theorem 3. As we have observed, subordination decreases the BMOA norm. We may therefore suppose, in view of (G2) that f is univalent. Then f^2 is univalent and zero-free in D with $f^2(0) = 1$. Thus (2.4) is a consequence of (ii) applied to f^2 . To consider $\log(1+f)$ again for univalent $f \in G$ we note that

$$g = 2(f-1)/\{f'(0)(f+1)\} \in S$$
,

and further, by (G3),

$$h = (f^2 - 1)/\{2f'(0)\} \in S$$
.

Therefore,

$$\log(1+f) = (1/2)\{\log(h(z)/z) - \log(g(z)/z)\} + \log 2,$$

which, combined with (i) for g and h, yields (2.5). Q.E.D.

We emphasize that each $f \in P$ is subordinate to λ , so that the estimate (2.4) for $f \in P$ is a direct consequence of Lemma 2.1.

Remark 2.1. We shall prove that if f is holomorphic and zero-free in D and if $\log f \in BMOA$, then we have a constant k > 0 and functions g, $h \in P$ such that

(2.11)
$$f = f(0)g^k h^{ki} \text{ in } D.$$

In particular, if $f \in G$, then we have (2.11) with f(0) = 1 by Theorem 3. For the proof of (2.11) we first observe that

$$\log f = g_1 + ih_1 + \log f(0) \,,$$

where g_1 and h_1 are holomorphic with bounded Re g_1 and Re h_1 in D, and further, $g_1(0) = h_1(0) = 0$. Then, there exist k > 0 and g, $h \in P$ such that $g_1 + ih_1 = k(\log g + i\log h)$. We thus have (2.11). See problems (8) and (9) in §6.

3. Proofs of Theorem 1 and Corollary A

Lemma 3.1. If $f \in G$, then

$$M_2(r, f) \le \sqrt{2}/(1-r)^{1/2}, \qquad 0 \le r < 1.$$

Proof. By subordination, we may suppose that f is univalent. For $g = (f^2 - 1)/\{2f'(0)\} \in S$ we have [9, p. 38] that

$$M_1(r, g) \le r/(1-r^2),$$

which, together with (G8), yields that

$$M_2^2(r, f) \le 4M_1(r, g) + 1 \le 2/(1-r), \qquad 0 \le r < 1,$$

from which follows the estimate. Q.E.D.

Lemma 3.2 [5, Theorem 2.1]. If f is holomorphic in D with

$$M_2(r, f') = O(1/(1-r)^{1/2})$$
 as $r \to 1$,

then $f \in BMOA$.

Theorem 1 now follows from Lemmata 3.1 and 3.2.

Proof of Corollary A. If g is holomorphic in D with $\operatorname{Re} g' \geq 0$, then either $g' \in \Pi$ or g' is an imaginary constant. Therefore, $g \in BMOA$ by Theorem 1. Since $\operatorname{Re} f'$ can be expressed as the difference of nonnegative harmonic functions in D by [8, p. 2], we have $f' = h_1 - h_2$ in D with $\operatorname{Re} h_k \geq 0$ in D,

k=1, 2. Choosing g_k with $g_k'=h_k$ we know that $g_k\in BMOA$ (k=1,2), so that $f=g_1-g_2+{\rm constant}$, is in BMOA. Q.E.D.

We can extend Corollary A, for example, in the following form in terms of G. Let L(G) be the family of linear combinations of functions of G, that is, $a_1f_1+\cdots+a_nf_n$, where a_k are complex constants, and $f_k\in G$, $1\leq k\leq n$, and $n\geq 1$ is arbitrary. The extension is:

If $f' \in L(G)$, then $f \in BMOA$.

In particular, if f satisfies (1.2), then $f' \in L(G)$. Actually, $1 \in G$ and each $g \in \Pi$ can be expressed as

$$g = (\operatorname{Re} g(0))g_1 + i \operatorname{Im} g(0),$$

with $g_1 = \{g - i \text{ Im } g(0)\} / \text{Re } g(0) \in P$.

4. From P to G in Univalent Function Theory

Following [9, pp. 40 and 46], we denote by S^* , C and K the families of $f \in S$ which are starlike, convex, and close-to-convex in D, respectively.

