ULTRA-IRREDUCIBILITY OF INDUCED REPRESENTATIONS OF SEMIDIRECT PRODUCTS

HENRIK STETKÆR

ABSTRACT. Let the Lie group G be a semidirect product, G=SK, of a connected, closed, normal subgroup S and a closed subgroup K. Let Λ be a nonunitary character of S, and let K_{Λ} be its stability subgroup in K. Let $I^{\Lambda\mu}$, for any irreducible representation μ of K_{Λ} , denote the representation $I^{\Lambda\mu}$ of G induced by the representation $\Lambda\mu$ of SK_{Λ} . The representation spaces are subspaces of the distributions.

We show that $I^{\Lambda\mu}$ is ultra-irreducible when the corresponding Poisson transform is injective, and find a sufficient condition for this injectivity.

I. Introduction

Let G be a Lie group which is a semidirect product, G = SK, of a connected, closed, normal subgroup S and a compact subgroup K. Let Λ be a continuous homomorphism of S into $\mathbb{C}\setminus\{0\}$, and let $M:=K_{\Lambda}$ be its stability subgroup in K. For any continuous irreducible representation μ of M on a complex vector space $H(\mu)$ we shall consider the representation $I^{\Lambda\mu}$ of G induced by the representation $\Lambda\mu$ of SM. $I^{\Lambda\mu}$ is a (not necessarily unitary) representation of G on a subspace of the Hilbert space $L^2(K, H(\mu))$, viz. on the subspace $L^2_{\mu}(K, H(\mu))$ consisting of the vectors f which satisfy the convariance condition

(*)
$$f(mk) = \mu(m)[f(k)]$$
 for $m \in M$ and $k \in K$.

The classical unitary theory, which will not be discussed here, is primarily due to Mackey. The special case of the Cartan motion group is treated in detail in [Gi]. In the nonunitary case several authors have studied the question of irreducibility of $I^{\Lambda\mu}$: [Th, Wi, Ra] are concerned with topological irreducibility for general semidirect products, and [CD] with topologically complete irreducibility in the case of the Cartan motion group. Nonunitary representations of the Cartan motion group on eigenspaces of invariant differential operators are studied in [He].

Received by the editors September 1, 1988. Presented on June 6, 1989 at the Conference on Harmonic Analysis, Tuczno, Poland, organised by Wrocław University, Poland.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 22E45; Secondary 22D30. Key words and phrases. Lie group, semidirect product, nonunitary representation, induced representation, ultra-irreducibility, Poisson transform, distribution space.

The present paper deals with the stronger notion of ultra-irreducibility of $I^{\Lambda\mu}$ for general semidirect products with applications to the Cartan motion group, and the subgroup K need no longer be compact.

Our point of view is that there is no need for the Hilbert space frame once we accept nonunitary representations. Any $I^{\Lambda\mu}$ -invariant space E of functions or distributions on K satisfying (*) should be studied; the space of square integrable functions satisfying (*) is just a special case. More precisely we let E be an $I^{\Lambda\mu}$ -invariant subspace of the distributions $\mathcal{D}'(K, H(\mu))$ such that

$$C_{\mu}^{\infty}(K, H(\mu)) \subset E \subset \mathscr{D}'_{\mu}(K, H(\mu)),$$

where the subscript μ indicates that the elements should satisfy (*). Particular cases are the extreme ones $C^\infty_\mu(K\,,\,H(\mu))\,,\,\,\mathscr{D}'_\mu(K\,,\,H(\mu))$ and

$$E = C_u(K, H(\mu)), L_u^p(K, H(\mu))$$
 for K compact and $1 \le p < \infty$.

If $I^{\Lambda\mu}$ is ultra-irreducible on one of the $I^{\Lambda\mu}$ -invariant spaces between $C_{\mu}^{\infty}(K, H(\mu))$ and $\mathcal{D}'_{\mu}(K, H(\mu))$, it is so on all the others (Theorem II.6).

We define a Poisson transform for a semidirect product as above, and find a sufficient, algebraic condition on it to be injective (Theorem IV.2). The condition is weaker than certain of the conditions found in the literature (e.g., [Th, Theorem 4; Wi, Theorem 5.3; Ra, §2.4]) and holds for the Cartan motion group.

By help of Litvinov and Lomonosov's version of Burnside's theorem [LL1] we establish that, when the Poisson transform is injective, then the representation $I^{\Lambda\mu}$ is ultra-irreducible (Theorem V.2).

Finally we get as a corollary of the above results that those representations of the Cartan motion group which are studied by Champetier and Delorme in [CD], are ultra-irreducible (Theorem VI.1).

II. GROUP REPRESENTATIONS ON LOCALLY CONVEX SPACES

A. Notation, terminology and basic facts. By a locally convex space we shall in this paper mean a locally convex, Hausdorff, topological vector space over the field of the complex numbers \mathbb{C} .

