AN ASYMPTOTIC FORMULA FOR HYPO-ANALYTIC PSEUDODIFFERENTIAL OPERATORS

S. BERHANU

ABSTRACT. An asymptotic expansion formula for hypo-analytic pseudodifferential operators is proved and applications are given.

Introduction

In [2] we introduced hypo-analytic pseudodifferential operators that are naturally associated with the hypo-analytic structures of [1]. In this paper we establish an asymptotic formula for these operators. Such an expansion is essential in several applications. It allows us to define, in a natural way, the symbol of a hypo-analytic pseudodifferential operator, as well as the symbols of the adjoint, transpose and composition of operators. The paper is organized as follows. In Chapter I we discuss and develop the asymptotic formula. Chapter II applies this formula to two results.

Acknowledgment. It is a pleasure to express my thanks to Professor F. Treves for many stimulating discussions.

1. Asymptotic expansion

- 1. Hypo-analytic structures. We will deal with structures which are a special case of the hypo-analytic structures introduced by Baouendi, Chang and Treves in [1]. We shall summarize the relevant concepts here. Let Ω be a C^{∞} manifold of dimension m. A hypo-analytic structure of maximal dimension on Ω is the data of an open covering (U_{α}) of Ω and for each index α , of m C^{∞} functions $Z_{\alpha}^{1}, \ldots, Z_{\alpha}^{m}$ satisfying the following two conditions:

 - (i) $dZ_{\alpha}^{1}, \ldots, dZ_{\alpha}^{m}$ are linearly independent at each point of U_{α} ; (ii) if $U_{\alpha} \cap U_{\beta} \neq \emptyset$, there are open neighborhoods \mathscr{Q}_{α} of $Z_{\alpha}(U_{\alpha} \cap U_{\beta})$ and \mathscr{O}_{β} of $Z_{\beta}(U_{\alpha} \cap U_{\beta})$ and a holomorphic map F_{β}^{α} of \mathscr{O}_{α} onto \mathscr{O}_{β}

such that

$$Z_{\beta} = F_{\beta}^{\alpha} \circ Z_{\alpha}$$
 on $U_{\alpha} \cap U_{\beta}$.

We will use the notation $Z_{\alpha}=(Z_{\alpha}^1,\ldots,Z_{\alpha}^m)\colon U_{\alpha}\to C^m$. A distribution h defined in an open neighborhood of a point p_0 of Ω is hypo-analytic at p_0

Received by the editors August 14, 1989.

1980 Mathematics Subject Classification (1985 Revision). Primary 35A20; Secondary 35S99.

if there is a chart (U_{α}, Z_{α}) of the above type whose domain contains p_0 and a holomorphic function \tilde{h} defined on an open neighborhood of $Z_{\alpha}(p_0)$ in C^m such that $h = \tilde{h} \circ Z_{\alpha}$ in a neighborhood of p_0 . By a hypo-analytic local chart we mean an m+1-tuple (U, Z^1, \ldots, Z^m) [abbreviated (U, Z)] consisting of an open subset U of Ω and of m hypo-analytic functions whose differentials are linearly independent at every point of U.

We will now reason in a hypo-analytic local chart (U,Z) of Ω . Assume that the open set U has been contracted sufficiently so that the mapping $Z=(Z^1,\ldots,Z^m):U\to C^m$ is a diffeomorphism of U onto Z(U) and that U is the domain of local coordinates x_j $(1\leq j\leq m)$ all vanishing at a "central point" which will be denoted by 0. We will suppose Z(0)=0 and denote by Z_x the Jacobian matrix of the Z^j with respect to the x^k . Substitution of $Z_x(0)^{-1}Z(x)$ for Z(x) will allow us to assume that $Z_x(0)=0$ the identity matrix. Therefore the real part of the Z^j $(j=1,\ldots,m)$ can serve as coordinates and in these new coordinates

$$Z^{j} = x^{j} + \sqrt{-1}\phi^{j}(x), \qquad j = 1, ..., m,$$

where $\phi = (\phi^1, \dots, \phi^m)$ is real valued with 0 differential at the origin.

Moreover, the functions Z^j are selected so that all the derivatives of order two of the ϕ^j vanish at the origin. Indeed if this is not already so it suffices to replace each Z^j by

$$Z^{j} - \frac{\sqrt{-1}}{2} \sum_{k} \sum_{l} \frac{\partial^{2} \phi^{j}}{\partial x^{k} \partial x^{l}} (0) Z^{k} Z^{l}.$$

We will use \check{Z}_x to denote the transpose of the inverse of the matrix Z_x . Since the first and second derivatives of all the ϕ^j are zero at the origin, after contracting U if necessary, we can find a number c, 0 < c < 1 such that for all x, y in U and for all ξ in R_m

$$\begin{aligned} |\Im \check{Z}_{x}(x)\xi| &\leq c |\Re \check{Z}_{x}(x)\xi| \quad \text{and} \\ (1.1) \qquad &\Re \{\sqrt{-1}\check{Z}_{x}(x)\xi \cdot (Z(x)-Z(y)) - \langle \check{Z}_{x}(x)\xi \rangle (Z(x)-Z(y))^{2} \} \\ &\leq -c |\xi| |Z(x)-Z(y)|^{2} \,, \\ &\text{where } \langle \zeta \rangle = (\zeta_{1}^{2} + \dots + \zeta_{m}^{2})^{\frac{1}{2}} \text{ for } |\Im \zeta| < |\Re \zeta|. \end{aligned}$$

- 2. Hypo-analytic pseudodifferential operators. We will continue to work in the chart (U, Z) of §1. Our aim now is to briefly describe the hypo-analytic pseudodifferential operators.
- **Definition 2.1.** Let d be a real number. We denote by $\tilde{S}^d(U, U)$ the space of holomorphic functions $\tilde{a}(z, w, \theta)$ in a product set $\mathscr{O} \times \mathscr{O} \times \mathscr{C}$ with \mathscr{O} an open neighborhood of Z(U), and \mathscr{C} an open cone in $C_m \setminus \{0\}$ containing $R_m \setminus \{0\}$ which have the following property:

Given any compact subset K of $\mathscr O$ and any closed cone $\mathscr C' \subset \mathscr C$ whose interior contains $R_m \setminus \{0\}$, there is a constant r > 0 such that for all z, w in K and all θ in $\mathscr C'$, we have

$$|\tilde{a}(z, w, \theta)| \leq r(1 + |\theta|)^d$$
.

Definition 2.2. We say that a C^{∞} function $a(x, y, \theta)$ in $U \times U \times R_m$ is a hypo-analytic amplitude of degree d and we write $a \in S^d(U, U)$ if there is $\tilde{a} \in \tilde{S}^d(U, U)$ such that

$$a(x, y, \theta) = \tilde{a}(Z(x), Z(y), \theta), \text{ for all } x \text{ in } U, y \text{ in } U, 0 \neq \theta \in R_m.$$

Let $a(x, y, \theta) = \tilde{a}(Z(x), Z(y), \theta)$ be a hypo-analytic amplitude of degree $d \in R$ in $U \times U$. For any $\varepsilon > 0$ and $u \in C_c^0(U)$ we define the linear operator

$$(2.3) \quad A^{\varepsilon}u(x) = \left(\frac{1}{4\pi^{3}}\right)^{\frac{m}{2}} \int_{U} \int_{R_{m}} \exp(\sqrt{-1}\xi \cdot (Z(x) - Z(y) - \varepsilon|\xi|^{2}) \cdot a(x, y, \xi)u(y) dZ(y) d\xi$$

We contract U sufficiently so that for every $x, y \in U$ and $\xi \in R_m$ the point $\check{Z}_x(x)\xi + \sqrt{-1}\langle \check{Z}_x(x)\xi \rangle (Z(x) - Z(y))$ will remain in the cone in which a(x,y,) is defined. We observe that each $A^{\varepsilon}u$ is a hypo-analytic function. The results of [2] may be consolidated into:

Theorem 2.1. When $\varepsilon \to 0$, A^{ε} converges to a continuous linear operator A: $E'(U) \to \mathcal{D}(U)$ which maps $C_c^{\infty}(U)$ into $C_c^{\infty}(U)$ continuously. If u is hypoanalytic at 0 then Au is hypo-analytic at 0.

The first part of the theorem is proved by first deforming the path of ξ -integration from R_m to the image of R_m under the map

$$\xi \to \zeta(\xi) = \check{Z}_{x}(x)(\xi) + \sqrt{-1}\langle \check{Z}_{x}(x)\xi\rangle(Z(x) - Z(y)).$$

The second inequality in (1.1) will then force the exponential term in (2.3) to be bounded. The integral can then be treated as an oscillatory integral.