We call $f \in N$ close-to-convex of order $\beta \geq 0$, $f \in K(\beta)$ $(K(\beta) = C(\beta))$ in [4]) in notation, if there exist a real constant c and $g \in C$ depending on f such that

$$|\arg\{e^{ic}f'(z)/g'(z)\}| \le \pi\beta/2, \qquad z \in D.$$

Note that K = K(1).

To extend the above notion, we define G^{α} to be the family of g^{α} with $g \in G$, where α is a real constant and $g^{\alpha}(0) = 1$. Obviously, $G^{0} = \{1\}$.

- (a) We call $f \in N$ Gelfer-starlike of exponential order α , $f \in S_G^*(\alpha)$ in notation, if $zf'(z)/f(z) \in G^{\alpha}$.
- (b) We call $f \in N$ Gelfer-convex of exponential order α , $f \in C_G(\alpha)$ in notation, if $zf''(z)/f'(z)+1 \in G^{\alpha}$.

We then have $S^*\subset S_G^*(1)$ and $C\subset C_G(1)$ by $P\subset G$. The Alexander-type theorem [9, p. 43; 13, I, p. 115] holds: $f\in N$ is in $C_G(\alpha)$ if and only if zf'(z) is in $S_G^*(\alpha)$.

If $f \in S_G^*(\alpha)$, then f never vanishes in $\{0 < |z| < 1\}$, and if $f \in S_G^*(\alpha) \cup C_G(\alpha)$, then f' never vanishes in D. Trivially, $S_G^*(0) = C_G(0) = \{z\}$. See Problem (5) in §6.

(c) We call $f \in N$ Gelfer-close-to-convex of exponential order (α, β) , $f \in K_G(\alpha, \beta)$ in notation, if there exists $g \in C_G(\alpha)$ such that $f'/g' \in G^{\beta}$.

The derivative f' of $f \in K_G(\alpha, \beta)$ thus never vanishes in D. Since $G = G^{-1}$, it follows that

$$S_G^{\star}(\alpha) = S_G^{\star}(|\alpha|)\,, \quad C_G(\alpha) = C_G(|\alpha|)\,, \quad K_G(\alpha\,,\,\beta) = K_G(|\alpha|\,,\,|\beta|)\,.$$

Henceforth we shall always assume that $\alpha \geq 0$ and $\beta \geq 0$ whenever constants α and β are considered.

We note that $C_G(\alpha)=K_G(\alpha\,,\,0)$ and $S_G^*(\alpha)\subset K_G(\alpha\,,\,\alpha)$. Actually, for $f\in S_G^*(\alpha)$ we have $g\in C_G(\alpha)$ and $h\in G$ such that

$$f(z) = zg'(z)$$
 and $zf'(z)/f(z) = h(z)^{\alpha}$.

We thus have $f'/g' = h^{\alpha}$ or $f \in K_G(\alpha, \alpha)$.

Most interesting for our purpose in the present section would be that

$$(4.2) K(\beta) \subset K_G(1, \beta).$$

If the equality in (4.1) holds at a point $z \in D$, then $e^{ic}f'/g'$ is a constant. Since f and g are normalized, it follows that f = g. Thus, in particular,

$$K(0) = C \subset C_G(1) = K_G(1, 0).$$

Proof of (4.2). We may suppose therefore that $\beta > 0$ and the inequality in (4.1) is strict everywhere. Then, for $f \in K(\beta)$ we have c, $g \in C$ and $h \in \Pi$ such that

$$e^{ic} f'/g' = h^{\beta}, \qquad h(0)^{\beta} = e^{ic}.$$

Now, $g \in C_G(1)$, and for $\varphi = h/h(0) \in G$, we have $f'/g' = \varphi^{\beta}$, whence $f \in K_G(1, \beta)$. Q.E.D.

In view of (4.2) we observe that Corollary B is contained in the following theorem which is a consequence of Theorems 1 and 3.

Theorem 4. If $f \in K_G(\alpha, \beta)$ for $\alpha \le 1$, then $\log f' \in BMOA$.