Let E be a locally convex space. Its strong topological dual will be denoted by E'. Furthermore L(E), resp. S(E), resp. B(E), denotes the vector space of those linear maps of E into E, which are continuous, resp. are continuous with respect to the weak topology $\sigma(E, E')$, resp. map the bounded subsets of E into bounded subsets.

The ultraweak topology is the weakest locally convex topology on B(E) for which the linear functionals

$$T \to \sum_{j=1}^{\infty} \lambda_j \langle Te_j, e'_j \rangle$$

on B(E) are continuous. Here $\{\lambda_j\}$ ranges over $l^1(\mathbb{N})$, and $\{e_j\}$ and $\{e_j'\}$ range over the bounded sequences in E and E' respectively. A subset A of B(E), equipped with the ultraweak topology, will be denoted A_{uw} .

A representation π of a group G on a locally convex space E is (here) a homomorphism of G into the group of invertible elements of L(E). π is said to be ultra-irreducible if span $\{\pi(G)\}$ is dense in $S(E)_{uw}$. If so, then π is also topologically completely irreducible and hence topologically irreducible, too; also the commutant algebra $\pi(G)'$ reduces to the scalars.

A sufficient condition for ultra-irreducibility can be found as Corollary 8 of [LL1] or in [LL2]. It is an infinite dimensional version of Burnside's theorem.

Theorem 1 (Litvinov-Lomonosov). Let E be a locally convex space with the property that the Fredholm operators on it possess a well-defined trace. Then a topologically irreducible representation π of a group G on E is ultra-irreducible if the closure of span $\{\pi(G)\}\$ in $L(E)_{nw}$ contains a nonzero compact operator.

If π is a strongly continuous representation of a Lie group K with right Haar measure dk on a locally convex space E, then we put

$$\pi(\phi)u := \int_K \phi(k)\pi(k)u\,dk \quad \text{for } \phi \in C_0^\infty(K)\,,\ u \in E\,,$$

where the integral is defined weakly as a linear functional on E'.

Proposition 2. Let π be a strongly continuous representation of a Lie group K on a semicomplete, locally convex space E. Then

- (α) $\pi(\phi) \in B(E)$ for all $\phi \in C_0^{\infty}(K)$.
- (β) A closed subspace of E is invariant under $\pi(K)$ iff it is invariant under $\pi(C_0^{\infty}(K))$.
- $(\gamma) \operatorname{span}\{\pi(\phi)e|\phi \in C_0^{\infty}(K), e \in E\}$ is dense in E. $(\delta) \operatorname{span}\{\pi(K)\}$ and $\pi(C_0^{\infty}(K))$ have identical closures in $B(E)_{\mathrm{uw}}$.

B. The abstract set-up and consequences. Throughout this subsection we enforce the conditions of the Abstract Set-Up below.

The Abstract Set-Up 3. C and E are semicomplete, locally convex spaces. C is a subspace of E and the inclusion map $i: C \subset E$ is continuous. G is a Lie group, K is a Lie subgroup of G and dk denotes a right Haar measure on K.

 π_C is a strongly continuous representation of G on C that extends to a strongly continuous representation π of G on E in such a way that the following holds:

 $\pi(\phi)E \subset C$ for each $\phi \in C_0^{\infty}(K)$ and the corresponding map $\pi_E^{C}(\phi)$ of E into C is continuous.

Easy consequences are that $\pi(\phi) \in L(E)$ and $\pi_C(\phi) \in L(C)$ for any $\phi \in$ $C_0^{\infty}(K)$, and the following two lemmas:

Lemma 4 (The approximation lemma). If W is a closed, invariant subspace of E, then $W \cap C$ is dense in W.

Lemma 5. Let W be an invariant subspace of C. Then W is dense in C iff it is dense in E.

Theorem 6. π is ultra-irreducible iff π_C is also.

Proof. We shall only give the if part, because the other one can be treated quite similarly. So assume π_C is ultra-irreducible. To prove π is ultra-irreducible it suffices by the Hahn-Banach theorem to check the following implication for given $u \in [B(E)_{uw}]'$:

(1)
$$\langle u, \pi(g) \rangle = 0$$
 for all $g \in G$

implies

(2)
$$\langle u, T \rangle = 0$$
 for all $T \in S(E)$.

Let (1) be given. We then get

$$\langle u, \pi(g)\pi(k)\rangle = 0$$
 for all $g \in G$ and $k \in K$.