Following [2] we will call A a hypo-analytic pseudodifferential operator. When Z(x) = x this specializes to the usual analytic pseudodifferential operator.

3. Formal hypo-analytic amplitudes. In this section (U, Z) will be as in §2. Our aim is to establish an asymptotic expansion formula for hypo-analytic amplitudes.

Fix a neighborhood \mathscr{O} of Z(U) in C^m , a cone \mathscr{C} in $C^m \setminus \{0\}$ and let $R_0(z, w)$ be a positive continuous function on $\mathscr{O} \times \mathscr{O}$. For each $j = 0, 1, 2, \ldots$ let $k_j(z, w, \theta)$ be a holomorphic function in the set

$$\left\{\left(z\,,\,w\,,\,\theta\right)\in\mathscr{O}\times\mathscr{O}\times\mathscr{C}\,;\,|\theta|>R_{0}(z\,,\,w)\,\mathrm{sup}(j\,,\,1)\right\}.$$

Set
$$k_{i}(x, y, \theta) = \tilde{k}_{i}(Z(x), Z(y), \theta)$$
.

Definition 3.1. We will say that the series $\sum_{j=0}^{\infty} k_j(x,y,\theta)$ defines a formal hypo-analytic amplitude of degree d if there exists a continuous function $c_0(z,w) > 0$ on $\mathscr{O} \times \mathscr{O}$ such that for all (z,w) in $\mathscr{O} \times \mathscr{O}$ and all θ in \mathscr{C} , $|\theta| > R_0(z,w) \sup(j,1)$,

$$|\tilde{k}_{i}(z, w, \theta)| \leq C_{0}(z, w)^{j+1} j! |\theta|^{d-j}.$$

We now show how to construct a true hypo-analytic amplitude from the formal one given above. We will work in a compact set $K\subseteq U$ and a relatively compact neighborhood \mathscr{O}_K of Z(K) in \mathscr{O} . This enables us to replace the functions $C_0(z\,,w)$ and $R_0(z\,,w)$ of the above definition by constants C_0 and R_0 . We will also assume that the cone \mathscr{C} has been shrunk to satisfy: for some $\delta>0$, whenever $\theta=\xi+\sqrt{-1}\eta\in\mathscr{C}$, then $\delta|\theta|\leq |\xi|$. Let $R>\max(R_0\,,\,C_0)$.

We will use a sequence of smooth cutoff functions $\phi_j(\xi)$ having the following properties:

$$0 \leq \phi_j(\xi) \text{ for all } \xi\,, \quad \text{ and } \quad \phi_j(\xi) = 0 \text{ in } |\xi| < 2R\sup(j\,,\,1)\,,$$

$$\phi_j(\xi) = 1 \quad \text{if } |\xi| > 3R \sup(j, 1); \quad |D^{\alpha} \phi_j| \le \left(\frac{C}{R}\right)^{|\alpha|} \quad \text{if } |\alpha| \le 2j.$$

See [8] for the construction of such cutoffs. Define

$$\tilde{k}(z, w, \theta) = \sum_{j=0}^{\infty} \phi_j(\xi) \tilde{k}_j(z, w, \theta)$$

for $(z, w) \in \mathscr{O}_K \times \mathscr{O}_K$ and $\theta = \xi + \sqrt{-1}\eta \in \mathscr{C}$. \tilde{k} is a C^{∞} function of (z, w, θ) holomorphic in (z, w). \tilde{k} satisfies the following estimates:

$$\begin{split} |\tilde{k}(z\,,\,w\,,\,\theta)| &\leq \sum_{0 \leq j < d} |\tilde{k}_{j}(z\,,\,w\,,\,\theta)| + \sum_{j \geq d} \phi_{j}(\xi) |k_{j}(z\,,\,w\,,\,\theta)| \\ &\leq \sum_{0 \leq j < d} |\tilde{k}_{j}(z\,,\,w\,,\,\theta)| + \sum_{j \geq d} \phi_{j}(\xi) c_{0}^{j+1} j! |\theta|^{d-j} \\ &\leq \sum_{0 \leq j < d} |\tilde{k}_{j}(z\,,\,w\,,\,\theta)| + \sum_{j \geq d} \phi_{j}(\xi) c_{0}^{j+1} j! |\xi|^{d-j} \end{split}$$

Since for $j \ge d$ the jth term lives on the set $\{\xi : |\xi| \ge 2Rj\}$, the latter

$$\leq \sum_{0 \leq < j < d} |\tilde{k}_{j}(z, w, \theta)| + |\xi|^{d} \sum_{j \geq d} c_{0}^{j+1} j! \left(\frac{1}{2Rj}\right)^{j}$$

$$\leq \sum_{0 \leq j < d} |\tilde{k}_{j}(z, w, \theta)| + \text{ constant } |\xi|^{d}$$

$$\leq \text{ constant } |\theta|^{d}$$

$$\begin{split} \bar{\partial}_{\theta} \hat{k}(z\,,\,w\,,\,\theta) &\leq \sum_{j=0}^{\infty} |\bar{\partial}_{\theta} \phi_{j}(\xi) \hat{k}_{j}(z\,,\,w\,,\,\theta)| \\ &\leq \left(\sum_{j=0}^{\infty} |\bar{\partial}_{\theta} \phi_{j}(\xi)| c_{0}^{j+1} \frac{j!}{|\xi|^{j}} \right) \\ &\leq \delta^{d} |\xi|^{d} \left(\sum_{j=0}^{\infty} |\bar{\partial}_{\theta} \phi_{j}(\xi)| c_{0}^{j+1} \frac{j!}{|\xi|^{j}} \right) \end{split}$$

We now use the fact that $\bar{\partial}_{\theta} \phi_{j}(\xi)$ lives in the set $\{\xi : 2Rj \leq |\xi| \leq 3Rj\}$;

$$\leq \text{ constant } \left|\xi\right|^d \left(\sum_{j=0}^{\infty} c_0^{j+1} j! \left(\frac{1}{2Rj}\right)^j\right)$$

Since $j!/j^j \le e^{-j}$, the latter \le constant $|\xi|^d \sum_{j=0}^{\infty} (\frac{c_0}{2R})^j e^{-j}$. Recalling that $2Rj \le |\xi| \le 3Rj$, we get

$$\leq \text{ constant } |\xi|^d \sum_{j=0}^{\infty} \left(\frac{c_0}{2R}\right)^j e^{-\frac{|\xi|}{3R}}$$

$$\leq \text{ constant } e^{-\frac{|\xi|}{4R}}$$

$$\leq \text{ constant } e^{-\frac{\delta}{4R}|\theta|}$$

Thus for $(z, w, \theta) \in \mathcal{O}_K \times \mathcal{O}_K \times \mathcal{E}$, we have: $|\tilde{k}(z, w, \theta)| \leq \text{const.} |\theta|^d$ and $|\bar{\partial}_{\theta}\tilde{k}(z, w, \theta)| \leq \text{const.} e^{-\frac{\delta}{2R}|\theta|}$.

We may assume that the shape of $\mathscr C$ has been modified to allow us to solve the Cauchy-Riemann equations in $\mathscr C$ (see [5]) $\bar\partial_\theta \tilde k_1 = \bar\partial_\theta \tilde k$ in such a way that the solution $\tilde k_1$ is holomorphic with respect to (z,w) in $\mathscr O_K \times \mathscr O_K$ and the following estimate holds on sets of the kind $K_1 \times K_2 \times \mathscr C_1(K_1,K_2 \subset\subset \mathscr O_K)$ and $\mathscr C_1$ a cone whose closure is contained in $\mathscr C$:

$$|\tilde{k}_1(z, w, \theta)| \leq \text{const. } e^{-\frac{\delta}{4R}|\theta|}$$

Define then $h = \tilde{k} - \tilde{k}_1$. We now have, in $\mathscr{O}_K \times \mathscr{O}_K \times \mathscr{C}_1$, $\bar{\partial}_{\theta} \tilde{h} = 0$ and $\tilde{k} - \tilde{h}$ decays exponentially as $|\theta| \to \infty$ (uniformly, provided (z, w, θ) stays in sets like $K_1 \times K_2 \times \mathscr{C}_1$ as above).