Proof. We first consider $g \in C_G(\alpha)$. Then, there exists $\varphi \in G$ such that

$$(\log g'(z))' = (\varphi(z)^{\alpha} - 1)/z.$$

Since $M_2(r, \varphi^{\alpha})/M_2(r, \varphi) = O(1)$ by $\alpha \le 1$, we have then

$$M_2(r, (\log g')')/M_2(r, \varphi) = O(1)$$
 as $r \to 1$.

It follows from Theorem 1 that $\log g' \in BMOA$. Next, for $f \in K_G(\alpha, \beta)$ we choose $g \in C_G(\alpha)$ and $h \in G$ such that $f' = g'h^{\beta}$. Then,

$$\log f' = \log g' + \beta \log h,$$

together with Theorem 3, shows that $\log f' \in BMOA$, and this completes the proof of the theorem. Q.E.D.

Remark 4.1. Suppose that $f \in N$ satisfies $f' = g' \varphi^{\beta}$ for $g \in C$ and $\varphi \in G$ in D. As is seen, this is the case for $f \in K(\beta)$ in particular. Since g' is subordinate to $\chi(z)/z$ by [9, Problem 13, p. 213; 13, II, p. 187], together with the Alexander theorem, it follows that

$$\|\log g'\|_{*} \leq \|\log(\chi(z)/z)\|_{*} = \sqrt{2}\pi.$$

In view of (2.4) for φ , it is now easy to have

$$\|\log f'\|_{\star} = \|\log g' + \beta \log \varphi\|_{\star} \le (2+\beta)\pi/\sqrt{2}.$$

The equality holds for $f(z) = \{(1-z)^{-\beta-1} - 1\}/(\beta+1)$, where g(z) = z/(1-z) and $\varphi(z) = 1/(1-z)$. See the same estimate [11, Theorem 6] for the specified case K(1) = K.

We call $f \in N$ typically real, $f \in T$ in notation, if f has real values on the real axis and nonreal values elsewhere. Each $f \in T$ never vanishes in $\{0 < |z| < 1\}$. Actually,

(4.3)
$$(1-z^2)f(z)/z \in P \text{ if } f \in T;$$

see [9, p. 56; 13, I, p. 185]. There exists a nonunivalent $f \in T$ [9, p. 57]. We can, however, prove that $\log(f(z)/z) \in BMOA$ if $f \in T$.

Theorem 4a. Suppose that $f \in N$. If there exist $\alpha \geq 0$, a univalent $g \in G$, and $h \in \Gamma$ such that

(4.4)
$$fg/(g^2-1) = h^{\alpha} \text{ in } D,$$

then $\log(f(z)/z) \in BMOA$.

If $f \in T$, then (4.3) shows that (4.4) with $g = \lambda$ and $\alpha = 1$ holds.

Proof of Theorem 4a. Since $\varphi = (g^2 - 1)/\{2g'(0)\} \in S$ and $\psi = 2g'(0)/g \in \Gamma$, it follows from (i), $\log \psi \in BMOA$, and $\log h \in BMOA$, that

$$\log(f(z)/z) = \alpha \log h(z) + \log(\varphi(z)/z) + \log \psi(z)$$

is in BMOA. Q.E.D.

In particular, if $f \in N$, and $(1 - z^2)f(z)/z \in G$, then

For example, (4.5) is true for $f \in T$ by (4.3). It follows from $f(z)/z = h(z)/(1-z^2)$, $h \in G$, that

$$\log(f(z)/z) = \log h(z) - \log(1-z^2).$$

Since $\log(1-z^2)$ is subordinate to $\log(1-z)$, we have $\|\log(1-z^2)\|_* \le \pi/\sqrt{2}$ by (2.6). We now have (4.5) from (2.4) for h. The equality in (4.5) holds for $\chi \in T$.

Remark 4.2. We call $f \in N$ spiral-like if there exists a constant b with |b|=1 and $|\arg b|<\pi/2$ such that $bzf'(z)/f(z)\in\Pi$ (see [9, p. 52; 13, I, p. 149]; we note that $\alpha\neq\pm\pi/2$ for $f\in N$ satisfying [13, I, (40), p. 148]). The family S_p of spiral-like functions contains S^* and is contained in S, yet there is no inclusion relation between S_p and K (see [9, pp. 54-55]). However, we can show that $S_p\subset S_G^*(1)$. For we set $\varphi(z)=bzf'(z)/f(z)$. Then $\varphi\in\Gamma$ and $\varphi(0)=b$, so that $zf'(z)/f(z)=\varphi/\varphi(0)\in G$, whence $f\in S_G^*(1)$.