Composition by an element from S(E), in particular by $\pi(g)$, is continuous with respect to the ultraweak topology, so from Proposition $2(\delta)$ we get that

$$\langle u, \pi(g)\pi(\phi)\rangle = 0$$
 for all $g \in G$ and $\phi \in C_0^{\infty}(K)$,

which tells us that the linear functional $T_C \to \langle u\,,\, i\circ T_C\circ \pi_E^C(\phi)\rangle$ on B(C) vanishes on $\pi_C(G)\subset L(C)$. By the ultra-irreducibility of π_C it vanishes on all of S(C), so

(3)
$$\langle u, i \circ T_C \circ \pi_E^C(\phi) \rangle = 0 \text{ for all } T_C \in S(C).$$

Given $T \in S(E)$ we replace T_C in (3) by $\pi_E^C(\phi_1) \circ T \circ i \in S(C)$, where $\phi_1 \in C_0^\infty(K)$ is arbitrary, to get

$$0 = \langle u, i \circ \pi_E^C(\phi_1) \circ T \circ \pi_E^C(\phi) \rangle$$

= $\langle u, \pi(\phi_1) \circ T \circ \pi(\phi) \rangle$.

The continuity of left and right compositions by elements from L(E) combined with Proposition $2(\delta)$ now ensures that (2) holds. \square

III. The representations I^{Δ} and $I^{\Delta\mu}$

Throughout this section G denotes a second countable Lie group which is the semidirect product $G = S \times_s K$ of a normal, closed, and connected subgroup S with a closed subgroup K. We let V be a finite-dimensional complex vector space.

We give $C^{\infty}(K, V)$ and $C_0^{\infty}(K, V) = \mathcal{D}(K, V)$ their usual topologies (Fréchet space and LF-space respectively) and put $\mathcal{D}'(K, V) := [\mathcal{D}(K, V')]'$. We identify $C^{\infty}(K, V)$ as a dense subspace of $\mathcal{D}'(K, V)$ via the natural continuous injection map $i: C^{\infty}(K, V) \subset \mathcal{D}'(K, V)$ given by

$$\langle if, \psi \rangle := \int_{K} \langle f(k), \psi(k) \rangle dk \quad \text{for } f \in C^{\infty}(K, V), \ \psi \in C_{0}^{\infty}(K, V').$$

We note that $C^{\infty}(K, V)$ and $\mathscr{D}'(K, V)$ are $C^{\infty}(K)$ -modules.

Let Λ be a continuous homomorphism from S to $\mathbb{C}\setminus\{0\}$. By Lie group theory, $\Lambda\in C^\infty(S)$. We define a continuous representation I^Λ of G on $C^\infty(K,V)$ by (cf. [Wi, formula (2.8), p. 72])

(1)
$$[I^{\Lambda}(sk)f](k_1) := \Lambda(k_1 s k_1^{-1}) f(k_1 k)$$

for $(s, k, k_1) \in S \times K \times K$, $f \in C^{\infty}(K, V)$.

Definition 1. For $u \in \mathcal{D}'(K, V)$, $\phi \in C_0^{\infty}(K, V')$ and $(s, k) \in S \times K$ we put

(2)
$$\langle I^{\Lambda}(sk)u, \phi \rangle := \langle u, I^{\Lambda}(k^{-1}s)\phi \rangle.$$

 I^{Λ} , defined by (2), is a continuous representation of G on $\mathscr{D}'(K, V)$, extending the representation (1) on $C^{\infty}(K, V)$. The stability subgroup

$$M = K_{\Lambda} := \{k \in K | \Lambda(ksk^{-1}) = \Lambda(s) \text{ for all } s \in S\}$$

is a closed subgroup of K. Let μ be a continuous, topologically irreducible representation of M on a complex finite dimensional vector space $V=H(\mu)$. M acts on $C^{\infty}(K,H(\mu))$ (or more generally on functions from K to $H(\mu)$) by

(3) $[m \cdot \phi](k) := \mu(m)[\phi(m^{-1}k)]$ for $m \in M$, $k \in K$, $\phi \in C^{\infty}(K, H(\mu))$. ϕ is a fixed point iff ϕ satisfies the covariance condition (*) from the Introduction.

The action of M extends to a continuous representation of M on $\mathscr{D}'(K, H(\mu))$ which commutes with I^{Λ} and multiplication by functions from $C^{\infty}(M\backslash K)$. The vector space

$$\begin{split} \mathscr{D}_{\mu}' &:= \left\{ u \in \mathscr{D}'(K\,,\, H(\mu)) | m \cdot u = u \text{ for all } m \in M \right\}, \\ C_{\mu}^{\infty} &:= C^{\infty}(K\,,\, H(\mu)) \cap \mathscr{D}_{\mu}' \quad \text{and} \quad C_{\mu} := C(K\,,\, H(\mu)) \cap C_{\mu}^{\infty} \end{split}$$

are therefore invariant under I^{Λ} and multiplication by functions from $C^{\infty}(M\backslash K)$. They are closed subspaces of $\mathscr{D}'(K,H(\mu))$, $C^{\infty}(K,H(\mu))$ and $C(K,H(\mu))$ respectively. We equip them with the topologies from

$$\mathscr{D}'(K, H(\mu)), C^{\infty}(K, H(\mu))$$

and $C(K, H(\mu))$ respectively. The restriction $I^{\Lambda\mu}$ of I^{Λ} from $\mathscr{D}'(K, H(\mu))$ to \mathscr{D}'_{μ} is then a continuous representation of G on \mathscr{D}'_{μ} ; restricting further we get that $I^{\Lambda\mu}$ defines a continuous representation (again denoted $I^{\Lambda\mu}$) of G on C^{∞}_{μ} .