This decay together with Theorem 2.1 of §2 imply that if for $u \in \mathcal{E}'(U)$, U sufficiently small, we define

$$\operatorname{op} \tilde{k}^{\varepsilon} u(x) = \left(\frac{1}{4\pi^{3}}\right)^{\frac{m}{2}} \int_{U} \int_{R_{m}} e^{\sqrt{-1}\xi \cdot (Z(x) - Z(y)) - \varepsilon |\xi|^{2}} \cdot \tilde{k}(Z(x), Z(y), \xi) u(y) dZ(y) d\xi$$

then as $\varepsilon \to 0^+$, op \tilde{k}^ε will converge to an operator op \tilde{k} having the properties in Theorem 2.1, §2. Moreover, for any $u \in \mathscr{E}'(U)$, op $\tilde{k}u - \operatorname{op}\tilde{h}u$ is a hypoanalytic function. We will therefore replace \tilde{k} by the hypo-analytic amplitude

 \tilde{h} and think of \tilde{h} as being the true amplitude constructed from the formal one given by $\sum_{i=0}^{\infty} k_i(x, y, \theta)$.

4. Asymptotic expansion. Let $k(x, y, \theta)$ be a hypo-analytic amplitude of degree d say $k(x, y, \theta) = \tilde{k}(Z(x), Z(y), \theta)$ where \tilde{k} is holomorphic in $\mathscr{O} \times \mathscr{O} \times \mathscr{C}$, \mathscr{O} and \mathscr{C} are as in §1. For each $j = 1, \ldots, m$, let N_j denote the vector field $N_j Z^k = -\sqrt{-1}\delta_j^k$.

If $K \subset U$ is any compact subset, by Cauchy's inequality we have c > 0 such that:

$$\left| \frac{1}{\alpha!} \partial_{\xi}^{\alpha} N_{y}^{\alpha} k(x, x, \xi) \right| \leq c^{|\alpha|+1} \alpha! (1 + |\xi|)^{d-|\alpha|}$$

for $x \in K$, $\xi \in R_m$.

Thus if we define

$$k_{j}(x, \xi) = \sum_{|\alpha|=j} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} N_{y}^{\alpha} k(x, x, \xi)$$

then $\sum_{j=0}^{\infty} k_j(x, \xi)$ can be thought of as a formal hypo-analytic symbol. Let $(\phi_j)_j$ be the cutoff functions of the previous section. If U' is any relatively compact subset of U, we can form a true symbol by setting

$$k(x, \xi) = \sum_{j=0}^{\infty} k_j(x, \xi) \phi_j(\xi)$$

We then have two operators op $k(x, y, \xi)$ and op $\tilde{k}(x, \xi)$: $\mathcal{E}'(U') \to D'(U')$ where for $u \in \mathcal{E}'(U')$,

$$\operatorname{op} \tilde{k} u(x) = \lim_{\varepsilon \to 0^+} \left(\frac{1}{4\pi^3} \right)^{\frac{m}{2}} \int \int e^{\sqrt{-1}(Z(x) - Z(y)) \cdot \xi - \varepsilon |\xi|^2} k(x, \xi) u(y) dZ(y) d\xi$$

and

$$\operatorname{op} k u(x) = \lim_{\varepsilon \to 0^+} \left(\frac{1}{4\pi^3} \right)^{\frac{m}{2}} \int \int e^{\sqrt{-1}(Z(x) - Z(y)) \cdot \xi - \varepsilon |\xi|^2} k(x, y, \xi) u(y) dZ(y) d\xi$$

The next theorem proves that if U' is small enough, modulo a hypo-analytic regularizing operator, op $k = \operatorname{op} \tilde{k}$.

Theorem 4.1. If the neighborhood U' is sufficiently small, op $k \equiv \text{op } \tilde{k}$ in the sense that for any $u \in \mathcal{D}'(U')$, op $ku - \text{op } \tilde{k}$ is a hypo-analytic function.

Proof. Assume U' is an open ball centered at 0, its size to be determined later. We first take $u \in C_c^0(U')$. The theorem will be proved by first establishing:

- (i) $(\operatorname{op} k \operatorname{op} \tilde{k})u$ is in $C^{\infty}(U')$, and
- (ii) There exists c > 0 such that for all $\alpha \in \mathbb{Z}_m^+$,

$$|M^{\alpha}(\operatorname{op} k - \operatorname{op} \tilde{k})u(x)| \le c^{|\alpha|+1}\alpha!$$
 where $M_j = \sqrt{-1}N_j$
for each $j = 1, \ldots, m$.

Taylor expansion in U' gives

$$k(x, y, \xi) = \sum_{|\alpha| \le N} \frac{(Z(y) - Z(x))^{\alpha}}{\alpha!} M_{y}^{\alpha} k(x, x, \xi) + \sum_{|\alpha| = N+1} (Z(y) - Z(x))^{\alpha} k_{\alpha}(x, y, \xi)$$

where $k_{\alpha}(x, y, \xi) = (N+1) \int_0^1 M_y^{\alpha} k(x, x+t(y-x), \xi) (1-t)^N dt$. For each $N=1, 2, \ldots$ we define the amplitudes

$$\begin{split} k_N(x\,,\,y\,,\,\xi) &= \phi_{N+1}(\xi)k(x\,,\,y\,,\,\xi)\,, \quad \tilde{k}_N(x\,,\,y\,,\,\xi) = \sum_{j \leq N} \phi_j(\xi)k_j(x\,,\,\xi)\,, \\ r_N(x\,,\,\xi) &= \sum_{j \leq N} (\phi_{N+1}(\xi) - \phi_j(\xi))k_j(x\,,\,\xi)\,, \\ s_N(x\,,\,y\,,\,\xi) &= \left(\sum_{|\alpha| = N+1} \frac{1}{\alpha!} D_\xi^\alpha k_\alpha(x\,,\,y\,,\,\xi)\right) \phi_{N+1}(\xi)\,, \quad \text{and} \\ t_N(x\,,\,y\,,\,\xi) &= \sum_{|\alpha| \leq N+1} \frac{1}{\alpha!} \{D_\xi^\alpha (\phi_{N+1}(\xi)k_\alpha(x\,,\,y\,,\,\xi)) - \phi_{N+1}(\xi)D_\xi^\alpha k_\alpha\}\,. \end{split}$$

Let K_N , \tilde{K}_N , R_N , S_N and T_N denote the respective operators that are defined in the same fashion as op k. We have

$$(\operatorname{op} k - \operatorname{op} \tilde{k})u = (\tilde{K}_N - \operatorname{op} \tilde{k})u + (\operatorname{op} k - K_N)u + R_N u + S_N u + T_N u.$$

Our estimates will show that given any positive integer l, there exists a positive integer N such that each term on the right-hand side of the above equation is in C^l —thus establishing that $(\operatorname{op} k - \operatorname{op} \tilde{k})u \in C^{\infty}(U')$.

(A) Estimate of $M^{\alpha}(\operatorname{op} k - K_N)u$. Since the ξ -support of

$$(1 - \phi_{N+1}(\xi))k(x, y, \xi)$$

is compact, $(\operatorname{op} k - K_N)u$ is hypo-analytic and therefore in particular, C^{∞} . Suppose $|Z(x) - Z(y)| \le A$ for all x, y in U'.

$$\begin{split} |(\operatorname{op} k - K_N) u(x)| &= \left(\frac{1}{4\pi^3}\right)^{\frac{m}{2}} \left| \int_{\mathcal{Y}} \int_{|\xi| \leq 3R(N+1)} e^{\sqrt{-1}(Z(x) - Z(y)) \cdot \xi} \right. \\ & \left. \cdot k(x, y, \xi) (1 - \phi_N(\xi)) dZ(y) d\xi \right| \\ &\leq \operatorname{const.} \int_{|\xi| \leq 3R(N+1)} e^{A|\xi|} (1 + |\xi|)^d d\xi \\ & \qquad \qquad \text{(the constant is independent of N)} \\ &\leq \operatorname{const.} (e^{3RA})^{N+1} (N+1)^{d+m} \end{split}$$

$$\leq \text{const.}(e^{s(N)})^{N+1}(N+1)^{N+1}$$

 $\leq c_1^{N+1} \quad \text{for some } c_1 > 0 \text{ independent of } N.$

Moreover, since each $(\operatorname{op} k - K_N)u$ is hypo-analytic in a common domain, for example some neighborhood of the compact set \overline{U}' , we can find a constant $\tilde{c}_1 > 0$ independent of N such that for all $\alpha \in Z_m^+$,

$$|\boldsymbol{M}^{\alpha}(\operatorname{op} k - \boldsymbol{K}_{N})\boldsymbol{u}(x)| \leq \tilde{c}_{1}^{|\alpha|+1}c_{1}^{N+1}\alpha!$$

(B) Estimate of $M^{\alpha}(S_N u)$. Write

$$s_N(x\,,\,y\,,\,\xi) = \phi_{N+1}(\xi) \sum_{|\alpha|=N+1} D_\xi^\alpha k_\alpha(x\,,\,y\,,\,\xi) = \phi_{N+1}(\xi) \tilde{s}_N(x\,,\,y\,,\,\xi).$$

For $|\alpha| = N + 1$, we have

$$\left| \frac{D_{\xi}^{\alpha} k_{\alpha}(x, y, \xi)}{\alpha!} \right| \leq c^{|\alpha|} \alpha! (1 + |\xi|)^{d - N - 1}.$$

It follows that $|\tilde{s}_N(x, y, \xi)| \le c_2^{N+1} N! (1 + |\xi|)^{d-N-1}$ for some $c_2 > 0$.