5. Properties of
$$S_G^*$$
, C_G , and K_G

For a complex number b, |b| = 1, we set

$$\Omega(b) = \{z \neq 0; |\arg(z/b)| < \pi/2\},\$$

the half-plane with the boundary $\{z; \operatorname{Re}(\overline{b}z) = 0\}$. Set

$$\Delta(w, r) = \{z; |z - w|/|1 - \overline{w}z| < r\}$$

for $w \in D$ and $0 < r \le 1$. This is a non-Euclidean disk with non-Euclidean center w and non-Euclidean radius $\tanh^{-1} r$, on the one hand, and a (Euclidean) disk with center $w(1-r^2)/(1-|w|^2r^2)$ and radius $r(1-|w|^2)/(1-|w|^2r^2)$, on the other hand. We begin with

Theorem 5. For each $f \in G$ and for each $w \in D$,

(5.1)
$$f(\Delta(w, 1/\sqrt{2})) \subset \Omega(f(w)/|f(w)|).$$

In particular, Re f > 0 in $\{|z| < 1\sqrt{2}\}$ and the constant $1/\sqrt{2}$ is sharp in this case.

Gelfer [10, Theorem 6, 1°] proved that $\operatorname{Re} f > 0$ in the disk $\{|z| < r_G\}$ for $f \in G$, where

$$r_G = \tanh(\pi/4) = 0.65 \dots < 1/\sqrt{2} = 0.70 \dots$$

Proof of Theorem 5. The function g = (1-f)/(1+f) is a Bieberbach-Eilenberg function [9, p. 265; 13, II, p. 61] in the sense that $g(z)g(w) \neq 1$ for z, $w \in D$, and g(0) = 0. It is known that $|g(z)| \leq |z|/(1-|z|^2)^{1/2}$ in D [16, Theorem 1]; see [9, p. 265; 13, II, p. 81]. Since

Re
$$f = (1 - |g|^2)/|1 + g|^2$$
,

it follows that Re f(z) > 0 if and only if |g(z)| < 1 or if $|z| < 1/\sqrt{2}$. Fix $w \in D$ and then consider $f \circ \varphi/f(w)$, where $\varphi(z) = (z+w)/(1+\overline{w}z)$. Then this is in G by (G4) and hence its real part is positive for $|z| < 1/\sqrt{2}$. We thus have (5.1). For the sharpness at w = 0, we note that the Möbius transformation

(5.2)
$$f_1(z) = (1 - \overline{a}z)/(1 + az), \qquad a = e^{\pi i/4},$$

maps D onto $\Omega(\overline{a})$, so that $f_1 \in G$. Note that a Möbius transformation ψ is in Γ if and only if ψ is pole-free in D and the image of D by ψ does not contain 0. A simple calculation now shows that $\operatorname{Re} f_1(i/\sqrt{2}) = 0$. Q.E.D.

Remark 5.1. Gelfer obtained his constant r_G by making use of the estimate (G5'). It is now easy to obtain $|\arg f(z)| \leq \alpha \log \lambda(|z|)$, $z \in D$, for $f \in G^{\alpha}$. The G^{α} version of Theorem 5 is that, if $f \in G^{\alpha}$, then

$$(5.1') f(\Delta(w, \tanh\{\pi/(4\alpha)\})) \subset \Omega(f(w)/|f(w)|)$$

at each $w \in D$. It is easy to show that if $\alpha \le 1$, then $z^{\alpha} \in \Omega(b^{\alpha})$ for each $z \in \Omega(b)$. Therefore, if $f \in G^{\alpha}$, $\alpha \le 1$, then (5.1) holds again. We now observe that $\tanh\{\pi/(4\alpha)\} < 1/\sqrt{2}$ if $\alpha > \alpha_0 \equiv \pi/\{4\tanh^{-1}(1/\sqrt{2})\} = 0.891\dots$. Thus, (5.1) is better than (5.1') for $\alpha_0 < \alpha \le 1$.