Remark 2. The Abstract Set-Up holds here with $C=C_{\mu}^{\infty}$, $E=\mathcal{D}'_{\mu}$ and $\pi=I^{\Lambda\mu}$.

There is a continuous projection p of $C^{\infty}(K, H(\mu))$ onto C^{∞}_{μ} . It can be constructed as follows: Choose $\theta \in C^{\infty}(K)$ such that $\sup\{m \to \theta(mk)|k \in Q\}$ is compact for any compact subset Q of K and such that

$$\int_{M} \theta(mk) \, dm = 1 \quad \text{for each } k \in K$$

(cf. the proof of Lemma A.1.1 of [Wa] for the existence of such a $\,\theta$). Then

$$(Pk)(k) := \int_{M} \theta(mk)\mu(m)^{-1}[f(mk)]dm,$$

where dm is a right Haar measure on M, works.

Our final result of this section is the first place in which the irreducibility of μ is used. So far dim $H(\mu) < \infty$ has sufficed (cf. [Wi, Lemma 3.1; Th, Lemma 3]).

Lemma 3. If \mathscr{A} is a dense subset of $C^{\infty}(M\backslash K)$ and $w \in C^{\infty}_{\mu}\backslash\{0\}$, then $\operatorname{span}\{aI^{\Lambda}(k)w|a\in\mathscr{A}, k\in K\}$ is dense in C^{∞}_{μ} .

Proof. Since the map $a \to af$ for any fixed $f \in C^{\infty}_{\mu}$ is continuous from $C^{\infty}(M\backslash K)$ into C^{∞}_{μ} we get that the closure of $\operatorname{span}\{aI^{\Lambda}(k)w|a\in\mathscr{A}, k\in K\}$ contains $\operatorname{span}\{\phi I^{\Lambda}(k)w|\phi\in C^{\infty}(M\backslash K), k\in K\}$, so that we may assume that $\mathscr{A}=C^{\infty}(M\backslash K)$. But in that case $\operatorname{span}\{aI^{\Lambda}(k)w|a\in\mathscr{A}, k\in K\}$ contains $P(\operatorname{span}\{\phi I^{\Lambda}(k)w|\phi\in C^{\infty}(K), k\in K\})$. Since P is surjective it suffices to prove that $\operatorname{span}\{\phi I^{\Lambda}(k)w|\phi\in C^{\infty}(K), k\in K\}$ is dense in $C^{\infty}(K, V)$.

Replacing w by a suitable translate we may assume that $w(e) \neq 0$.

We shall show that the annihilator in $C^{\infty}(K, V)'$ of

$$\operatorname{span}\{\phi I^{\Lambda}(k)w|\phi\in C^{\infty}(K), k\in K\}$$

is $\{0\}$.

By Lemma II.4 it suffices to prove that if $U \in C_0^{\infty}(K, V')$ is in the annihilator then U = 0. So assume that U is in the annihilator. Then for all $a \in C^{\infty}(K)$ and $k_0 \in K$ we have

$$\begin{split} 0 &= \langle U \,,\, aI^{\Lambda}(k_0)w \rangle = \int_K \langle U(k) \,,\, a(k)(I^{\Lambda}(k_0)w)(k) \rangle \,dk \\ &= \int_K a(k) \langle U(k) \,,\, (I^{\Lambda}(k_0)w)(k) \rangle \,dk \,, \end{split}$$

so

$$0 = \langle U(k), (I^{\Lambda}(k_0)w)(k) \rangle = \langle U(k), w(kk_0) \rangle \quad \text{for all } k, k_0 \in K.$$

Choosing k_0 suitably we get for any $m \in M$ that

$$0 = \langle U(k)\,,\, w(m)\rangle = \langle U(k)\,,\, \mu(m)[w(e)]\rangle.$$

Since $w(e) \neq 0$ and μ is irreducible we get that U(k) = 0. But $k \in K$ was arbitrary. \square

IV. THE POISSON TRANSFORM

The situation and notation are as in §III.

The Lie group G is the semidirect product of a normal, closed and connected subgroup S with a closed subgroup K. \mathfrak{k} will denote the Lie algebra of K

and L(S) that of S. Λ is a smooth homomorphism of S into $\mathbb{C}\backslash\{0\}$, and M denotes the stability subgroup $M=K_{\Lambda}$.