Let

$$I_N^\varepsilon(x) = \left(\frac{1}{4\pi^3}\right)^{\frac{m}{2}} \int \int e^{\sqrt{-1}(Z(x)-Z(y))\cdot\xi-\varepsilon|\xi|^2} \phi_{N+1}(\xi) \tilde{s}_N(x\,,\,y\,,\,\xi) u(y) dZ(y) d\xi.$$

We note that $s_N u(x) = \lim_{\epsilon \to 0^+} I_N^{\epsilon}(x)$.

We will deform the path of ξ -integration from R_m to the image of R_m under the map

$$\xi \to \theta(\xi) = \phi_{2N}(\xi)\zeta(\xi) + (1 - \phi_{2N}(\xi))\xi$$

where

$$\zeta(\xi) = \check{Z}_{x}(x)\xi + \sqrt{-1}\langle \check{Z}_{x}(x)\xi\rangle(Z(x) - Z(y)).$$

The deformation is allowed since it takes place in a region where $\phi_{N+1}(\xi)$ is analytic.

We have

$$\begin{split} \theta(\xi) &= \left\{ \begin{array}{l} \xi \,, & \text{for } |\xi| \leq 4RN \,, \\ \zeta(\xi) \,, & \text{for } |\xi| \geq 6RN. \end{array} \right. \\ |M^{\alpha}(I_N^{\varepsilon}(x))| &\leq \left(\frac{1}{4\pi^3} \right)^{\frac{m}{2}} \sum_{\beta < \alpha} \binom{\alpha}{\beta} \left| \int \int \xi^{\alpha-\beta} e^{\sqrt{-1}(Z(x) - Z(y)) \cdot \xi - \varepsilon |\xi|^2} \right. \\ & \cdot \phi_{N+1}(\xi) M^{\beta} \tilde{s}_N(x \,,\, y \,,\, \xi) u(y) dZ(y) d\xi \end{split}$$

We use the above contour and pass to the limit to get:

$$\begin{split} |(M^{\alpha}s_{N}u)(x)| &\leq \left| \left(\frac{1}{4\pi^{3}}\right)^{\frac{m}{2}} \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} \int_{2R(N+1) \leq |\xi| \leq 6RN} \int (\theta(\xi))^{\alpha-\beta} \\ &\cdot e^{\sqrt{-1}(Z(x)-Z(y)) \cdot \theta(\xi)} \phi_{N+1}(\xi) M^{\beta} \tilde{s}_{N}(x,y,\xi) u(y) d\theta dZ(y) \\ &+ \int_{|\xi| \geq 6RN} \int (\zeta(\xi))^{\alpha-\beta} e^{\sqrt{-1}(Z(x)-Z(y)) \cdot \zeta(\xi)} \phi_{N+1}(\xi) \\ &\cdot M^{\beta} \tilde{s}_{N}(x,y,\zeta(\xi)) u(y) dZ(y) d\xi \right| \end{split}$$

We recall that the exponential in the second integral is bounded (§1, (1.1)). By hypo-analyticity we get $\tilde{c}_3 > 0$ such that

$$\forall \beta \,,\, |M^{\beta} \tilde{s}_N(x\,,\,y\,,\,\xi)| \leq c_3^{|\beta|+1} \beta! c_2^{N+1} N! (1+|\xi|)^{d-N-1}.$$

These observations imply that

$$\begin{split} |M^{\alpha}s_{N}u(x)| &\leq \operatorname{const.}\left(\sum_{\beta \leq \alpha} \binom{\alpha}{\beta} \int_{2R(N+1) \leq |\xi| \leq 6RN} |\xi|^{\alpha-\beta} e^{A|\xi|} c_{3}^{N+|\beta|+2} \right. \\ & \left. \cdot \beta! N! (1+|\xi|)^{d-N-1} \, d\xi + \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} \right. \\ & \left. \cdot \int_{6RN \leq |\xi|} |\xi|^{\alpha-\beta} c_{3}^{N+|\beta|+2} \beta! N! (1+|\xi|)^{d-N-1} d\xi \right) \end{split}$$

for some $c_3 \geq \max(\tilde{c}_3\,,\,c_2)$. Hence, after modifying c_3 if necessary, we get

$$\begin{split} |M^{\alpha}s_{N}u(x)| &\leq \alpha! \left(\sum_{\beta \leq \alpha} \frac{1}{(\alpha-\beta)!} \int_{2R(N+1) \leq |\xi|} (1+|\xi|)^{|\alpha-\beta|+d-N-1} N! d\xi \right) c_{3}^{N} \\ &\leq \alpha! c_{3}^{N} \left(\sum_{\beta \leq \alpha} \frac{1}{(\alpha-\beta)!} (\frac{1}{1+2RN})^{N-|\alpha-\beta|-d-m+1} N! \right) \\ &\leq \alpha! c_{3}^{N} \left(\sum_{\beta \leq \alpha} \frac{1}{(\alpha-\beta)!} (1+2RN)^{|\alpha-\beta|+d+m-1} \right) \left(\frac{1}{2R}\right)^{N} \frac{N!}{N^{N}} \\ &\leq \alpha! c_{3}^{N} \left(\sum_{\beta \leq \alpha} \frac{1}{(\alpha-\beta)!} (1+2RN)^{|\alpha-\beta|+d+m-1} \right) \left(\frac{1}{2Re}\right)^{N} Ne \\ &\leq \alpha! c_{3}^{N} \left(\sum_{\beta \leq \alpha} \frac{1}{(\alpha-\beta)!} (|\alpha-\beta|+d+m-1)! e^{1+2RN} \right) \left(\frac{1}{2Re}\right)^{N} Ne \\ &\leq \alpha! c_{3}^{N} \left(\sum_{\beta \leq \alpha} \frac{1}{(\alpha-\beta)!} (|\alpha-\beta|+d+m-1)! e^{1+2RN} \right) \left(\frac{1}{2Re}\right)^{N} Ne^{2}. \end{split}$$

Using the inequality: $(k+l)! \le 2^{k+l}k!l!$ for any positive integers k and l, the latter is dominated by

$$\alpha! c_3^N \left(\sum_{\beta \leq \alpha} \frac{1}{(\alpha - \beta)!} |\alpha - \beta|! \right) 2^{|\alpha| + d + m - 1} \left(\frac{e^{2R}}{2Re} \right)^N Ne^2.$$

For $|\alpha| \leq N$, we can find another constant which we will still call c_3 such that the above quantity $\leq \alpha! c_3^N$.

(C) Estimate of $M^{\alpha}(\operatorname{op}\tilde{k}-\tilde{K}_{N})u$. Let

$$\begin{split} J^{\varepsilon}u(x) &= \left(\frac{1}{4\pi^3}\right)^{\frac{m}{2}} \int \int e^{\sqrt{-1}(Z(x)-Z(y))\cdot\xi-\varepsilon|\xi|^2} \\ &\quad \cdot \left(\sum_{j>N} \phi_j(\xi)k_j(x\,,\,\xi)\right) u(y)\,dZ(y)\,d\xi\,. \end{split}$$

For each j > N, we will use the contour

$$\theta_{j}(\xi) = \phi_{2j}(\xi)\zeta(\xi) + (1 - \phi_{2j}(\xi))\xi = \begin{cases} \xi, & \text{when } |\xi| \le 4Rj, \\ \zeta(\xi), & \text{when } |\xi| \ge 6Rj. \end{cases}$$

In the quantity

$$\begin{split} M^{\alpha}(J^{\varepsilon}u)(x) &= \left(\frac{1}{4\pi^{3}}\right)^{\frac{m}{2}} \sum_{j>N} \left[\sum_{\beta \leq \alpha} \binom{\alpha}{\beta} \int \int \xi^{\alpha-\beta} e^{\sqrt{-1}(Z(x)-Z(y))\cdot \xi - \varepsilon |\xi|^{2}} \right. \\ &\left. \cdot \phi_{j}(\xi) M^{\beta} k_{j}(x,\xi) u(y) dZ d\xi \right] \end{split}$$

we use the contours θ^j in each term of the sum and take limits to get

$$M^{\alpha}(\operatorname{op} \tilde{k} - \tilde{K}_{N})u(x) = \sum_{j>N} (I_{1}^{j}(x) + I_{2}^{j}(x))$$

where

$$\begin{split} I_1^j(x) &= \left(\frac{1}{4\pi^3}\right)^{\frac{m}{2}} \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} \int_{2Rj \leq |\xi| \leq 6Rj} \int \theta^j(\xi) e^{\sqrt{-1}(Z(x) - Z(y)) \cdot \theta^j(\xi)} \\ & \cdot \phi_i(\xi) M^\beta k_i(x, \theta^j(\xi)) u(y) dZ d\theta^j \end{split}$$

while $I_2^j(x)$ is a similar expression except that the integration in ξ is carried out over the region $\{\xi : |\xi| \ge 6Rj\}$.