We call $f \in N$ starlike, convex, and close-to-convex in $\{|z| < r\}$ $(0 < r \le 1)$ if $r^{-1}f(rz)$ is in S^* , C, and K, respectively. Obviously, f is starlike (or convex) in $\{|z| < r\}$ if and only if $\text{Re}\{zf'(z)/f(z)\}$ (or $\text{Re}\{zf''(z)/f'(z)\}+1$) > 0 there. We now have the following

Corollary. Functions of $S_G^*(1)$, $C_G(1)$, and $K_G(1,1)$ are starlike, convex, and close-to-convex in $\{|z|<1/\sqrt{2}\}$, respectively. The constant $1/\sqrt{2}$ for starlikeness and convexity is sharp.

The solution $f \in N$ of the equation

$$zf'(z)/f(z) = f_1(z)$$
 in D ,

where f_1 is in (5.2), shows the sharpness of $1/\sqrt{2}$ for starlikeness. The solution $f \in N$ of the equation

$$zf''(z)/f'(z) + 1 = f_1(z)$$
 in D ,

on the other hand, shows the sharpness of $1/\sqrt{2}$ for convexity.

Remark 5.2. In view of Remark 5.1 we have the obvious results for $S_G^*(\alpha)$, $C_G(\alpha)$, and $K_G(\alpha,\alpha)$. For example, $f\in C_G(\alpha)$ is convex in $\{|z|<\tanh[\pi/(4\alpha)]\}$. Again, in case $\alpha_0<\alpha\leq 1$, we can replace the disk by the larger one $\{|z|<1/\sqrt{2}\}$.

Lemma 5.1. If $f \in G^{\alpha}$, then

$$(5.3) |f(z)-1| \le \lambda (|z|)^{\alpha} - 1, z \in D.$$

This is a generalization of (G7). The equality is attained by $f = \lambda^{\alpha}$ at each z = r, $0 \le r < 1$.

Proof of Lemma 5.1. Differentiating $f = h^{\alpha}$, where $h \in G$, and then combining (G5) and (G6) for h, we have

$$|f'(z)| = |\alpha h(z)^{\alpha} (h'(z)/h(z))| \le (\lambda^{\alpha})'(|z|),$$

whence, by (f-1)' = f', we have

$$|f(z) - 1| \le \int_0^{|z|} (\lambda^{\alpha})'(t) dt = \lambda(|z|)^{\alpha} - 1.$$
 Q.E.D.

Corollary to Lemma 5.1. If $f \in K_G(\alpha, \beta)$, $\alpha \le 1$, then there exists r, $0 < r \le 1$, such that f is univalent in each $\Delta(w, r)$, $w \in D$.

Proof. If $g \in C_G(\alpha)$, $\alpha \le 1$, then

$$g''(z)/g'(z) = (\varphi(z) - 1)/z, \qquad \varphi \in G^{\alpha},$$

so that

$$(1-|z|^2)|g''(z)/g'(z)| \le (1-|z|^2)\{\lambda(|z|)^{\alpha}-1\}/|z|,$$

from Lemma 5.1, and the right-hand side is bounded because $\alpha \leq 1$. For $f \in K_G(\alpha, \beta)$ we have $g \in C_G(\alpha)$ and $h \in G$ such that $f' = g'h^{\beta}$, whence $f''/f' = g''/g' + \beta h'/h$. Therefore, (G6) for h shows that $(1-|z|^2)|f''(z)/f'(z)|$ is bounded in D. By the well-known fact (see [19; 20, Theorem 2], for example), we have the corollary.

Lemma 5.1 will be of use to consider the convexity of $f \in K_G(\alpha, \beta)$. We need a second preparation. The function

$$\sigma(x) = \lambda(x)^{\alpha} + 2\beta x/(1-x^2)$$

of x, $0 \le x < 1$, increases from 1 to $+\infty$ as x increases from 0 to 1, except for the trivial case $\alpha = \beta = 0$, namely, $\sigma(x) \equiv 1$. Therefore we have only one value $c = c(\alpha, \beta) > 0$ such that $\sigma(c) = 2$ for $(\alpha, \beta) \ne (0, 0)$; we set c(0, 0) = 1. A calculation yields that

$$3c(1, \beta) = (\beta^2 + 2\beta + 4)^{1/2} - \beta - 1$$

for example.