We assume that there exists an Ad(K)-invariant inner product $\langle \cdot, \cdot \rangle$ on L(S), and extend it to $L(S)^{\mathbb{C}}$. Define $d\Lambda \in L(S)^{\mathbb{C}}$ by (cf. [Wi, p. 70])

$$\Lambda(\exp X) = e^{\langle X, d\Lambda \rangle} \quad \text{for } X \in L(S),$$

define the functions $\phi_{d\Lambda,Z} \in C^{\infty}(M\backslash K)$ for $Z \in L(S)^{\mathbb{C}}$ by

$$\phi_{d\Lambda,Z} := e^{\langle \operatorname{Ad}(k)Z, d\Lambda \rangle} \quad \text{for } k \in K,$$

and define the K-invariant, point separating subalgebras

$$\mathscr{A}_0(d\Lambda) := \operatorname{span}\{\phi_{d\Lambda} \mid Z \mid Z \in L(S)\}, \qquad \mathscr{A}(d\Lambda) := \operatorname{span}\{\phi_{d\Lambda} \mid Z \mid Z \in L(S)^{\mathbb{C}}\}$$

of $C^{\infty}(M\backslash K)$ [Wi, p. 74 and Proposition 4.4]. Note that $\mathscr{A}_0(d\Lambda)$ and $\mathscr{A}(d\Lambda)$ have the same closures in $C^{\infty}(M\backslash K)$ (cf. the proof of Proposition 1 below).

We will for brevity write $k \cdot Z$ for Ad(k)Z, and $X \cdot Z$ for the action of $X \in \mathfrak{k}$ on $Z \in L(S)^{\mathbb{C}}$.

Let σ be a smooth volume element on $M \setminus K$ and let $\rho \in C^{\infty}(M \setminus K \times K)$ be the function satisfying

$$\int_{M\backslash K} \psi(xk) \, d\sigma(x) = \int_{M\backslash K} \psi(x) \rho(x\,,\,k) \, d\sigma(x) \quad \text{for all } \psi \in C_0^\infty(M\backslash K).$$

We define the Poisson transformation $P = P_{d\Lambda} : C_0^{\infty}(M \setminus K) \to C^{\infty}(L(S))$ by

(1)
$$(Pf)(X) := \int_{M \setminus K} \phi_{d\Lambda, X}(x) f(x) \, d\sigma(x) \quad \text{for } X \in L(S).$$

Proposition 1. P is injective iff $\mathscr{A}(d\Lambda)$ is dense in $C^{\infty}(M\backslash K)$. This is in particular the case if $\mathscr{A}(d\Lambda)$ is closed under complex conjugation.

Proof. Assume first that $\mathcal{A}(d\Lambda)$ is dense in $C^{\infty}(M\backslash K)$ and that

$$\int_{M\setminus K} \phi_{d\Lambda,X}(x) f(x) \ d\sigma(x) = 0 \quad \text{for some } f \in C_0^{\infty}(M\setminus K).$$

Since the map $Z \to \int_{M \setminus K} \phi_{d\Lambda, Z}(x) f(x) d\sigma(x)$ is holomorphic on $L(S)^{\mathbb{C}}$ and vanishes on the real part L(S) of $L(S)^{\mathbb{C}}$, it vanishes everywhere. So

$$\int_{M\setminus K} \phi_{d\Lambda, Z}(x) f(x) \ d\sigma(x) = 0 \quad \text{for all } Z \in L(S)^{\mathbb{C}}.$$

Since $\mathscr{A}(d\Lambda)$ is dense in $C^{\infty}(M\backslash K)$, f has to be 0.

Assume conversely that P is injective. By the Hahn-Banach theorem we shall show the following: If $f \in \mathcal{E}'(M \setminus K)$ annihilates $\mathcal{A}(d\Lambda)$ then f = 0.

By the Approximation Lemma II.4 we may assume that $f \in C_0^{\infty}(M \setminus K)$. So we know that

$$\int_{M\setminus K} \phi_{d\Lambda, Z}(x) f(x) d\sigma(x) = 0 \quad \text{for all } Z \in L(S)^{\mathbb{C}}.$$

By the injectivity of P we see that f = 0 as desired.

The last statement follows from Stone-Weierstrass' theorem and Lemma II.5. \square

The papers [Th, Wi and Ra] contain various sufficient conditions for $\mathscr{A}(d\Lambda)$ to be dense in $C^{\infty}(M\backslash K)$ when K is compact. (Note that $\mathscr{A}(d\Lambda)$ is dense in $C^{\infty}(M\backslash K)$ iff it is dense in $L^2(M\backslash K)$ (Lemma II.5).)