Assuming that $|\alpha| \leq N - d - m$, we have

$$\begin{split} |I_1^j(x)| & \leq \mathrm{const.} \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} \int_{2Rj \leq |\xi| \leq 6Rj} (1 + |\xi|)^{d-j+|\alpha|-|\beta|} (e^{6RA})^j c_0^{|\beta|+j+1} j! \beta! d\xi \\ & \leq \mathrm{const.} (c_0 e^{6RA})^j \alpha! \left| \sum_{\beta \leq \alpha} \frac{1}{(\alpha - \beta)!} \int_{2Rj \leq |\xi| \leq 6Rj} (1 + |\xi|)^{d-j+|\alpha|-|\beta|} j! \right| c_0^N \\ & \leq \mathrm{const.} (c_0 e^{6RA})^j \alpha! \left| \sum_{\beta \leq \alpha} \frac{1}{(\alpha - \beta)!} \int_{0 \leq \rho \leq 6Rj} \rho^{d-j+|\alpha|-|\beta|+m-1} j! d\rho \right| c_0^N \end{split}$$

(We have used the fact that $d - j + |\alpha| \le 0$.)

$$\leq \mathrm{const.} \ \alpha! \left(\frac{c_0 e^{6RA}}{6R} \right)^j \left(6R \right)^{d+m+N} c_0^N \left(\sum_{\beta \leq \alpha} \frac{1}{(\alpha-\beta)!} \frac{j!}{j^{j-d-m-|\alpha|+|\beta|}} \right).$$

Therefore, for some $\tilde{c}_4 > 0$ independent of j and N,

$$|I_1^j(x)| \le \alpha! c_4^{N+1} \left(\frac{c_0 e^{6RA}}{6R}\right)^j$$

Similarly, after modifying the constant \tilde{c}_4 if necessary,

$$\begin{split} |I_2^j(x)| & \leq \operatorname{const.} \alpha! \sum_{\beta \leq \alpha} \frac{1}{(\alpha - \beta)!} \left(\frac{1}{1 + 6Rj} \right)^{j - d - m - |\alpha| + |\beta|} c_0^{|\beta| + j + 1} j! \\ & \leq \alpha! c_4^{N + 1} \left(\frac{c_0}{6R} \right)^j \end{split}$$

We recall that $c_0 \le R$. At this point we choose U' so small that if $A = \sup_{x,y \in U'} |Z(x) - Z(y)|$, then $c_0 e^{6RA} < 6R$.

We then get a constant $c_4>0$ such that: $|M^{\alpha}(\operatorname{op} \tilde{k}-\tilde{K}_N)u(x)|\leq \alpha!c_4^{N+1}$ for $|\alpha|\leq N-d-m$.

(D) Estimate of $M^{\alpha}(R_N u)$.

$$\begin{split} R_N u(x) &= \left(\frac{1}{4\pi^3}\right)^{\frac{m}{2}} \int \int e^{\sqrt{-1}(Z(x)-Z(y))\cdot\xi} u(y) \\ &\quad \cdot \left(\sum_{j\leq N} (\phi_{N+1}(\xi)-\phi_j(\xi)) k_j(x\,,\,\xi)\right) \, dZ(y) \, d\xi \end{split}$$

is hypo-analytic since each $\phi_{N+1}-\phi_j$ is supported in $2Rj\leq |\xi|\leq 3R(N+1)$. We estimate

$$\left| \sum_{j \le N} (\phi_{N+1}(\xi) - \phi_j(\xi)) k_j(x, \xi) \right| \le \left(\sum_{j \le N} c_0^{j+1} j! |\xi|^{-j} \right) |\xi|^d$$

$$\le \left(\sum_{j \le N} c_0^{j+1} j! \left(\frac{1}{2Rj} \right)^j \right) |\xi|^d \quad \text{(since } 2Rj \le |\xi|)$$

$$\le \left(\sum_{j \le N} \left(\frac{c_0}{2Re} \right)^j j \right) c_0 e |\xi|^d \quad \text{since } \frac{j!}{j^j} \le j e^{-j+1}.$$

It follows that

$$|R_N u(x)| \le \text{constant } \int_{|\xi| \le 3R(N+1)} |\xi|^d d\xi \le \text{const. } 3R(N+1)^{d+m}$$

which in turn implies that there is a constant $\tilde{c}_5>0$ such that $|R_N u(x)|\leq \tilde{c}_5^{N+1}$. Moreover, by hypo-analyticity, we get $c_5>0$ satisfying $|M^\alpha R_N u(x)|\leq \alpha! c_5^{N+1}$ for all $|\alpha|\leq N$.

(E) Estimate of $M^{\alpha}(T_N u)$.

$$T_N u(x) = \lim_{\varepsilon \to 0} \left(\frac{1}{4\pi^3}\right)^{\frac{m}{2}} \int \int e^{\sqrt{-1}(Z(x) - Z(y)) \cdot \xi - \varepsilon |\xi|^2} t_N(x, y, \xi) u(y) dZ(y) d\xi$$

where

$$t_N(x, y, \xi) = \sum_{|\alpha| \le N+1} \frac{1}{\alpha!} \{ (D_{\xi}^{\alpha}(\phi_{N+1}(\xi)k_{\alpha}(x, y, \xi)) - \phi_{N+1}(\xi)D_{\xi}^{\alpha}k_{\alpha}(x, y, \xi) \}.$$

We can therefore take the limit under the integral sign and write

$$T_N u(x) = \sum_{|\alpha| \le N+1} A_{\alpha}(x)$$

where for each α , $|\alpha| \leq N + 1$,

$$\begin{split} A_{\alpha}(x) &= \left(\frac{1}{4\pi^{3}}\right)^{\frac{m}{2}} \sum_{0 \neq \beta \leq N} \int_{2R(N+1) \leq |\xi| \leq 3R(N+1)} \int e^{\sqrt{-1}Z((x) - Z(y)) \cdot \xi} \frac{1}{\beta!} \\ &\cdot (D_{\xi}^{\beta} \phi_{N+1}(\xi)) \frac{D_{\xi}^{\alpha - \beta} k_{\alpha}(x, y, \xi)}{(\alpha - \beta)!} u(y) \, dZ(y) \, d\xi \end{split}$$

Therefore

$$\begin{split} |A_{\alpha}(x)| &\leq \; \mathrm{const.} \; \alpha! c_0^{|\alpha|+1} (e^{3RA})^{N+1} \left[\sum_{0 \neq \beta \leq \alpha} \frac{1}{\beta!} \left(\frac{[3R(N+1)]^{d+m+1}}{[2R(N+1)]^{|\alpha-\beta|}} \right) \left(\frac{c_0}{R} \right)^{|\beta|} \right] \\ &\leq \; \mathrm{const.} \cdot \frac{\alpha!}{[2R(N+1)]^{|\alpha|}} (e^{3RA})^{N+1} c_0^{|\alpha|+1} \\ & \cdot [3R(N+1)]^{d+m+1} \left(\sum_{0 \leq \beta \leq \alpha} \frac{[2(N+1)c_0]^{|\beta|}}{\beta!} \right) \, . \end{split}$$

Since $|\alpha| \leq N$ and R may be taken to be larger than 1, we know that the factor $\frac{\alpha!}{[2R(N+1)]^{|\alpha|}} \leq 1$. Therefore, we conclude that there is a constant $c_6 \geq 0$ for which $|M^{\alpha}(T_N u)| \leq c_6^{N+1} N!$ whenever $|\alpha| \leq N$.