Theorem 6. Each $f \in K_G(\alpha, \beta)$ is convex in $\{|z| < c(\alpha, \beta)\}$.

We do not know the sharpness of $c(\alpha, \beta)$ except for the trivial case $\alpha = \beta = 0$. However, there is a reason that $c(\alpha, \beta)$ is not so bad. The radius of convexity of S is the same as that of K and is $2 - \sqrt{3} = 0.267...$; see [13, II, p. 89]. On the other hand, $K \subset K_G(1, 1)$, and the radius of convexity for $K_G(1, 1)$ is not less than $c(1, 1) = (\sqrt{7} - 2)/3 = 0.215...$

Proof of Theorem 6. We have $f'/g'=h^{\beta}$, where $g\in C_G(\alpha)$ and $h\in G$. It follows from (G6) for h that

$$|zf''(z)/f'(z) - zg''(z)/g'(z)| = \beta |zh'(z)/h(z)|$$

 $\leq 2\beta |z|/(1 - |z|^2), \quad z \in D.$

On the other hand, (5.3) yields that

$$|zg''(z)/g'(z)| = |(zg''(z)/g'(z) + 1) - 1| \le \lambda(|z|)^{\alpha} - 1, \qquad z \in D.$$

We thus obtain $\text{Re}\{zf''(z)/f'(z)\}+1 > 0$ for $|z| < c(\alpha, \beta)$ from $|zf''(z)/f'(z)| \le \sigma(|z|) - 1 < 1$ for $|z| < c(\alpha, \beta)$. Q.E.D.

An important example of $f \in S$ is $f \in N$ such that $f' \in \Pi$; in particular, $f \in K$ by $f'(z)/z' = f' \in \Pi$. We can now easily extend T. H. MacGregor's results [18, Theorems 2 and 3].

(I) If $f \in N$ and $f' \in G^{\alpha}$, then f is convex in $\{|z| < r_{\alpha}\}$, $r_{\alpha} = (\alpha^2 + 1)^{1/2} - \alpha$. If $f \in N$ and $f(z)/z \in G^{\alpha}$, then f is starlike in $\{|z| < r_{\alpha}\}$.

Setting $\alpha=1$ and replacing G^{α} by P, we have the MacGregor theorems. In each case in (I) r_{α} is the best possible. Let $f_2 \in N$ satisfy $f_2' = 1/\lambda^{\alpha}$ in D, and set $f_3(z) = zf_2'(z)$ in D. Then, $f_3(z)/z = 1/\lambda(z)^{\alpha}$ and

$$\operatorname{Re}\{zf_2''(z)/f_2'(z)\} + 1 = \operatorname{Re}\{zf_3'(z)/f_3(z)\} = 0 \quad \text{at } z = r_\alpha.$$

For the proof of the first part of (I) we have from (G6) that

$$|zf''(z)/f'(z)| \le 2\alpha |z|/(1-|z|^2) < 1$$
 for $|z| < r_{\alpha}$.

For the second part we let $g \in N$ satisfy g'(z) = f(z)/z in D. Then g is convex in $|z| < r_{\alpha}$ by the first part, and then f(z) = zg'(z) is starlike in $|z| < r_{\alpha}$.

Remark 5.3. We can show that if $f \in N$ and $f' \in G^{\alpha}$, then $f \in K_G(0, \alpha)$. Actually, $z \in C_G(0)$ and $f'(z)/z' = f'(z) \in G^{\alpha}$.

We next show

(II) If f is holomorphic in D and $f' \in \Gamma$, then f is univalent in each $\Delta(w, 1/\sqrt{2})$, $w \in D$.

The sharpness of $1/\sqrt{2}$ is open. It is well known that if g is holomorphic in a convex domain Δ in the plane, and if there exists $\Omega(b)$ such that $g'(\Delta) \subset \Omega(b)$, then g is univalent in Δ ; see [9, p. 47; 13, I, p. 88]. since $f'/f'(0) \in G$ it follows from Theorem 5 that

$$f'(\Delta(w, 1/\sqrt{2})) \subset \Omega(f'(w)/|f'(w)|),$$

whence (II).

The obvious version of (II) for $f' \in G^{\alpha}$ in view of Remark 5.1 is left as an exercise. Finally we note

(III) If f is holomorphic in D and $f' \in G^{\alpha}$ for $\alpha \leq 1/2$, then f is univalent in D.

Since $f' = h^{\alpha}$ for an $h \in G$, it follows from (G6) for h that

$$(1 - |z|^2)|f''(z)/f'(z)| \le 2\alpha \le 1, \qquad z \in D.$$

It then follows from J. Becker's theorem [2, Theorem 4.1, p. 35] that f is univalent in the whole D. Again, the sharpness of 1/2 is open.

6. Problems

Some open problems are summarized here.

(1) It is true that

$$||F_{\xi}||_{q}^{q} = (|F|^{q})_{P}(\xi) - |F(\xi)|^{q}, \qquad \xi \in D,$$

for $F \in H^q$, $0 < q < \infty$? Again $(\cdot)_P$ denotes the Poisson integral of $|F(e^{it})|^q$. The case q = 2 is observed in (2.10).

- (2) What is the exact value of $\|\log(1-z)\|_{BMOA_p}$? Here $\|f\|_{BMOA_p}$ is defined similarly as $\|f\|_*$ by replacing $\|f_w\|_2$ by $\|f_w\|_p$, $0 . Danikas's result is <math>\pi/\sqrt{2}$ for p=2.
- (3) Is it true that $G^{\alpha} \subset G^{\beta}$ if $\alpha \leq \beta$? Or, equivalently, is it true that $G^{\alpha} \subset G$ if $\alpha \leq 1$? The latter problem has the positive answer if $\alpha = 1/n$ for natural numbers n [13, II, p. 83].
 - (4) What are geometric meanings of

$$zf'(z)/f(z) \in G^{\alpha}$$
, $zf''(z)/f'(z) + 1 \in G^{\alpha}$, and $f'/g' \in G^{\alpha}$

for $g \in C_G(\alpha)$, respectively?

(5) Is $C_G(\alpha)$ a subfamily of $S_G^*(\alpha)$? This is trivial for $\alpha = 0$.

(6) Are the coefficients of

$$f(z) = 1 + \sum_{n=1}^{\infty} a_n z^n \in G$$

bounded? The answer is in the positive if f is univalent further [10, Theorem 9]. Gelfer's result is now improved as follows.

$$|a_n| \le 2.54 \dots \qquad (n \ge 1) \,.$$

First $|a_1| \le 2$ is obvious. J. A. Hummel [15] proved that $|a_2| \le 2.0001...$ A. Z. Grinshpan [14] proved that

$$|a_n| \le 2e^{\delta/2}e^{1/(4n)} \qquad (n \ge 1),$$

where δ is the Milin constant [9, pp. 153 and 154]; see the first inequality in [14, p. 13] in Russian. The constant δ is defined by

$$2\delta = \sum_{m=1}^{\infty} (\log 2)^m / (m!m) - \log \log 2 - \gamma = 0.6237...,$$

where γ is the Euler constant. Therefore, (6.1).

- (7) Find the exact value r in Corollary to Lemma 5.1.
- (8) Find a condition for a trio g, h, k, where g, $h \in P$ and k > 0 is a constant, such that $f = g^k h^{ki} \in G$. Obviously, for $g \in P$, $h \equiv 1$, $k \leq 1$, we have $f \in G$.

If $f \in S$, then $\log(f(z)/z) \in BMOA$, so that, by Remark 2.1, we have k > 0 and $g, h \in P$ such that

(6.2)
$$f(z) = zg(z)^k h(z)^{ki}.$$

The problem is on the converse.

(9) Given k > 0, $g \in P$, and $h \in P$ is f defined by (6.2) a member of S? Some trials are added: For k > 0, $g = \lambda$ and $h \equiv 1$, the function f in (6.2) is not in S because

$$f'(k - (k^2 + 1)^{1/2}) = 0.$$

Apparently, $\chi(z) = z\mu(z)^2$, where $\mu(z) = 1/(1-z) \in P$. However, for k > 1and $g = h = \mu$ we have for f in (6.2) that

$$f'(-1/(k-1+ki)) = 0,$$

so that f is not in S. If k = 1, then $k + ki = 2e^{i\pi/4}\cos(\pi/4)$, so that $f(z)=z\mu(z)^{1+i}$ is $(\pi/4)$ -spirallike [9, p. 55]. In particular, f is in S. (10) Suppose that $f(z)=1+\sum_{n=1}^{\infty}a_nz^n$ and $g(z)=1+\sum_{n=1}^{\infty}b_nz^n$ are in

G. Is

$$h(z) = 1 + \frac{1}{2} \sum_{n=1}^{\infty} a_n b_n z^n$$

in G? The corresponding problem to P instead of G is positively answered [9, p. 273; 13, I, pp. 135–136].

The referee's criticisms improved the present paper very much. I wish to express my sincere thanks to her/him for her/his tasks.

REFERENCES

- A. Baernstein II, Univalence and bounded mean oscillation, Michigan Math. J. 23(1976), 217-223.
- 2. J. Becker, Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math. 225(1972), 23-43.
- 3. C. Bennett and M. Stoll, Derivatives of analytic functions and bounded mean oscillation, Arch. Math. 47(1986), 438-442.
- 4. J. E. Brown, Derivatives of close-to-convex functions, integral means and bounded mean oscillation, Math. Z. 178(1981), 353-358.
- 5. J. A. Cima and K. E. Petersen, Some analytic functions whose boundary values have bounded mean oscillation, Math. Z. 147(1976), 237-247.
- 6. J. A. Cima and G. Schober, Analytic functions with bounded mean oscillation and logarithms of H^p functions, Math. Z. 151(1976), 295-300.
- 7. N. Danikas, Über die BMOA-Norm von log(1-z), Arch. Math. 42(1984), 74–75.
- 8. P. L. Duren, *Theory of H^p spaces*, Pure and Appl. Math., vol. 38, Academic Press, New York-San Francisco-London, 1970.
- 9. _____, Univalent functions, Grundlehren Math. Wiss., vol. 259, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1983.
- 10. S. A. Gelfer, (С. А. Гельфер), О классе регулярных функций, не принимающих ни одной пары значений w u -w, Mat. Сборник **19(61)** (1946), 33–46, (On the class of regular functions, assuming no pair of values w and -w.)
- 11. D. Girela, Integral means and BMOA-norms of logarithms of univalent functions, J. London Math. Soc. (2) 33(1986), 117-132.
- 12. ____, BMO, A₂-weights and univalent functions, Analysis 7(1987), 129-143.
- 13. A. W. Goodman, Univalent functions. I, II, Mariner, Tampa, Florida, 1983.
- 14. А. Z. Grinshpan (А. 3. Гриншпан), О коэффициентах одноли стных функций, не принимающих ни одной пары значений $w \ u w$, Mat. Заметки 11(1972), 3-14. (English transl.: On the coefficients of univalent functions assuming no pair of values w and -w, Math. Notes 11(1972), 3-11.
- J. A. Hummel, A variational method for Gelfer functions, J. Analyse Math. 30(1976), 271– 280.
- J. A. Jenkins, On Bieberbach-Eilenberg functions. Trans. Amer. Math. Soc. 76(1954), 389–396.
- 17. A. J. Lohwater, G. Piranian, and W. Rudin, *The derivative of a schlicht function*, Math. Scand, 3(1955), 103-106.
- 18. T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104(1962), 532-537.
- 19. S. Yamashita, Almost locally univalent functions, Monatsh. Math. 81(1976), 235-240.
- 20. _____, Schlicht holomorphic functions and the Riccati differential equation, Math. Z. **157**(1977), 19–22.
- 21. ____, F. Riesz's decomposition of a subharmonic function, applied to BMOA, Boll. Un. Mat. Ital. (6) 3-A(1984), 103-109.
- 22. ____, A gap series with growth conditions and its applications, Math. Scand. 60(1987), 9-18.

Department of Mathematics, Tokyo Metropolitan University, Fukasawa, Setagaya, Tokyo 158, Japan