[He, CD and Ko] show that the Poisson transform is injective when G is the Cartan motion group. We present an extension to semidirect products, using an idea due to Koranyi [Ko]:

Theorem 2. The Poisson transform is injective if

(2)
$$\langle X \cdot d\Lambda, d\Lambda \rangle = 0$$
 for all $X \in \mathfrak{k}$.

Remarks. (i) Condition (2) is automatically satisfied in the case of the Cartan motion group. (Combine (a) and (b), p. 295, of [Ko]. It hinges on the fact that Re Λ and Im Λ commute, both being in the (maximal) commutative subalgebra a.)

- (ii) [Wi, Theorem 5.3, p. 78] proves that $\mathscr{A}(d\Lambda)$ is dense in $C(M\backslash K)$ if the function $k \to \langle k \cdot d\Lambda, d\Lambda \rangle$ is real-valued and K is compact. A particular case occurs if $d\Lambda$ is proportional to a vector in L(S) [Th, Theorem 4]. Our condition (2) is weaker.
- (iii) Another connection is to vectors of minimal length (cf. [KN]): If $d\Lambda$ is of minimal length with respect to $K^{\mathbb{C}}$ then (2) holds, (see also [Ra, §2.4]).

Proof of Theorem. Let $m:=\frac{1}{2}\dim M\setminus K$ and $o:=M1\in M\setminus K$. We shall apply the method of stationary phase for complex-valued phase functions (Theorem 2.3 of [MS] or formula (X.3.5), p. 536, of [Tr]) to prove $\exp(-t\langle d\Lambda, d\Lambda\rangle)$ times the integral

$$P_{d\Lambda}(f)(td\Lambda) = \int_{M\setminus K} e^{t\langle x \cdot d\Lambda \,,\, d\Lambda \rangle} f(x) \, d\sigma(x) \quad \text{as } t \to \infty \,,$$

where $f \in C_0^\infty(M \setminus K)$, behaves asymptotically as $ct^{-m}f(o)$, where c is a nonzero constant that does not depend on f. To that purpose we introduce the function $a \in C^\infty(M \setminus K)$ defined by

$$a(x) := i\{\langle d\Lambda, d\Lambda \rangle - \langle x \cdot d\Lambda, d\Lambda \rangle\} \text{ for } x \in M \setminus K,$$

and shall then prove that

$$\int e^{ita(x)} f(x) d\sigma(x) \approx ct^{-m} f(o) + \cdots \quad \text{as } t \to \infty.$$

Since K acts by orthogonal transformations we see that

(3) Im
$$a \ge 0$$
 with equality only at $x = 0$,

because $M = \{k \in K | k \cdot d\Lambda = d\Lambda\}$ [Wi, Proposition 4.3, p. 74]. For any $X \in \mathfrak{k}$ we have

$$Xa = -i\frac{d}{dt}|_{t=0} \langle \exp(tX) \cdot d\Lambda, d\Lambda \rangle = -i\langle X \cdot d\Lambda, d\Lambda \rangle = 0$$

by our assumption (2), so x = o is a critical point of a. For any $X \in \mathfrak{k}$ we compute:

$$\frac{d^{2}}{dt^{2}}\Big|_{t=0} a(M \exp tX) = (-i) \frac{d^{2}}{dt^{2}}\Big|_{t=0} \langle \exp(tX) \cdot d\Lambda, d\Lambda \rangle$$
$$= (-i)\langle X^{2} \cdot d\Lambda, d\Lambda \rangle = i ||X \cdot d\Lambda||^{2}.$$

This is different from zero for any $X \in \mathfrak{k}$ off the Lie algebra of M, so x = o is nondegenerate.

Theorem 2.3 of [MS] applies to functions supported in a sufficiently small neighborhood U of the critical point in question, so let us write $f=F+f_o$, where $f_o=f$ near o and supp $f_o\subset U$. It is enough to show that F contributes nothing to the first term of the formula for the asymptotic behaviour.

By (3) there exists a $\delta > 0$ such that $\operatorname{Im} a \geq \delta$ on $\operatorname{supp} F$, so

$$\left| \int e^{ita(x)} F(x) \, d\sigma(x) \right| \leq \int e^{-t \operatorname{Im} a(x)} |F(x)| \, d\sigma(x) \leq e^{-t\delta} \int |F(x)| \, d\sigma(x),$$

so F does indeed contribute nothing to the asymptotic expansion.

At last we turn to the Poisson transform. We shall show that

$$\{f \in C_0^{\infty}(M\backslash K)|P_{d\Lambda}f(X) = 0 \text{ for all } X \in L(S)\} = \{0\}.$$

The asymptotics show us that f(o) = 0 for any f in the left-hand side. If f belongs to the left-hand side then so does $I^{\Lambda}(k)[f\rho(\cdot, k)^{-1}]$ for any $k \in K$, so

$$0 = I^{\Lambda}(k)[f\rho(\cdot, k)^{-1}](o) = f(Mk)\rho(Mk, k)^{-1}$$

and hence f(Mk) = 0. \square

V. A SUFFICIENT CONDITION FOR ULTRA-IRRREDUCIBILITY

The situation is as stated in §IV. Furthermore μ is a continuous, irreducible and finite dimensional representation of M on $H(\mu) = V$.