From (a)-(e) we conclude that there is a positive number c such that

$$|M^{\alpha}(\operatorname{op} k - \operatorname{op} \tilde{k})u(x)| \le c^{N+1}N!$$

for all α , $|\alpha| \leq N - m - d$.

If we take $|\alpha| = N - m - d$, we can get a constant $\tilde{c} \ge c$ satisfying:

$$\forall \alpha$$
, $|M^{\alpha}(\operatorname{op} k - \operatorname{op} \tilde{k})u(x)| \leq \tilde{c}^{|\alpha|+1}\alpha!$ for every $x \in U'$.

By using integration by parts we also reach the same conclusion for $u \in \mathscr{E}'(U')$. Indeed all we need is a representation of the form $u = \sum_{|\alpha| \leq N} M^{\alpha} u_{\alpha}$ where each $u_{\alpha} \in C^0_c(U')$ which is always possible. We have thus shown that $(\operatorname{op} k - \operatorname{op} \tilde{k}) u$ is in $C^\infty(U')$ and that there is c > 0 such that for all $\alpha \in Z_m^+$,

$$|M^{\alpha}(\operatorname{op} k - \operatorname{op} \tilde{k})u(x)| \le c^{|\alpha|+1}\alpha!.$$

By Theorem 3.1 of [1] it follows that $\operatorname{op} ku - \operatorname{op} \tilde{k}u$ is a hypo-analytic function.

II. APPLICATIONS

1. Parametrix for an elliptic operator. As an application of Theorem 4.1 we consider here the construction of a parametrix for an elliptic hypo-analytic differential operator. We will begin by composing a hypo-analytic differential operator A with a hypo-analytic pseudodifferential operator B. In [3] we introduced hypo-analytic differential operators. In the local chart (U, Z), the operator A is given by $A = \sum_{|\alpha| \le n} a_{\alpha}(x) N^{\alpha}$ where each $a_{\alpha}(x)$ is a hypo-analytic function and $N_i = -\sqrt{-1}M_i$ for $i = 1, \ldots, m$.

Theorem 4.1 of the previous chapter allows us to represent the operator B by a symbol $b(x, \theta)$. From §2, Theorem 2.1 we know that both $B \circ A$ and $A \circ B$ are continuous linear maps from $\mathcal{E}'(U)$ to $\mathcal{D}'(U)$. We first assume that the operator $A = a(x)N^{\beta}$ for some hypo-analytic function a(x) and some index β . Then B(Au)(x) is by definition the limit as $\varepsilon \to +0$ of

$$B^{\varepsilon}(Au)(x) = \left(\frac{1}{4\pi^{3}}\right)^{\frac{m}{2}} \int \int e^{\sqrt{-1}(Z(x)-Z(y))\cdot\xi-\varepsilon|\xi|^{2}} b(x,\xi)a(y)N^{\beta}u(y)dZ(y)d\xi.$$

On the other hand, $\lim_{\epsilon \to 0^+} B^\epsilon(Au)(x) = C \circ (N^\beta u)(x)$ where C is a hypoanalytic pseudodifferential operator with amplitude given by $b(x,\xi)a(y)$. Therefore, Theorem 4.1 tells us that C can be represented by the symbol $c(x,\xi) = \sum_{\alpha} \frac{\partial_\xi^\alpha b N^\alpha a(x)}{\alpha!}$. It follows that modulo a hypo-analytic function, we can write

$$B(Au)(x) = \lim_{\varepsilon \to 0^+} \left(\frac{1}{4\pi^3}\right)^{\frac{m}{2}} \int \int e^{\sqrt{-1}(Z(x)-Z(y))\cdot \xi-\varepsilon|\xi|^2} \xi^{\beta} c(x,\xi) u(y) dZ(y) d\xi.$$

The latter says that a symbol of $B \circ A$ is given by

$$\xi^{\beta}c(x,\xi) = \sum_{\alpha} \frac{\partial_{\xi}^{\alpha}b(x,\xi)N^{\alpha}(a(x)\xi^{\beta})}{\alpha!}.$$

On the other hand, applying the operator A to

$$B^{\varepsilon}u(x) = \left(\frac{1}{4\pi^{3}}\right)^{\frac{m}{2}} \int \int e^{\sqrt{-1}(Z(x)-Z(y))\cdot\xi-\varepsilon|\xi|^{2}} b(x,\xi)u(y)dZ(y)d\xi$$

gives

$$\begin{split} A(B^{\varepsilon}u(x)) &= \left(\frac{1}{4\pi^{3}}\right)^{\frac{m}{2}} \int \int e^{\sqrt{-1}(Z(x)-Z(y))\cdot\xi-\varepsilon|\xi|^{2}} \\ &\cdot \left(\sum_{\gamma \leq \beta} {\binom{\beta}{\gamma}} \xi^{\beta-\gamma} a(x) N^{\beta} b(x\,,\,\xi)\right) u(y) \, dZ \, d\xi \\ &= \left(\frac{1}{4\pi^{3}}\right)^{\frac{m}{2}} \int \int e^{\sqrt{-1}(Z(x)-(Z(y)\cdot\xi-\varepsilon|\xi|^{2}} \\ &\cdot \left(\sum_{\alpha} \left[\frac{\partial_{\xi}^{\alpha}(a(x)\xi^{\beta}) N^{\alpha} b(x\,,\,\xi)}{\alpha!}\right]\right) u(y) \, dZ \, d\xi \, . \end{split}$$

This means that $A \circ B$ has a symbol given by

$$\sum_{\alpha} \frac{\partial_{\xi}^{\alpha}(a(x)\xi^{\beta}) N^{\alpha} b(x,\xi)}{\alpha!}.$$

By linearity, we will have the same formulas for the symbol of $B \circ A$ and $A \circ B$ when A is also given by $A = \sum_{|\alpha| \le n} a_{\alpha}(x) N^{\alpha}$.

We have thus shown that if either A or B is hypo-analytic differential operator, the composition $A \circ B$ is hypo-analytic pseudodifferential operator with symbol

$$\sum_{\alpha} \frac{\partial_{\xi}^{\alpha} a(x,\xi) N^{\alpha} b(x,\xi)}{\alpha!}.$$

Definition 1.1. Let $P = \sum_{|\alpha| \leq k} a_{\alpha}(Z(x)) M^{\alpha}$ where the $a_{\alpha}(z)$ are holomorphic in a neighborhood of Z(U) in C^m . We say a point $(x, \xi) \in T^*U\setminus\{0\}$ is in the characteristic set of P if the point $(Z(x), \check{Z}_x(x)\xi)$ is in the characteristic set of $P^Z = \sum_{|\alpha| \leq k} a_{\alpha}(z) (\frac{\partial}{\partial z})^{\alpha}$.

Notation. Char P = the characteristic set of P as given by Definition 1.1.

Definition 1.2. A hypo-analytic differential operator P is said to be elliptic at a point $x \in U$ if for every $(x, \xi) \in T^*U$, $(x, \xi) \notin \operatorname{Char} P$.

Now suppose $P=\sum_{|\alpha|\leq k}a_{\alpha}(Z(x))M^{\alpha}$ is a hypo-analytic differential operator that is elliptic at our central point $0\in U$. Since Z(0)=0 and $dZ(0)=\mathrm{Id}$, we can find a neighborhood $\mathscr O$ of 0 in C^m , a cone $\mathscr C$ in C_m containing $R_m\backslash\{0\}$ and constants c, R>0 such that: when $z\in\mathscr O$ and $\zeta\in\mathscr C$, $|\zeta|\geq R$ we have $|\sum_{|\alpha|\leq k}a_{\alpha}(z)\zeta^{\alpha}|\geq c|\zeta|^k$.

We now have all the ingredients we need to state

Theorem 1.1. Let A be hypo-analytic differential operator in Ω that is elliptic of order d. Given any relatively compact open subset $\tilde{\Omega}$ of Ω , there is a hypoanalytic pseudodifferential operator B in $\tilde{\Omega}$ of order -d such that AB-I and BA-I are hypo-analytic regularizing in $\tilde{\Omega}$.

The proof of this theorem is a simple adaptation of that of the corresponding theorem for analytic pseudodifferential operators as given by Treves [8]. Therefore we omit it.

2. Propagation of hypo-analyticity. In [3] it was shown that hypo-analytic singularities for solutions propagate along the bicharacteristics of hypo-analytic differential operators. Here we extend this result to what may be called classical hypo-analytic pseudodifferential operator. This result may also be viewed as an extension of a theorem of Hanges [4].

We will work in the hypo-analytic local chart (U,Z) of Chapter I. Let P be a classical hypo-analytic pseudodifferential operator with principal symbol p. Let $t \to (x(t), \xi(t)) = \gamma(t)$ be a curve in $T^*U\setminus\{0\}$ and set $\tilde{\gamma}(t) = (\tilde{x}(t), \tilde{\xi}(t)) = (Z(x(t)), \tilde{Z}_{\gamma}(x(t))\xi(t))$.

Definition 2.1. The curve $\gamma(t)$ is said to be a bicharacteristic for P if the equations

$$\frac{d\tilde{x}}{dt} = \frac{\partial p}{\partial \xi}(\tilde{x}(t), \, \tilde{x}(x)), \quad \frac{d\tilde{\xi}}{dt} = \frac{-\partial p}{\partial z}(\tilde{x}(t), \, \tilde{\xi}(t))$$

hold.

We can now state the theorem of this section.

Theorem 2.1. Assume $p(0, \xi_0) = 0$ and P is of principal type at $(0, \xi_0)$. Suppose $\gamma = \{(x(t), \xi(t))\}$ is a bicharacteristic for P through $(x(0), \xi(0)) = (0, \xi_0)$ and that Pu is hypo-analytic on γ . Then either u is hypo-analytic at every point of γ or u is not hypo-analytic at any point of γ .

The proof will use a version of the FBI transform as developed by Sjöstrand in [7]. We will therefore first discuss Sjöstrand's FBI transformations adapted to our situation here.

Let H be a totally real submanifold of C^m of maximal dimension with defining functions h_1, \ldots, h_m .

Define

$$\Lambda_H = \left\{ \left(x, \frac{2}{i} \partial h(x) \right) : h \in C^{\infty}(C^m, R), h \equiv 0 \text{ on } H \right\}.$$

Note that if $x_0 \in H$, then $(x_0, \xi_0) \in \Lambda_H$ iff \exists real numbers $t_1, \ldots, t_m \ni$

$$\xi_0 = \frac{2}{i} \sum_{j=1}^m t_j \partial h_j(x_0).$$

Fix a point $(y_0, \eta_0) \in \Lambda_H$. Let φ be a holomorphic function defined near $(x_0, y_0) \ni$

- $(2.1) \quad \frac{\partial \varphi}{\partial y}(x_0, y_0) = -\eta_0,$
- (2.2) $\det \frac{\partial^2 \varphi}{\partial x \partial y}(x_0, y_0) \neq 0$,
- (2.3) $\Im \varphi_{yy}(x_0, y_0)|_{T_{yy}H \times T_{yy}H} > 0$.

Here $\Im \varphi$ is considered as a function on $\operatorname{\mathbb{C}}^n \times H$, defined locally. Set

$$\varphi_1(x\,,\,y)=-\Im\varphi(x\,,\,y).$$

Condition (2.1) implies that $H\ni y\mapsto \varphi_1(x_0,y)$ has a critical point at y_0 since $\frac{2}{i}\frac{\partial \varphi_1}{\partial y}(x_0,y_0)=\frac{\partial \varphi}{\partial y}(x_0,y_0)=-\eta_0$ and that therefore $d_y\varphi_1(x_0,y_0)=dh(y_0)$ for some h vanishing on H. This together with condition (2.3) and the implicit function theorem give us neighborhoods $N(x_0)$ of x_0 in C^m , $N(y_0)$ of y_0 in H and a unique C^∞ function $y=y(x):N(x_0)\to N(y_0)$ such that y(x) is the unique critical point for $H\ni y\mapsto \varphi_1(x,y)$, $x\in N(x_0)$. We next note that for $x\in N(x_0)$, $(y(x),\frac{-2}{i}\frac{\partial \varphi_1}{\partial y}(x,y(x)))\in \Lambda_H$. Indeed, this follows from the fact that $H\ni y\mapsto \varphi_1(x,y)$ has a critical point at y(x) and that h_1,\ldots,h_m are the defining functions for H.

For $x \in N(x_0)$, let $\eta(x) = \frac{-2}{i} \frac{\partial \varphi_1}{\partial y}(x, y(x))$. Then

$$(y(x), \eta(x)) = \left(y(x), \frac{-2}{i} \frac{\partial \varphi_1}{\partial y}(x, y(x))\right) \in \Lambda_H.$$

Moreover, for x in $N(x_0)$, y(x) is the unique point in $N(y_0)$ such that

$$\frac{-\partial \varphi}{\partial y}(x, y(x)) = \frac{-2}{i} \frac{\partial \varphi_1}{\partial y}(x, y(x)) \in (\Lambda_H)_{y(x)}.$$

This is due to the uniqueness of the critical point.

Let $\Phi(x) = \varphi_1(x, y(x))$. Let $a(x, y, \lambda)$ be a classical analytic symbol defined near (x_0, y_0) and elliptic at this point. For Ψ a real-valued function defined on an open set W in C^m , we define the space $H^{\mathrm{loc}}_{\Psi}(W) = \{v: W \times R_+ \to C: v(z, \lambda) \text{ is holomorphic in } z \text{ and for any } K \subset\subset W \text{ and } \varepsilon > 0 \ \exists c \ni |v(z, \lambda)| \le c e^{\lambda(\psi(z) + \varepsilon)} \text{ for all } z \in K, \lambda \ge 1\}$.

Let $u \in D'(N(y_0))$, and for z in $N(x_0)$ set

$$Tu(z, \lambda) = \int_{H} e^{i\lambda\varphi(z, y)} a(z, y, \lambda)\chi(y)u(y)dy$$

where $\chi \in C_0^{\infty}(N(y_0))$, $\chi \equiv 1$ near y_0 .

Here we are assuming that the neighborhoods $N(y_0)$ and $N(x_0)$ have been contracted so that the symbol a and the phase function φ are defined. It is easily checked that

$$T: D'(N(y_0)) \longrightarrow H^{\mathrm{loc}}_{\Phi}(N(x_0)).$$

In the sequel, $WF_{ha}u$ denotes the hypo-analytic wave front set of Baouendi-Chang-Treves [1]. Our proof of Theorem 2.1 will use the following proposition of Sjöstrand [7].

Proposition 2.1. Let $z_1 \in N(y_0)$. Then $(y(z_1), \eta(z_1)) \notin WF_{ha}u$ iff $Tu \in H^{loc}_{\Phi-\varepsilon_0}(W)$ for some $\varepsilon_0 > 0$ and some neighborhood W of z_1 .

Proof of Theorem 2.1. In order to obtain a suitable phase function, we will need the following two lemmas from [6]. For notational convenience we will use y_0 for $0 \in Z(U) = H$.

Lemma 2.1. Set $z_0 = (y_0' - i\xi_0', 0) \in C^{n-1} \times C$. There exists a holomorphic function φ defined near (z_0, y_0) which solves

$$\frac{\partial \varphi}{\partial z_n}(z, y) = p\left(y, \frac{-\partial \varphi}{\partial y}(z, y)\right)$$

and satisfies (2.1)–(2.3) with $\eta_0 = \xi_0$.

We remark that the lemma is proved by using the Cauchy-Kovalevska theorem, which guarantees the existence of a holomorphic φ that solves the initial value problem

$$\frac{\partial \varphi}{\partial z_n} = p\left(y, \frac{-\partial \varphi}{\partial y}\right)$$

and

$$\varphi(z, 0, y) = \frac{i}{2} \sum_{j=1}^{n-1} (z_j - y_j)^2 - (\xi_0)_n y_n + iC(y_n - (y_0)_n)^2$$

where $\Re C$ is chosen sufficiently large. In the sequel, the neighborhoods $N(z_0)$, $N(y_0)$ and the function Φ are related to the φ of Lemma 2.1 as before.

Lemma 2.2. There is an elliptic analytic symbol $a(z, y, \lambda)$ such that the FBI transformation T with phase φ and symbol a satisfies $D_{z_n}T = TP$ in H_{Φ, z_0} .

That is, if $Y \subseteq Z(U) = H$ is a small neighborhood of y_0 , then for z in $W \subseteq C^m$ a small neighborhood of $z_0 = (y_0' - i\xi_0', 0)$ and $u \in \mathscr{E}'(Y)$ we have

$$D_{z_n}Tu - TPu \in H^{\mathrm{loc}}_{\Phi - \varepsilon}(W)$$

for some $\varepsilon > 0$.