Proposition 1. The representation $I^{\Lambda\mu}$ of G is ultra-irreducible on C^{∞}_{μ} if $\mathscr{A}_0(d\Lambda)$ is dense in $C^{\infty}(M\backslash K)$.

Proof. Let $W \neq \{0\}$ be an invariant subspace of C_{μ}^{∞} . W is in particular invariant under $I^{\Lambda\mu}(\exp X) = \phi_{d\Lambda,X} \in \mathscr{A}_0(d\Lambda)$, so by Lemma III.3 W is dense in C_{μ}^{∞} . This proves that $I^{\Lambda\mu}$ is topologically irreducible. We continue by applying the Litvinov-Lomonosov result (Theorem II.1):

 C_{μ}^{∞} has that property that the Fredholm operators on it have well-defined traces, because there exists a continuous projection P of $C^{\infty}(K, V)$ onto it, and $C^{\infty}(K, V)$ has the property (see e.g. [JS]).

Via Proposition II.2 (δ) we see that $aI^{\Lambda\mu}(\phi) \in \operatorname{span}\{\pi(G)\}_{\operatorname{uw}}$ for any $a \in \mathscr{A}_0(d\Lambda)$ and $\phi \in C_0^\infty(K)$, and hence by density even for all $a \in C^\infty(M \setminus K)$, so it suffices to prove that $aI^{\Lambda\mu}(\phi)$ is compact when $a \in C_0^\infty(M \setminus K)$. Now

 $a = P(\psi)$ for some $\psi \in C_0^{\infty}(K)$, so for any $f \in C_u^{\infty}$:

$$aI^{\Lambda\mu}(\phi)f = P(\psi)I^{\Lambda\mu}(\phi)f = P(\psi I^{\Lambda}(\phi)f).$$

It now suffices to show that $\psi I^{\Lambda}(\phi) \colon C^{\infty}(K, V) \to C^{\infty}(K, V)$ is compact. But here we may assume $V = \mathbb{C}$ because there is no twisting any longer. $\psi I^{\Lambda}(\phi)$ is compact as an integral operator with smooth, compactly supported kernel. \square

The next theorem, which is our main result, deals with spaces of functions and distributions between C_{μ}^{∞} and \mathscr{D}'_{μ} that satisfy the covariance condition (*), e.g. $C_{\mu}(K, H(\mu))$ and, for K compact, $L_{\mu}^{p}(K, H(\mu))$ for $1 \leq p < \infty$. Theorem 4.11 of [Wi] and Theorem 4 of [Th] are special cases.

Theorem 2. Let F be a semicomplete, locally convex space which is a subspace of \mathscr{D}'_{μ} such that $C^{\infty}_{\mu} \subset F \subset \mathscr{D}'_{\mu}$ with continuous inclusions.

Assume that F is $I^{\Lambda\mu}$ -invariant, and that the map $g\to I^{\Lambda\mu}(g)|F=I_F(g)$ is a strongly continuous representation of G on F.

Then I_F is an ultra-irreducible representation, if the Poisson transform is injective.

Proof. The theorem is an immediate consequence of Proposition 1 in view of Theorem II.6. \Box

Remark 3. Theorem 1 provides us with a proof of the "double commutant" theorem in [Wi, Theorem 1.3]: Indeed, if $\mathscr{A}(d\Lambda)$ is closed under complex conjugation then it is dense in $C^{\infty}(M\backslash K)$, so $I^{\Lambda\mu}$ is ultra-irreducible (Theorem 1) and thus topologically completely irreducible.

Example 4. In case of the Euclidean motion group $(S = \mathbb{R}^n, K = SO(n))$ our condition (2) holds iff $d\Lambda$ is proportional to a real vector. It is known that for n > 2 this is necessary and sufficient for $I^{\Lambda \tau}$ to be (topologically) irreducible, τ being the trivial representation [Ra, 3.5, Exemples]. According to our theorem we even get ultra-irreducibility in that case.

VI. APPLICATION TO THE CARTAN MOTION GROUP

Standard notation. Let G be a semisimple, connected, real Lie group with finite center, and let $\mathfrak g$ be its Lie algebra. Let $\mathfrak g=\mathfrak k+\mathfrak p$ be a Cartan decomposition of $\mathfrak g$ and K be the corresponding maximal compact subgroup. $G_0:=\mathfrak p\times_s K$ is the Cartan motion group of (some) affine motions of $\mathfrak p$.