The symbol $a(z, y, \lambda)$ is constructed by solving the transport equations at each degree of homogeneity.

We recall now that

$$\tilde{\gamma}(t) = (\tilde{x}(t), \tilde{\xi}(t))$$

and

$$\tilde{\gamma}(0) = (y_0, \xi_0) = (Z(x(0)), \check{Z}_x(x(0))\xi_0).$$

Write $y_0 = (y_0', (y_0)_n)$ and $\xi_0 = (\xi_0', (\xi_0)_n)$. We will use the equations

(2.4)
$$\begin{cases} \frac{\partial \varphi}{\partial z_n}(z, y) = p\left(y, \frac{-\partial \varphi}{\partial y}(z, y)\right), \\ \frac{\partial \varphi}{\partial y}(z_0, y_0) = -\xi^0 \end{cases}$$

to prove that $\, \hat{\xi}(t) = - \frac{\partial \varphi}{\partial y} (y_0' - i \xi_0', \, t \,, \, \hat{x}(t)) \,.$

We recall that

$$\begin{cases} \frac{d\tilde{x}}{dt} &= \frac{\partial p}{\partial \zeta}(\tilde{x}(t), \tilde{\xi}(t)) \text{ and} \\ \frac{d\tilde{\xi}}{dt} &= \frac{-\partial p}{\partial z}(\tilde{x}(t), \tilde{\xi}(t)). \end{cases}$$

Hence

$$\begin{split} \frac{d}{dt} \left[\frac{\partial \varphi}{\partial y} (y_0' - i\xi_0', t, \tilde{x}(t)) \right] \\ &= \varphi_{yz_n} (y_0' - i\xi_0', t, \tilde{x}(t)) + \varphi_{yy} (y_0' - i\xi_0, t, \tilde{x}(t)) \frac{d\tilde{x}}{dt} \\ &= \varphi_{yz_n} (y_0' - i\xi_0', t, \tilde{x}(t)) + \varphi_{yy} (y_0' - i\xi_0', t, \tilde{x}(t)) \frac{\partial p}{\partial \zeta} (\tilde{x}(t), \tilde{\xi}(t)) \end{split}$$

Now (2.4) implies that

$$\varphi_{yz_n}(z\,,\,y) = \frac{\partial p}{\partial y}\left(y\,,\,\frac{-\partial\varphi}{\partial y}\right) - \frac{\partial p}{\partial\zeta}\left(y\,,\,\frac{-\partial\varphi}{\partial y}\right)\varphi_{yy}(z\,,\,y).$$

It follows that

$$\frac{d}{dt} \left[\frac{-\partial \varphi}{\partial y} (y_0' - i\xi_0', t, \tilde{x}(t)) \right]
= \frac{-\partial p}{\partial y} \left(\tilde{x}(t), -\frac{\partial \varphi}{\partial y} (y_0' - \xi_0', t, \tilde{x}(t)) \right) .
+ \frac{\partial p}{\partial \zeta} \left(\tilde{x}(t), -\frac{\partial \varphi}{\partial y} (y_0' - i\xi_0', t, \tilde{x}(t)) \right) \varphi_{yy}(y_0' - i\xi_0', t, \tilde{x}(t))
- \varphi_{yy}(y_0' - i\xi_0', t, \tilde{x}(t)) \frac{\partial p}{\partial \zeta} (\tilde{x}(t), \tilde{\xi}(t)).$$

But $\hat{\xi}(t)$ also satisfies (2.5) since

$$\begin{split} \frac{d\tilde{\xi}}{dt} &= -\frac{\partial p}{\partial y}(\tilde{x}(t), \tilde{\xi}(t)) + \frac{\partial p}{\partial \zeta}(\tilde{x}(t), \tilde{\xi}(t)) \varphi_{yy}(y_0' - i\xi_0', t, \tilde{x}(t)) \\ &- \varphi_{yy}(y_0' - i\xi_0', t, \tilde{x}(t)) \frac{\partial p}{\partial \zeta}(\tilde{x}(t), \tilde{\xi}(t)) \\ &= -\frac{\partial p}{\partial y}(\tilde{x}(t), \tilde{\xi}(t)). \end{split}$$

Moreover, by 2.4, $\frac{-\partial p}{\partial y}(y_0' - i\xi_0', 0, y_0) = \xi_0 = \tilde{\xi}(0)$.

We conclude that

(2.6)
$$\tilde{\xi}(t) = \frac{-\partial \varphi}{\partial v} (y_0' - i\xi_0', t, \tilde{x}(t)).$$

For $t \in [0, 1]$, let

$$z(t) = z_0 + (0', t) = (y'_0 - i\xi'_0, t) \in C^{n-1} \times R.$$

We now recall that for z near z_0 , y(z) is the unique point in $N(y_0) \subseteq H$ such that

$$y(z_0) = y_0 \quad \text{and} \quad \frac{-\partial \varphi}{\partial y}(z\,,\,y(z)) \in (\Lambda_H)_{y(z)}.$$

But by (2.6), $\tilde{\xi}(t) = \frac{-\partial \varphi}{\partial y}(z(t), \tilde{x}(t))$ and since the forms $\frac{2}{i}\partial h_1, \ldots, \frac{2}{i}\partial h_n$ are real on H = Z(U) and span all of T^*H , we know that

$$\tilde{\xi}(t) = \check{Z}_{x}(x(t))\xi(t) \in (\Lambda_{H})_{\tilde{x}(t)}.$$

It therefore follows that

$$v(z(t)) = \tilde{x}(t).$$

In our previous notation,

$$\eta(z(t)) = \frac{-\partial \varphi}{\partial y} (z(t), y(z(t))) = \frac{-\partial \varphi}{\partial y} (z(t), \tilde{x}(t)) = \tilde{\xi}(t).$$

Thus

(2.7)
$$(\tilde{x}(t), \tilde{\xi}(t)) = (y(z(t)), \eta(z(t))).$$

Since $WF_{ha}(Pu) \cap \gamma = \emptyset$ and γ is compact, (2.7) and Proposition (2.1) tell us that

$$T(Pu) \in H^{\mathrm{loc}}_{\Phi - \varepsilon_0}(N)$$

for some $\varepsilon_0 > 0$ and a neighborhood N of $\{z(t) = 0 \le t \le 1\}$ in C^m . If W is chosen as in Lemma 2.2, then

$$D_{z_n}Tu \in H^{\mathrm{loc}}_{\Phi-\varepsilon_0}(N\cap W).$$

This may require a modification of ε_0 .

Now $z(0)=z_0\in N\cap W$. Therefore, $\exists t_1>0$ such that $N\cap W$ is a neighborhood of $\{z(t):0\leq t\leq t_1\}$. It is crucial to note that the size of t_1 is independent of the distribution u.

If now K is a compact neighborhood of $\{z(t): 0 \le t \le t_1\}$, then $\exists c > 0$ such that

$$|D_{z_n} T u(z, \lambda)| \le c e^{\lambda(\Phi(z) - \frac{\epsilon_0}{2})} \qquad \forall z \in K \text{ and } \lambda \ge 1.$$

If $(y_0, \xi_0) = (y(z(0)), \eta(z(0))) \notin WF_{ha}u$, we know that, after modifying c and ε_0 ,

$$(2.9) |Tu(z,\lambda)| \le ce^{\lambda(\Phi(z) - \frac{\epsilon_0}{2})} \forall \lambda \ge 1 \text{ and } \forall z \text{ near } z_0.$$

From (2.7,), (2.8) and (2.9), it follows that

$$WF_{ha}(u) \cap \{(y(t), \xi(t)) : 0 \le t \le t_1\} = \emptyset.$$

REFERENCES

- M. S. Baouendi, C. H. Chang and F. Treves, Microlocal hypo-analyticity and extensions of CR functions, J. Differential Geometry 18 (1983), 331-391.
- S. Berhanu, Hypo-analytic pseudodifferential operators, Proc. Amer. Math. Soc. 105 (1989), 582-588.
- 3. _____, Propagation of hypo-analyticity along bicharacteristics, Pacific J. Math 138 (1989), 221-232.
- N. Hanges, Propagation of analyticity along real bicharacteristics, Duke Math. J. 49 (1981), 269-277.
- 5. L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, Princeton, N.J., 1966.
- 6. J. Sjöstrand, Singularités analytiques microlocales, Astérisque 95 (1982).
- 7. ____, The FBI transform for CR submanifolds of C^N , (preprint).
- 8. F. Treves, Introduction to pseudodifferential and Fourier integral operators, Volume I, Plenum Press, 1980.

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PENNSYLVANNIA 19122