We let \mathfrak{a} be a maximal abelian subspace of \mathfrak{p} , let $\lambda \colon \mathfrak{a} \to \mathbb{C}$ be real-linear, and let K^{λ} denote the stabilizer of λ in K.

As is usual we extend λ to all of \mathfrak{p} by setting it 0 on the orthogonal complement of \mathfrak{a} in \mathfrak{p} with respect to the Killing form.

We define the continuous homomorphism $\Lambda: \mathfrak{p} \to \mathbb{C} \setminus \{0\}$ by

$$\Lambda(X) := e^{i\Lambda(X)} \quad \text{for } X \in \mathfrak{p},$$

and note that $K_{\Lambda} = K^{\lambda}$.

Let μ be a continuous, irreducible representation of K^{λ} on $H(\mu)$. From formula (III.1) above we get a representation I^{λ} of G_0 on $C^{\infty}(K, H(\mu))$ given by

$$[I^{\lambda}(X,k)f](k') = e^{i\lambda(\operatorname{Ad}(k')X)}f(k'K)$$
for $X \in \mathfrak{p}, k, k' \in K$ and $f \in C^{\infty}(K, H(\mu))$.

The representation extends to $\mathcal{D}'(K, H(\mu))$ as before.

By the injectiveness of the Poisson transform on the Cartan motion group we get from the previous results:

Theorem 1. Let F be a semicomplete, locally convex space such that $C_{\mu}^{\infty} \subset F \subset \mathcal{D}'_{\mu}$ with continuous inclusions.

If F is I^{λ} -invariant and the restriction I_F of I^{λ} to F is a strongly continuous representation of G_0 on F, then I_F is ultra-irreducible.

The theorem holds in particular for the representation I^{λ} on the space $F = L^2_{\mu}(K, H(\mu))$, which is the one considered in [CD, Théorème 6, p. 278]. By other methods than ours, [CD] established that I^{λ} is topologically completely irreducible.

REFERENCES

- [CD] C. Champetier and P. Delorme, Sur les représentations des groupes de déplacements de Cartan, J. Funct. Anal. 43 (1981), 258-279. MR 83e: 22012
- [Gi] S. G. Gindikin, Unitary representations of groups of automorphisms of Riemann symmetric spaces of null curvature, Functional Anal. Appl. 1 (1967), 28-32. MR 35# 303
- [He] S. Helgason, A duality for symmetric spaces with applications to group representations. III. Tangent space analysis, Adv. in Math. 30 (1980), 297-323. MR 81g: 22021.
- [JS] Jacob Jacobsen and Henrik Stetkær, Spaces in which Fredholm operators have well defined trace, J. Operator Theory 19 (1988), 381-386.
- [KN] G. Kempf and L. Ness, The length of vectors in representation spaces, in Algebraic Geometry, Proceedings Copenhagen 1978 (K. Lønsted, ed.), Lecture Notes in Math., vol. no 732, Springer-Verlag, Berlin, Heidelberg and New York, 1978, pp. 233-243. MR 81i: 14032.
- [Ko] A. Koranyi, On the injectivity of the Poisson transform, J. Funct. Anal. 45 (1982), 293-296. MR 84i: 43008.
- [LL1] G. L. Litvinov and V. I. Lomonosov, Density theorems in locally convex spaces and their applications, Trudy Sem. Vektor. Tenzor Anal. 20 (1981), 210-227. (Russian) MR 83i #47009.
- [LL2] ____, Density theorems in locally convex spaces and irreducible representations, Soviet Math. Dokl. 23 (1981), 372-376; English transl., Dokl. Akad. Nauk SSSR 257 (1981), no. 4, 826-830. MR 82g #46087.
- [MS] A. Melin and J. Sjöstrand, Fourier integral operators with complex-valued phase functions, in Fourier Integral Operators and Partial Differential Equations, Colloq. Internat., Nice 1974 (J. Chazarain, ed.), Lecture Notes in Math., vol. 459, Springer-Verlag, Berlin and New York, 1975, pp. 120-233. MR 55 #4290.
- [Ra] M. Raïs, Sur l'irréductibilité de certaines représentations induites non unitaires, C. R. Acad. Sci. Paris, Sér. I 305 (1987), 713-716.
- [Tr] F. Treves, Introduction to pseudodifferential and Fourier integral operators, vol. 2, Plenum Press, New York and London, 1980.

- [Th] E. Thieleker, On the irreducibility of nonunitary induced representations of certain semidirect products, Trans. Amer. Math. Soc. 164 (1972), 353-369. MR 45 #2097
- [Wa] G. Warner, Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, Berlin, Heidelberg and New York, 1972.
- [Wi] F. L. Williams, Topological irreducibility of nonunitary representations of group extensions, Trans. Amer. Math. Soc. 233 (1977), 69-84. MR 57 #3316

Department of Mathematics, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark