LINEAR TOPOLOGICAL CLASSIFICATIONS OF CERTAIN FUNCTION SPACES

VESKO M. VALOV

ABSTRACT. Some linear classification results for the spaces $C_P(X)$ and $C_P^*(X)$ are proved.

0. Introduction

If X is a space then $C_P(X)$ denotes the set of all continuous real-valued functions on X with the topology of pointwise convergence. We write $C_P^*(X)$ for the subspace of $C_P(X)$ consisting of all bounded functions. R stands for the usual space of real numbers, I—for the unit segment [0,1] and Q is the Hilbert cube I^ω . If $n \ge 1$ then μ^n denotes the n-dimensional universal Menger compactum. Let X be a separable metric space. A separable metric space Y is called an X-manifold if Y admits an open cover by sets homeomorphic to open subsets of X.

Results in [A1, A2 and Ps] show that the linear topological classification of the spaces $C_P(X)$ is very complicated. Below the linear topological classification results for the spaces $C_P(X)$ which I know are listed:

- (1) Let X and Y be non-zero-dimensional compact polyhedra. Then $C_P(X) \sim C_P(Y)$ if and only if $\dim X = \dim Y$ [Pv]. Here the symbol " \sim " stands for linear homeomorphism.
- (2) If X is a locally compact subset of R^n such that $\operatorname{cl}(\operatorname{Int}(X)) \cap (R^n X) \neq \emptyset$ then $C_P(X) \sim C_P(R^n)$ [Dr1].
- (3) If X is a 1-dimensional compact ANR with finite ramification points or a continuum X is a one-to-one continuous image of $[0, \infty)$ then $C_P(X) \sim C_P(I)$ [KO].

For topological classification results of the spaces $C_P(X)$ see [BGM, BGMP, GH and M].

The aim of this paper is to prove the following results:

- (4) $C_P(X) \sim C_P(Q)$ if and only if X is a compact metric space containing a copy of Q.
- (5) Let X be a subset of R^n . Then $C_P(X) \sim C_P(I^n)$ iff X is compact and $\dim X = n$.

Received by the editors February 8, 1989.

1980 Mathematics Subject Classification (1985 Revision). Primary 46E10, 54C35.

Key words and phrases. Linear homeomorphism, function space, manifold.

- (6) $C_P(X) \sim C_P(\mu^n)$ if and only if X is an *n*-dimensional compact metric space containing a copy of μ^n .
- (7) $C_P(X) \sim C_P(l_2)$ provided X is an l_2 -manifold (by l_2 is denoted the separable Hilbert space).
- (8) Let X be one of the spaces Q, I^n or μ^n , and Y be a locally compact subset of an X-manifold. Then $C_p(Y) \sim C_p(X)^\omega$ if and only if Y contains a closed copy of the topological sum $\sum X_i$ of infinitely many copies of X.

Similar results are also proved for the spaces $C_p^*(X)$.

I am indebted to A. Dranishnikov and the referee for many valuable comments.

1. Preliminaries

All spaces under discussion are Tychonoff and all mappings between topological spaces are continuous. By $L_P(X)$ is denoted the dual linear space of $C_P(X)$ with the weak (i.e. pointwise) topology. It is known that

$$L_P(X) = \left\{ \sum_{i=1}^k a_i \delta_{x_i} : a_i \in R - (0) \text{ and } x_i \in X \text{ for each } i \le k \right\}.$$

Here δ_x is the Dirac measure at the point $x \in X$. We denote

$$P_{\infty}(X) = \left\{ \sum_{i=1}^{k} a_i \delta_{x_i} : a_i \in (0, 1) \text{ for each } i \text{ and } \sum_{i=1}^{k} a_i = 1 \right\}$$

and $\operatorname{supp}(l) = (x_1, \ldots, x_k)$, where $l = \sum_{i=1}^k a_i \delta_{x_i} \in L_P(X)$.

Let A be a closed subset of a space X. Consider the following conditions:

- (i) There is a continuous linear extension operator $u: C_P(A) \to C_P(X)$ (recall that $u: C_P(A) \to C_P(X)$ is an extension operator if u(f)|A = f for every $f \in C_P(A)$);
- (ii) There is a continuous linear extension operator $u: C_P(A) \to C_P(X)$ and a positive constant c such that $\|u(f)\| \le c$. $\|f\|$ for every $f \in C_P^*(A)$. Here $\|f\|$ is the supremum norm of f;
- (iii) There is a regular extension operator $u: C_P(A) \to C_P(X)$ i.e. a continuous linear extension operator u with $u(1_A) = 1_X$ and $u(f) \ge 0$ provided $f \ge 0$.

A is said to be l-embedded (resp., l^* -embedded) in X if the condition (i) (resp., the condition (ii)) holds. If (iii) is satisfied then A is called strongly l-embedded in X. Dugundji [D] proved that every closed subset of a metric space X is strongly l-embedded in X (he did not state this explicitly in this form). It is known (see [AČ, Dr1]) that A is l-embedded (resp., strongly l-embedded) in X if and only if there is a mapping $r: X \to L_p(A)$ (resp., $r: X \to P_\infty(A)$) such that $r(x) = \delta_x$ for every $x \in A$. Such a mapping will be called an L_p -valued (resp., a P_∞ -valued) retraction. Every L_p -valued retraction $r: X \to L_p(A)$ defines a continuous linear extension operator $u_r: C_p(A) \to C_p(X)$ by setting

 $u_r(f)(x) = r(x)(f)$. If the operator u_r satisfies the condition (ii), r is said to be a bounded L_P -valued retraction.

Let $u: C_P(A) \to C_P(X)$ be a continuous linear extension operator. Then the mapping v(f, g) = u(f) + g is a linear homeomorphism from $C_P(A) \times C_P(X; A)$ onto $C_P(X)$, where

$$C_{\mathcal{D}}(X; A) = \{ g \in C_{\mathcal{D}}(X) : g | A = 0 \}.$$

Analogously, if A is l^* -embedded in X then $C_p^*(A) \times C_p^*(X; A)$ is linearly homeomorphic to $C_p^*(X)$.

Let $\mathcal K$ be a family of bounded subsets of a space X (i.e. f|K is bounded for every $K\in\mathcal K$ and $f\in C_P(X)$) and E be a linear topological subset of $C_P(X)$. Then we set

$$\left(\prod E\right)_{\mathscr{X}} = \left\{ (f_1, \ldots, f_n, \ldots) \in E^{\omega} : \lim_{n} \|f_n\|_K = 0 \text{ for every } K \in \mathscr{K} \right\}$$

and

$$\left(\prod E\right)_{\mathcal{X}}^{*} = \left\{ (f_{1}, \ldots, f_{n}, \ldots) \in \left(\prod E\right)_{\mathcal{X}} : \sup_{n} \|f_{n}\| < \infty \right\}.$$

 $(\prod E)_{\mathscr K}$ and $(\prod E)_{\mathscr K}^*$ are considered as topological linear subspaces of $C_P(X)^\omega$. We write $(\prod E)_b$ and $(\prod E)_b$ (resp. $(\prod E)_c$ and $(\prod E)_c^*$) if $\mathscr K$ is the family of all bounded (resp., of all compact) subsets of X. In the above notations $\|f\|_K$ stands for the set $\sup\{|f(X)|:x\in K\}$. Let us note that if X is pseudocompact and E is a linear subset of $C_P(X)$, the space

$$\left(\prod E\right)_0 = \left\{ (f_1, \ldots, f_n, \ldots) \in E^{\omega} : \lim_n \|f_n\| = 0 \right\}$$

is considered in [GH].

We need also the following notion: a space X is said to be a k_R -space [N] if every function $f: X \to R$ is continuous provided that f|K is continuous for each compact subset K of X.

2. Linear topological classifications of $\,C_p(X)\,$

2.1 **Lemma.** Let A be a strongly l-embedded (resp., l-embedded or l^* -embedded) subset of a space X. Then $A \times Y$ is strongly l-embedded (resp., l-embedded or l^* -embedded) in $X \times Y$ for every space Y.

Proof. Suppose A is strongly l-embedded in X. So, there exists a P_{∞} -valued retraction $r_1: X \to P_{\infty}(A)$. Define a mapping $r: X \times Y \to P_{\infty}(A \times Y)$ by setting

$$r(x, y) = \sum_{i=1}^{k} a_i \delta_{(x_i, y)}, \text{ where } r_1(x) = \sum_{i=1}^{k} a_i \delta_{x_i}.$$

It is easily shown that r is a P_{∞} -valued retraction. Thus, $A \times Y$ is strongly l-embedded in $X \times Y$. One can also prove that r is a (bounded) L_P -valued retraction provided r_1 is a (bounded) L_P -valued retraction. Hence, if A is l (resp., l^*)-embedded in X then $A \times Y$ is l (resp., l^*)-embedded in $X \times Y$.

2.2 **Lemma.** Let A be an l^* -embedded subset of a space X. Then $(\prod C_P(X))_b$ is linearly homeomorphic to $(\prod C_P(A))_b \times (\prod C_P(X;A))_b$.

Proof. Let $u: C_P(A) \to C_P(X)$ be a continuous linear extension operator such that $\|u(f)\| \le c$. $\|f\|$ for every $f \in C_P^*(A)$, where c > 0. Since $\|f\| = \infty$ provided $f \in C_P(A) - C_P^*(A)$, the inequality $\|u(f)\| \le c$. $\|f\|$ holds for every $f \in C_P(A)$. Then the mapping $r: X \to L_P(A)$, defined by r(x)(f) = u(f)(x), is an L_P -valued retraction. Consider the linear homeomorphism v from $C_P(A) \times C_P(X;A)$ onto $C_P(X)$, v(f,g) = u(f) + g. Suppose $(f_1,\ldots,f_n,\ldots) \in C_P(A)^\omega$ and $(g_1,\ldots,g_n,\ldots) \in C_P(X;A)^\omega$. Put

$$H(K) = \operatorname{cl}_A \left(\bigcup \{ \operatorname{supp}(r(x)) : x \in K \} \right) ,$$

where K is a subset of X. Obviously, $\|u(f_n)\|_K \leq c \cdot \|f_n\|_{H(K)}$ for every $n \in N$. By a result of Arhangel'skii [A2], H(K) is a bounded subset of A provided K is a bounded subset of X. Hence, $(f_1, \ldots, f_n, \ldots) \in (\prod C_P(A))_b$ if and only if $(u(f_1), \ldots, u(f_n), \ldots)$ belongs to $(\prod C_P(X))_b$. Consequently, $(v(f_1, g_1), \ldots, v(f_n, g_n), \ldots)$ belongs to $(\prod C_P(X))_b$ if $(g_1, \ldots, g_n, \ldots) \in (\prod C_P(X; A))_b$ and $(f_1, \ldots, f_n, \ldots) \in (\prod C_P(A))_b$. Suppose

$$(v(f_1, g_1), \ldots, v(f_n, g_n), \ldots) \in \left(\prod C_P(X)\right)_b.$$

Then $(f_1,\ldots,f_n,\ldots)\in (\prod C_P(A))_b$ because $v(f_n,g_n)|A=f_n$ for every n. Therefore $(u(f_1),\ldots,u(f_n),\ldots)\in (\prod C_P(X))_b$. So we have $(g_1,\ldots,g_n,\ldots)\in (\prod C_P(X;A))_b$. Thus, $(v(f_1,g_1),\ldots,v(f_n,g_n),\ldots)$ belongs to $(\prod C_P(X))_b$ iff $(g_1,\ldots,g_n,\ldots)\in (\prod C_P(X;A))_b$ and $(f_1,\ldots,f_n,\ldots)\in (\prod C_P(A))_b$. Hence, the formula $v_0((f_1,\ldots,f_n,\ldots),(g_1,\ldots,g_n,\ldots))=(v(f_1,g_1),\ldots,v(f_n,g_n)\ldots)$ defines a linear mapping from $(\prod C_P(A))_b\times (\prod C_P(X;A))_b$ onto $(\prod C_P(X))_b$ which is a homeomorphism.

2.3 **Lemma.** Let A be an l^* -embedded subset of a space X. If every closed and bounded subset of A is compact then $(\prod C_P(X \times Y))_c \sim (\prod C_P(A \times Y))_c \times (\prod C_P(X \times Y; A \times Y))_c$ for any space Y.

Proof. Let $u_1: C_P(A) \to C_P(X)$ be a continuous linear extension operator such that $\|u_1(f)\| \le c$. $\|f\|$ for every $f \in C_P^*(A)$, where c > 0, and $r_1: X \to L_P(A)$ be defined by $r_1(x)(f) = u_1(f)(x)$. Obviously, r_1 is an L_P -valued retraction. For a given space Y the equality $r(x,y) = \sum_{i=1}^k a_i \delta_{(x_i,y)}$, where $r_1(x) = \sum_{i=1}^k a_i \delta_{x_i}$, defines an L_P -valued retraction from $X \times Y$ into $L_P(A \times Y)$. Next, set u(f)(x,y) = r(x,y)(f) for every $(x,y) \in X \times Y$ and $f \in C_P(A \times Y)$. It is easily shown that $u: C_P(A \times Y) \to C_P(X \times Y)$ is a continuous linear extension operator.

Claim 1. $||u(f)|| \le c$. ||f|| for every $f \in C_p^*(A \times Y)$.

Fix a point $(x, y) \in X \times Y$ and an $f \in C_P^*(A \times Y)$. It follows from the definition of u that

$$u(f)(x, y) = \sum_{i=1}^{k} a_i f(x_i, y), \text{ where } r_1(x) = \sum_{i=1}^{k} a_i \delta_{x_i}.$$

So, $|u(f)(x, y)| \le \sum_{i=1}^k |a_i| \cdot ||f||$. Take a function $g \in C_P^*(A)$ with ||g|| = 1 and $g(x_i) = \operatorname{sgn}(a_i)$ for each $i = 1, \ldots, k$. Then $u_1(g)(x) = r_1(x)(g) = \sum_{i=1}^k |a_i|$. Since $||u_1(g)|| \le c \cdot ||g||$, we have $\sum_{i=1}^k |a_i| \le c$. Hence, $|u(f)(x, y)| \le c \cdot ||f||$. Claim 1 is proved.

Claim 2. For every compact subset K of $X \times Y$ the set

$$H(K) = \operatorname{cl}_{A \times Y} \left(\bigcup \{ \operatorname{supp}(r(x, y)) : (x, y) \in K \} \right),\,$$

is also compact.

Let $n_X: X \times Y \to X$ and $n_Y: X \times Y \to Y$ be the natural projections. Then $n_X(K)$ and $n_Y(K)$ are compact subsets of X and Y respectively. By a result of Arhangel'skii [A2],

$$H_1(K) = \operatorname{cl}_A \left(\bigcup \{ \operatorname{supp}(r_1(x)) \colon x \in n_X(K) \} \right)$$

is a bounded subset of A. Thus, $H_1(K)$ is compact. So $H_1(K) \times n_Y(K)$ is a compact subset of $A \times Y$. Since $r(x, y) = (\operatorname{supp}(r_1(x))) \times \{y\}$ for every point $(x, y) \in X \times Y$, we have $H(K) \subset H_1(K) \times n_Y(K)$. Hence, H(K) is compact as a closed subset of $H_1(K) \times n_Y(K)$. Claim 2 is proved.

Now, the proof of Lemma 2.3 follows form the above two claims and the arguments used in the proof of Lemma 2.2.

2.4 **Corollary.** Let X be a product of metric spaces and A be an l^* -embedded subset of X. Then $(\prod C_P(X))_c \sim (\prod C_P(A))_c \times (\prod C_P(X;A))_c$.

Proof. Since A is closed in X, every closed bounded subset of A is compact. Thus, the proof follows from Lemma 2.3, where Y is the one-point space.

2.5 **Lemma.** Suppose X is a space such that both $X \times I$ and $X \times T$ are k_R -spaces, where $T = \{0, 1/n : n \in N\}$. Then $C_P(X \times I)$ is linearly homeomorphic to $(\prod C_P(X \times I))_c$.

Proof. Since, by Lemma 2.1, $X \times T$ is strongly l-embedded in $X \times I$ we have

(1)
$$C_P(X \times I) \sim C_P(X \times T) \times C_P(X \times I; X \times T).$$

Let $I_n=[1/n+1\,,\,1/n]$ and $E_n=C_P(X\times I_n\,;\,X\times\{1/n+1\,,\,1/n\})$ for every $n\in N$. Consider the set

$$\left(\prod E_{n}\right)_{c} = \left\{ (f_{1}, \ldots, f_{n}, \ldots) \in \prod E_{n} : \lim_{n} \|f_{n}\|_{K \times I_{n}} = 0 \right\}$$

for every compact subset K of X

as a topological linear subset of $\prod \{E_n : n \in N\}$. Since $X \times I$ is a k_R -space

we have $C_P(X \times I; X \times T) \sim (\prod E_n)_c$. Identifying each E_n with the space $E = C_P(X \times I; X \times \{0, 1\})$ we get

$$C_P(X\times I\,;\, X\times T) \sim \left(\prod E\right)_c.$$
 Analogously, $C_P(X\times T) \sim C_P(X\times \{0\}) \times C_P(X\times T\,;\, X\times \{0\})$ and
$$C_P(X\times T\,;\, X\times \{0\}) \sim \left(\prod C_P(X)\right)_c.$$

Thus,

(3)
$$C_P(X \times T) \sim C_P(X \times \{0\}) \times \left(\prod C_P(X)\right)_c \sim \left(\prod C_P(X)\right)_c$$

By Lemma 2.3, the following holds

(4)
$$\left(\prod C_P(X \times I)\right)_c \sim \left(\prod C_P(X \times \{0, 1\})\right)_c \times \left(\prod E\right)_c.$$
 Obviously,

(5)
$$\left(\prod C_P(X \times \{0, 1\})\right)_c \sim \left(\prod C_P(X)\right)_c \times \left(\prod C_P(X)\right)_c \sim \left(\prod C_P(X)\right)_c$$
.
So we have

$$\begin{split} C_P(X\times I) &\sim C_P(X\times T)\times C_P(X\times I\,;\, X\times T) \quad \text{by (1)} \\ &\sim \left(\prod C_P(X)\right)_c\times \left(\prod E\right)_c \quad \text{by (2) and (3)} \\ &\sim \left(\prod C_P(X\times I)\right)_c \quad \text{by (4) and (5)}. \end{split}$$

2.6 **Corollary.** Let X be as in Lemma 2.5. Then $C_P(X \times I)$ is homeomorphic to $C_P(X \times I)^{\omega}$.

Proof. S. Gul'ko and T. Hmyleva [GH] proved that $(\prod C_P(X))_0$ is homeomorphic to $C_P(X)^\omega \times (\prod C_P(X))_0$ for every pseudocompact space X. Using the same arguments one can see that $(\prod C_P(X))_c$ is homeomorphic to $C_P(X)^\omega \times (\prod C_P(X))_c$ for each X. Now, the proof of Corollary 2.6 follows from Lemma 2.5.

- 2.7 **Lemma.** Suppose a space X contains an l-embedded copy F_1 of a space Y and Y contains an l^* -embedded copy F_2 of X. Then $C_P(X) \sim C_P(Y)$ provided one of the following conditions is fulfilled:
 - (i) $C_P(Y) \sim (\prod C_P(Y))_b$:

so

(ii) $\vec{C_P}(Y) \sim (\prod \vec{C_P}(Y))_c^{\circ} \sim (\prod C_P(F_2))_c \times (\prod C_P(Y; F_2))_c$.

Proof. We have $C_P(X) \sim C_P(F_1) \times E_1$ and $C_P(Y) \sim C_P(F_2) \times E_2$, where $E_1 = C_P(X; F_1)$ and $E_2 = C_P(Y; F_2)$. Thus, $C_P(X) \sim C_P(Y) \times E_1$. Suppose $C_P(Y) \sim (\prod C_P(Y))_b$. By Lemma 2.2,

$$\left(\prod C_P(Y)\right)_b \sim \left(\prod C_P(F_2)\right)_b \times \left(\prod E_2\right)_b,$$

$$\left(\prod C_P(Y)\right)_b \sim \left(\prod C_P(X)\right)_b \times \left(\prod E_2\right)_b.$$

Therefore,

$$C_P(Y) \sim \left(\prod C_P(Y)\right)_b \sim C_P(Y) \times \left(\prod C_P(Y)\right)_b$$

 $\sim C_P(Y) \times \left(\prod C_P(X)\right)_b \times \left(\prod E_2\right)_b$.

Hence, $C_P(X) \sim E_1 \times C_P(Y) \sim E_1 \times C_P(Y) \times (\prod C_P(X))_b \times (\prod E_2)_b \sim C_P(X) \times (\prod C_P(X))_b \times (\prod E_2)_b \sim (\prod C_P(X))_b \times (\prod E_2)_b \sim C_P(Y)$. If condition (ii) is fulfilled we use the same arguments.

- 2.8 **Theorem.** (i) Let X be a subspace of R^n . Then $C_P(X) \sim C_P(I^n)$ if and only if X is compact and dim X = n;
- (ii) $C_P(X) \sim C_P(Q)$ if and only if X is a compact metric space containing a copy of Q.

Proof. We prove only the first part of Theorem 2.8. The proof of (ii) is analogous to that of (i).

Suppose $C_P(X) \sim C_P(I^n)$. Then by [A2 and A3] X is a compact metric space. Next, it follows from a result of Pavlovskii [Pv] that there is a nonempty open subset of I^n which can be embedded in X. Thus, dim X = n.

Now, let X be a compact n-dimensional subset of R^n . Then X contains a copy of I^n . On the other hand X can be considered as a subset of I^n . Hence, by Corollary 2.4, $(\prod C_P(I^n))_c \sim (\prod C_P(X))_c \times (\prod C_P(I^n; X))_c$. Since $C_P(I^n) \sim (\prod C_P(I^n))_c$ (see Lemma 2.5), we derive from Lemma 2.7(ii) that $C_P(X) \sim C_P(I^n)$.

2.9 **Theorem.** Let μ^n be the n-dimensional universal Menger compactum. Then $C_p(X) \sim C_p(\mu^n)$ if and only if X is an n-dimensional compact metric space containing a copy of μ^n .

Proof. Let $C_P(X) \sim C_P(\mu^n)$. Then, by results of Arhangel'skii [A2, A3] and Pestov [Ps], X is an n-dimensional compact metric space. It follows from [Pv] that there exists an open subset of μ^n which can be embedded in X. But each open subset of μ^n contains a copy of μ^n [Bt]. Thus, X contains a copy of μ^n .

Suppose X is an n-dimensional compact metric space containing a copy of μ^n . Since X can be embedded in μ^n , by Lemma 2.7(ii) and Corollary 2.4 it is enough to show that $C_P(\mu^n) \sim (\prod C_P(\mu^n))_c$. For proving this fact we need the following result of Dranishnikov [Dr2]: There is a mapping f_n from μ^n onto Q such that $f_n^{-1}(P)$ is homeomorphic to μ^n for every $LC^{n-1}\&C^{n-1}$ -compact subspace P of Q. Now, consider Q as a product $Q_1 \times I$, where Q_1 is a copy of Q. Let $T = \{0, 1/k \; ; \; k \in N\}$ and $T^* = f_n^{-1}(Q_1 \times T)$. Then

(6)
$$C_P(\mu^n) \sim C_P(T^*) \times C_P(\mu^n; T^*)$$

and

$$C_P(T^*) \sim C_P(f_n^{-1}(Q_1 \times \{0\})) \times C_P(T^*; f_n^{-1}(Q_1 \times \{0\})).$$

Since each of the sets $f_n^{-1}(Q_1 \times \{1/k\})$, $k \in N$, and $f_n^{-1}(Q_1 \times \{0\})$ is homeomorphic to μ^n , we have

$$C_P(T^*; f_n^{-1}(Q_1 \times \{0\})) \sim \left(\prod C_P(\mu^n)\right)_{C_P}$$

and

$$C_P(f_n^{-1}(Q_1 \times \{0\})) \sim C_P(\mu^n).$$

Thus,

(7)
$$C_{p}(T^{*}) \sim C_{p}(\mu^{n}) \times \left(\prod C_{p}(\mu^{n})\right)_{c} \sim \left(\prod C_{p}(\mu^{n})\right)_{c} \\ \sim \left(\prod C_{p}(\mu^{n})\right)_{c} \times \left(\prod C_{p}(\mu^{n})\right)_{c} \sim \left(\prod C_{p}(\mu^{n})\right)_{c} \times C_{p}(T^{*}).$$

Finally,

$$C_{P}(\mu^{n}) \sim C_{P}(T^{*}) \times C_{P}(\mu^{n}; T^{*}) \quad \text{by (6)}$$

$$\sim \left(\prod C_{P}(\mu^{n})\right)_{c} \times C_{P}(T^{*}) \times C_{P}(\mu^{n}; T^{*}) \quad \text{by (7)}$$

$$\sim \left(\prod C_{P}(\mu^{n})\right)_{c} \times C_{P}(\mu^{n}) \sim \left(\prod C_{P}(\mu^{n})\right)_{c}.$$

2.10 **Theorem.** Let X be a metric space and τ be an infinite cardinal. Suppose Y is an l^* -embedded subspace of the product X^{τ} and Y contains an l^* -embedded copy of X^{τ} . Then $C_P(Y) \sim C_P(X^{\tau})$.

Proof. By Corollary 2.4 and Lemma 2.7(ii), it is enough to show that $C_P(X^{\tau}) \sim (\prod C_P(X^{\tau}))_c$. Since τ is infinite we have $X^{\tau} = (X^{\omega})^{\tau}$. So we can suppose that X is not discrete. Thus, there exists a nontrivial converging sequence $\{x_n\}_{n \in N}$ in X with $\lim x_n = x_0$. Let $T = \{x_0, x_n; n \in N\}$. By Lemma 2.1, $X^{\tau} \times T$ is l-embedded in $X^{\tau} \times X$. Therefore,

$$C_{P}(\boldsymbol{X}^{\tau}) \sim C_{P}(\boldsymbol{X}^{\tau} \times T) \times C_{P}(\boldsymbol{X}^{\tau} \times \boldsymbol{X}\,;\,\boldsymbol{X}^{\tau} \times T).$$

But $C_P(X^{\tau} \times T) \sim C_P(X^{\tau} \times \{x_0\}) \times C_P(X^{\tau} \times T; X^{\tau} \times \{x_0\})$ because $X^{\tau} \times \{x_0\}$ is also l-embedded in $X^{\tau} \times T$. Since $X^{\tau} \times T$ is a k_R -space [N] we have $C_P(X^{\tau} \times T; X^{\tau} \times \{x_0\}) \sim (\prod_{i} C_P(X^{\tau}))_c$. Hence,

$$\begin{split} C_P(\boldsymbol{X}^{\tau} \times \boldsymbol{T}) &\sim C_P(\boldsymbol{X}^{\tau} \times \{\boldsymbol{x}_0\}) \times \left(\prod C_P(\boldsymbol{X}^{\tau})\right)_c \sim \left(\prod C_P(\boldsymbol{X}^{\tau})\right)_c \\ &\sim \left(\prod C_P(\boldsymbol{X}^{\tau})\right)_c \times \left(\prod C_P(\boldsymbol{X}^{\tau})\right)_c \sim C_P(\boldsymbol{X}^{\tau} \times \boldsymbol{T}) \times \left(\prod C_P(\boldsymbol{X}^{\tau})\right)_c. \end{split}$$

Then

$$\begin{split} C_P(\boldsymbol{X}^{\tau}) &\sim C_P(\boldsymbol{X}^{\tau} \times T) \times C_P(\boldsymbol{X}^{\tau} \times \boldsymbol{X} \, ; \, \boldsymbol{X}^{\tau} \times T) \\ &\sim \left(\prod C_P(\boldsymbol{X}^{\tau}) \right)_c \times C_P(\boldsymbol{X}^{\tau} \times T) \times C_P(\boldsymbol{X}^{\tau} \times \boldsymbol{X} \, ; \, \boldsymbol{X}^{\tau} \times T) \\ &\sim \left(\prod C_P(\boldsymbol{X}^{\tau}) \right)_c \times C_P(\boldsymbol{X}^{\tau}) \sim \left(\prod C_P(\boldsymbol{X}^{\tau}) \right)_c. \end{split}$$

2.11 **Corollary.** Let X be a separable metric space and $\tau > \omega$. Then $C_P(X^{\tau}) \sim C_P(Y)$ for every closed G_{δ} -subset Y of X^{τ} .

Proof. Suppose Y is a closed G_δ -subset of X^τ . It is well known (see for example [PP]) that modulo a permutation of the coordinates, $Y = Z \times X^{\tau-\omega}$, where Z is a closed subset of X^ω . Thus, by Lemma 2.1, Y is l^* -embedded in X^τ . On the other hand $\{z\} \times X^{\tau-\omega}$ is an l^* -embedded copy of X^τ in Y for each $z \in Z$. Now, Theorem 2.10 completes the proof.

2.12 **Corollary.** Let U be a functionally open subset of R^{τ} , $\tau \geq \omega$. Then $C_p(U) \sim C_p(R^{\tau})$.

Proof. Modulo a permutation of the coordinates, $U = V \times R^{\tau - \omega}$, where V is open in R^{ω} . Obviously, U contains an l^* -embedded copy of R^{τ} . Since there is an embedding of V in R^{ω} as a closed subset, by Lemma 2.1, U can be l^* -embedded in R^{τ} . Thus, by Theorem 2.10, $C_p(U) \sim C_p(R^{\tau})$.

Let f be a mapping from a space X onto a space Y. Recall that a continuous linear operator $u: C_P(X) \to C_P(Y)$ is said to be an averaging operator for f if $u(h \circ f) = h$ for every $h \in C_P(Y)$. If f admits a regular averaging operator $u: C_P(X) \to C_P(Y)$ we can define a mapping $r: Y \to P_\infty(X)$ by the formula r(y)(g) = u(g)(y). The mapping r has the following property [Dr1]: $\operatorname{supp}(r(y))$ is contained in $f^{-1}(y)$ for each $y \in Y$. Conversely, if there is a mapping $r: Y \to P_\infty(X)$ such that $\operatorname{supp}(r(y)) \subset f^{-1}(y)$ for every $y \in Y$, then the formula u(g)(y) = r(y)(g) defines a regular averaging operator u for f. It is easily seen that if u is a regular averaging operator for f the mapping $v(g) = (u(g), g - u(g) \circ f)$ is a linear homeomorphism from $C_P(X)$ onto $C_P(Y) \times E$, where $E = \{g - u(g) \circ f: g \in C_P(X)\}$. Dranishnikov proved [Dr1, Theorem 9] that $C_P(R^n) \sim C_P(U)$ for every open subset U of R^n . The same arguments are used in the proof of Proposition 2.13 below.

2.13 **Proposition.** Let $\{U_i : i \in N\}$ be an infinite locally finite functionally open cover of a space X. Suppose there is a space Y with $C_P(\operatorname{cl}_X(U_i)) \sim C_P(Y)$ for each $i \in N$. Then $C_P(X) \sim C_P(Y)^\omega$ provided X contains an I-embedded copy of a topological sum $\sum_{i=1}^\infty F_i$ such that $C_P(F_i) \sim C_P(Y)$ for every $i \in N$.

Proof. For every $i \in N$ take an $f_i \in C_P(X)$ such that $f_i^{-1}(0) = X - U_i$ and $f_i \geq 0$. Without loss of generality we can suppose that $\sum_{i=1}^{\infty} f_i = 1$. Let $f \in C_P(\sum \operatorname{cl}_X(U_i))$ such that $f|\operatorname{cl}_X(U_i) = f_i|\operatorname{cl}_X(U_i)$. Consider the natural mapping $p: \sum \operatorname{cl}_X(U_i) \to X$ with all preimages finite. Let $r: X \to P_\infty(\sum \operatorname{cl}_X(U_i))$ be defined by $r(x) = \sum \{f(y) \cdot \delta_y \colon y \in p^{-1}(x)\}$. It is easily seen that r is continuous and $\operatorname{supp}(r(x)) \subset p^{-1}(x)$ for every $x \in X$. Thus, there is a regular averaging operator $u: C_P(\sum \operatorname{cl}_X(U_i)) \to C_P(X)$ for p. Hence, $C_P(\sum \operatorname{cl}_X(U_i))$ is linearly homeomorphic to $C_P(X) \times E$, where E is a linear subspace of $C_P(\sum \operatorname{cl}_X(U_i))$. Since $\sum F_i$ is l-embedded in X we have $C_P(X) \sim C_P(\sum F_i) \times C_P(X; \sum F_i)$. Observe that

$$C_P\left(\sum \operatorname{cl}_X(U_i)\right) \sim \prod_{i=1}^{\infty} C_P(\operatorname{cl}_X(U_i)) \sim C_P(Y)^{\omega} \sim C_P\left(\sum F_i\right).$$

Now, using the technique of Pelczynski [P] and Bessaga [B] we have

$$\begin{split} C_{P}(X) &\sim C_{P}\left(\sum F_{i}\right) \times C_{P}\left(X;\sum F_{i}\right) \sim C_{P}(Y)^{\omega} \times C_{P}\left(X;\sum F_{i}\right) \\ &\sim \left(C_{P}(Y)^{\omega} \times \dots \times C_{P}(Y)^{\omega} \times \dots\right) \times C_{P}(Y)^{\omega} \times C_{P}\left(X;\sum F_{i}\right) \\ &\sim \left(C_{P}(Y)^{\omega} \times \dots \times C_{P}(Y)^{\omega} \times \dots\right) \times C_{P}(X) \\ &\sim \left(C_{P}(X) \times E \times \dots \times C_{P}(X) \times E \times \dots\right) \times C_{P}(X) \\ &\sim C_{P}(X)^{\omega} \times E^{\omega} \sim \left(C_{P}(X) \times E\right)^{\omega} \sim C_{P}\left(\sum \operatorname{cl}_{X}(U_{i})\right)^{\omega} \sim C_{P}(Y)^{\omega}. \end{split}$$

2.14 **Theorem.** Let Y be a noncompact separable metric space and X be one of the spaces Q, I^n , μ^n , l_2 . Then $C_P(Y) \sim C_P(X)^\omega$ provided Y is an X-manifold.

Proof. Let $\{U_i: i \in N\}$ be an infinite locally finite open cover of Y such that each $\operatorname{cl}_Y(U_i)$ is regularly closed subset of X. It is clear that a topological sum $\sum F_i$ of infinitely many regularly closed subsets F_i of X is contained in Y as a closed subset. Since each of the sets $\operatorname{cl}_Y(U_i)$ and F_i , $i \in N$, contains a closed copy of X, it follows from Theorem 2.8, Theorem 2.9 and Theorem 2.10 that $C_P(\operatorname{cl}_Y(U_i)) \sim C_P(F_i) \sim C_P(X)$ for every $i \in N$. Hence, by Proposition 2.13, $C_P(Y) \sim C_P(X)^\omega$.

2.15 **Theorem.** Let U be a functionally open subset of I^{τ} and τ be an uncountable cardinal. Then $C_P(U) \sim C_P(I^{\tau})^{\omega}$.

Proof. There exists a projection p from I^{τ} onto a countable face of I^{τ} such that $p^{-1}(p(U)) = U$ (see [PP]). Take a locally finite open cover $\{U_i : i \in N\}$ of p(U) such that $\operatorname{cl}_{I^{\tau}}(p^{-1}(U_i)) \subset U$ for every $i \in N$. Since each $\operatorname{cl}_{I^{\tau}}(p^{-1}(U_i))$ is a closed G_{δ} -subset of I^{τ} , by Corollary 2.11, $C_P(\operatorname{cl}_{I^{\tau}}(p^{-1}(U_i))) \sim C_P(I^{\tau})$.

Now, let $\{x_i: i \in N\}$ be a closed discrete infinite subset of p(U). So, the topological sum $\sum p^{-1}(x_i)$ is l-embedded in U (by Lemma 2.1) and obviously, each $p^{-1}(x_i)$ is homeomorphic to I^{τ} . Thus, by Proposition 2.13, $C_P(U) \sim C_P(I^{\tau})^{\omega}$.

2.16 **Theorem.** Let X be one of the spaces Q, I^n , μ^n , and Y be a locally compact subset of an X-manifold. Then $C_p(Y) \sim C_p(X)^\omega$ if and only if Y contains a closed copy of the topological sum $\sum X$ of infinitely many copies of X.

Proof. The proof of the part "if" is based on a Dranishnikov's idea from [Dr1, Theorem 9'], where it is shown that $C_P(P) \sim C_P(R^n)$ for every locally compact subset P of R^n with $\operatorname{cl}_{P^n}(\operatorname{Int}(P)) \cap (R^n - P) \neq \emptyset$.

Suppose Y is a locally compact subspace of an X-manifold Z and contains a closed copy of the topological sum $\sum X$. Then $C_P(Y) \sim C_P(\sum X) \times C_P(Y; \sum X)$. Next, take a locally finite open cover $\{V_i : i \in N\}$ of Y such that each $\operatorname{cl}_Y(V_i)$ is compact. For every $i \in N$ there exists an open subset U_i

of Z such that $V_i = U_i \cap Y = U_i \cap \operatorname{cl}_Y(V_i)$. Since every set V_i is closed in U_i , $\sum V_i$ is closed in $\sum U_i$. Thus, $C_P(\sum U_i) \sim C_P(\sum V_i) \times C_P(\sum U_i; \sum V_i)$. Let $\{f_i \colon i \in N\}$ be a partition of unity subordinated to the cover $\{V_i \colon i \in N\}$. Define a continuous mapping $r \colon Y \to P_\infty(\sum V_i)$ as in the proof of Proposition 2.13 and by the same arguments we get that $C_P(\sum V_i)$ is linearly homeomorphic to $C_P(Y) \times E$, where E is a linear subspace of $C_P(\sum V_i)$. It follows from Theorem 2.14 that $C_P(U_i) \sim C_P(X)^\omega$ for every $i \in N$. Hence

$$\begin{split} C_{P}(X)^{\omega} \sim C_{P}\left(\sum U_{i}\right) \sim C_{P}\left(\sum V_{i}\right) \times C_{P}\left(\sum U_{i}; \sum V_{i}\right) \\ \sim C_{P}(Y) \times E \times C_{P}\left(\sum U_{i}; \sum V_{i}\right). \end{split}$$

Now, using the scheme of Pelczynski and Bessaga we get $C_p(Y) \sim C_p(X)^{\omega}$.

Suppose there is a linear homeomorphism θ from $C_P(\sum X) = C_P(X)^{\omega}$ onto $C_P(Y)$. Let K be the set $\{y \in Y; \text{ every neighborhood of } y \text{ in } Y \text{ contains a copy of } X\}$. We use the following property of X (for Q and I^n this is obvious, and for μ^n see [Bt]):

(*) Every open subset of X contains a copy of X.

Now we show that K is nonempty. Indeed, by [Pv], Y contains an open subset of $\sum X$. So, by (*), Y contains a copy F of X and $F \subset K$. Obviously K is closed in Y and it follows also from (*) that Y - K does not contain a copy of X. Next, assume K is compact. Consider the set

$$L = \operatorname{cl}\left(\bigcup\{\operatorname{supp}(\boldsymbol{\theta}^*(\boldsymbol{\delta}_{\boldsymbol{y}})): \boldsymbol{y} \in K\}\right),\,$$

where $\theta^*\colon L_p(Y)\to L_p(\sum X)$ is the dual homeomorphism of θ . By a result of Arhangel'skii [A2], L is a compact subset of $\sum X$. Therefore, there is a $k\in N$ such that $L\subset \sum_{i=1}^k X_i$. Let $P=\sum_{i=1}^k X_i$, $f\in C_P(\sum X;P)$ and $y\in K$. We have $\theta^*(\delta_y)(f)=\delta_y(\theta(f))=\theta(f)(y)$. But $\theta^*(\delta_y)(f)=0$ because $\sup(\theta^*(\delta_y))\subset P$. Thus, $\theta(f)$ belongs to $C_P(Y;K)$ for every $f\in C_P(\sum X;P)$. Let p be the linear projection from $C_P(\sum X)=C_P(P)\times C_P(\sum X;P)$ onto $C_P(\sum X;P)$. Then $\theta\circ p\circ \theta^{-1}\colon C_p(Y;K)\to \theta(C_P(\sum X;P))$ is a continuous linear retraction. This means that there is a closed linear subspace E of $C_P(Y;K)$ such that $C_P(Y;K)$ is linearly homeomorphic to $C_P(\sum X;P)\times E$. Clearly, $C_P(Y;K)\sim C_P(Y/K;K)$, where (K) is the identification point of K in the quotient space Y/K. Analogously, $C_P(\sum X;P)\sim C_P((\sum X)/P;(P))$. Since $C_P(Y/K)\sim R\times C_P(Y/K;K)$ and

$$C_{P}\left(\left(\sum X\right)/P\,;\,(P)\right)\times R\sim C_{P}\left(\left(\sum X\right)/P\right)\,,$$

we get that $C_P(Y/K) \sim C_P((\sum X)/P) \times E$. Now, we need the following result of Dranishnikov [Dr1, Theorem 6]: Let X_1 and X_2 be compact metric spaces and $C_P(X_1)$ be linearly homeomorphic to a product $C_P(X_2) \times E_1$. Then $\dim X_2 \leq \dim X_1$. Actually, it is proved that X_2 is a union of countably many compact subsets which are embeddable in X_1 . It follows from Dranishnikov's arguments that the last statement remains valid if X_1 and X_2 are separable locally compact

metric spaces. Hence, there is a countable family $\{F_i: i \in N\}$ of compact subsets of $(\sum X)/P$ such that $(\sum X)/P = \bigcup \{F_i : i \in N\}$ and each F_i can be embedded in Y/K. Since $(\sum X)/P$ has the Baire property, there exists an $i_0 \in N$ with $\operatorname{Int}(F_{i_0}) \neq \emptyset$. Then the set $\operatorname{Int}(F_{i_0}) - \{(P)\}$ is both open in $\sum X$ and embeddable in Y/K. Thus, by (*), Y/K contains a copy of X. So Y-Kcontains also a copy of X. But we have already seen that this is not possible. Therefore K is not compact.

Take a countable infinite discrete family $\{W_i: i \in N\}$ in K consisting of open subsets of K. Let W_i^* be an open subspace of Y with $W_i^* \cap K = W_i$ for each $i \in N$. For every $i \in N$ there is a copy X_i of X such that $X_i \subset W_i^*$. It follows from (*) that $X_i \subset K$ because Y - K does not contain a copy of X. Hence, $X_i \subset W_i$ for every $i \in N$. So $\{X_i : i \in N\}$ is a discrete family in K. Thus, $\sum X_i$ is a closed subset of Y.

2.17 **Corollary.** Let X be a locally compact (n-dimensional) separable metric space. Then $C_p(X) \sim C_p(Q)^{\omega}$ (resp., $C_p(X) \sim C_p(\mu^n)^{\omega}$) if and only if X contains a closed copy of the topological sum $\sum Q$ (resp., $\sum \mu^n$).

Proof. Since X can be embedded in Q (resp., in μ^n), the proof follows from Theorem 2.16.

3. Linear topological classifications of $C_p^*(X)$

The proofs of the Lemmas 3.1-3.4 below are similar to the proofs of the corresponding lemmas from §2.

- 3.1 **Lemma.** Let A be an l^* -embedded subset of a space X. Then $(\prod C_p^*(X))_h^*$ $\sim \left(\prod C_P^*(A)\right)_b^* \times \left(\prod C_P^*(X;A)\right)_b^*.$
- 3.2 **Lemma.** Let A be an l^* -embedded subset of a space X. If every closed bounded subset of A is compact then $(\prod C_p^*(X \times Y))_c^* \sim (\prod C_p^*(A \times Y))_c^* \times$ $(\prod C_P^*(X \times Y; A \times Y))_c^*$ for any space Y.
- 3.3 Corollary. Let A be an l^* -embedded subset of a product X of metric spaces. Then

$$\left(\prod C_P^*(X)\right)_c^* \sim \left(\prod C_P^*(A)\right)_c^* \times \left(\prod C_P^*(X;A)\right)_c^*.$$

- 3.4 **Lemma.** Suppose X is a space such that both $X \times T$ and $X \times I$ are k_R -spaces, where $T = \{0, 1/n : n \in N\}$. Then we have $C_P^*(X \times I) \sim (\prod C_P^*(X \times I))_c^*$.
- 3.5 Corollary. Let $X = \sum I^{\tau}$ be a topological sum of infinitely many copies of I^{τ} , $\tau \geq 1$. Then $C_p^*(X) \sim (\prod C_p^*(X))_c^*$.
- 3.6 **Lemma.** Suppose a space X contains an l^* -embedded copy F_1 of a space Y and Y contains an l^* -embedded copy F_2 of X. Then:

 - $\begin{array}{ll} \text{(i)} & C_{P}^{*}(X) \sim (\prod C_{P}^{*}(X))_{b}^{*} \sim C_{P}^{*}(Y) \ \ \textit{if} \ \ C_{P}^{*}(Y) \sim (\prod C_{P}^{*}(Y))_{b}^{*} \, ; \\ \text{(ii)} & C_{P}^{*}(X) \sim (\prod C_{P}^{*}(X))_{c}^{*} \sim C_{P}^{*}(Y) \ \ \textit{if} \ \ C_{P}^{*}(Y) \sim (\prod C_{P}^{*}(Y))_{c}^{*} \sim (\prod C_{P}^{*}(F_{2}))_{c}^{*} \end{array}$ $\times (\prod C_P^*(Y; F_2))_c^*$.

Proof. Let $C_p^*(Y) \sim (\prod C_p^*(Y))_b^*$. Using the same arguments as in the proof of Lemma 2.7(i), one can show that $C_p^*(X) \sim C_p^*(Y)$. Next, by Lemma 3.1, we have

$$\left(\prod C_P^*(X)\right)_h^* \sim \left(\prod C_P^*(F_1)\right)_h^* \times \left(\prod C_P^*(X;F_1)\right)_h^*$$

and

$$\left(\prod C_P^*(Y)\right)_h^* \sim \left(\prod C_P^*(F_2)\right)_h^* \times \left(\prod C_P^*(Y\,;\,F_2)\right)_h^*.$$

Thus,

$$\left(\prod C_{p}^{*}(X)\right)_{b}^{*} \sim \left(\prod C_{p}^{*}(F_{1})\right)_{b}^{*} \times \left(\prod C_{p}^{*}(X; F_{1})\right)_{b}^{*} \\
\sim \left(\prod C_{p}^{*}(F_{1})\right)_{b}^{*} \times \left(\prod C_{p}^{*}(F_{1})\right)_{b}^{*} \times \left(\prod C_{p}^{*}(X; F_{1})\right)_{b}^{*} \\
\sim \left(\prod C_{p}^{*}(F_{1})\right)_{b}^{*} \times \left(\prod C_{p}^{*}(X)\right)_{b}^{*} \\
\sim \left(\prod C_{p}^{*}(Y)\right)_{b}^{*} \times \left(\prod C_{p}^{*}(X)\right)_{b}^{*} \\
\sim \left(\prod C_{p}^{*}(F_{2})\right)_{b}^{*} \times \left(\prod C_{p}^{*}(Y; F_{2})\right)_{b}^{*} \times \left(\prod C_{p}^{*}(X)\right)_{b}^{*} \\
\sim \left(\prod C_{p}^{*}(F_{2})\right)_{b}^{*} \times \left(\prod C_{p}^{*}(Y; F_{2})\right)_{b}^{*} \times \left(\prod C_{p}^{*}(F_{2})\right)_{b}^{*} \\
\sim \left(\prod C_{p}^{*}(F_{2})\right)_{b}^{*} \times \left(\prod C_{p}^{*}(Y; F_{2})\right)_{b}^{*} \\
\sim \left(\prod C_{p}^{*}(Y)\right)_{b}^{*} \sim C_{p}^{*}(Y) \sim C_{p}^{*}(X).$$

Using the same arguments we can prove that $(\prod C_P^*(X))_c^* \sim C_P^*(X) \sim C_P^*(Y)$ if $C_P^*(Y) \sim (\prod C_P^*(F_2))_c^* \times (\prod C_P^*(Y; F_2))_c^* \sim (\prod C_P^*(Y))_c^*$.

3.7 **Corollary.** Let $\{X_i: i \in N\}$ be an infinite family of spaces such that each X_i is strongly l-embedded in a space Y and contains a strongly l-embedded copy Y_i of Y. Then $C_P^*(\sum Y_i) \sim (\prod C_P^*(\sum X_i))_b^* \sim C_P^*(\sum X_i)$ if $C_P^*(\sum Y_i) \sim (\prod C_P^*(\sum Y_i))_b^*$.

Proof. Let for each i $u_i : C_P(X_i) \to C_P(Y)$ be a regular extension operator. Then the mapping $u : C_P(\sum X_i) \to C_P(\sum Y_i)$, defined by $u(f) = \sum u_i(f|X_i)$ is also a regular extension operator. Thus, $\sum X_i$ is l^* -embedded in $\sum Y_i$. Analogously, $\sum Y_i$ is l^* -embedded in $\sum X_i$. Now the proof follows from Lemma 3.6(i).

3.8 **Theorem.** Let X be a metric space and τ be an infinite cardinal. Suppose Y is an l^* -embedded subspace of the product X^{τ} and Y contains an l^* -embedded copy of X^{τ} . Then $C_P^*(Y) \sim C_P^*(X^{\tau}) \sim (\prod C_P^*(X^{\tau}))_c^*$.

Proof. By Corollary 3.3 and Lemma 3.6(ii), it is enough to show that $C_P^*(X^{\tau}) \sim (\prod C_P^*(X^{\tau}))_c^*$. The last can be proved using the same arguments as in the proof of Theorem 2.10.

3.9 **Corollary.** Let X be a separable metric space and $\tau > \omega$. Then $C_p^*(X^{\tau}) \sim C_p^*(Y)$ for every closed G_{δ} -subset Y of X^{τ} .

3.10 **Corollary.** Let U be a functionally open subset of R^{τ} , $\tau \geq \omega$. Then $C_p^*(R^{\tau}) \sim C_p^*(U)$.

The proofs of Corollaries 3.9 and 3.10 are similar respectively to the proofs of Corollaries 2.11 and 2.12.

3.11 **Proposition.** Let $\sum \mu_i^n$ be a topological sum of infinitely many copies of the n-dimensional Menger compactum. Then $C_P^*(\sum \mu_i^n) \sim (\prod C_P^*(\sum \mu_i^n))_c^*$.

Proof. For each $i \in N$ take a mapping f_n^i from μ_i^n onto a copy Q_i of the Hilbert cube Q such that $(f_n^i)^{-1}(P)$ is homeomorphic to μ^n for every $LC^{n-1}\&C^{n-1}$ -compact subspace P of Q_i (see [Dr2]). Define $f_n: \sum \mu_i^n \to \sum Q_i$ by $f_n|\mu_i^n=f_n^i$. Consider Q_i as a product $Q_i^1\times I$, where Q_i^1 is a copy of Q. Let $T_i=Q_i^1\times\{0,1/k:k\in N\}$ and $T=f_n^{-1}(\sum T_i)$. Then we have

$$C_P^*\left(\sum \mu_i^n\right) \sim C_P^*(T) \times C_P^*\left(\sum \mu_i^n; T\right)$$

and

$$\boldsymbol{C_p^*}(T) \sim \boldsymbol{C_p^*}\left(f_n^{-1}\left(\sum(\boldsymbol{Q_i^1} \times \{0\})\right)\right) \times \boldsymbol{C_p^*}\left(T\,;\, f_n^{-1}\left(\sum(\boldsymbol{Q_i^1} \times \{0\})\right)\right).$$

Since each of the sets $f_n^{-1}(\sum (Q_i^1 \times \{0\}))$ and $f_n^{-1}(\sum (Q_i^1 \times \{1/k\}))$ for $k \in N$ is homeomorphic to $\sum \mu_i^n$, the following holds

$$C_P^*\left(f_n^{-1}\left(\sum (Q_i^1 \times \{0\})\right)\right) \sim C_P^*\left(\sum \mu_i^n\right)$$

and

$$C_P^*\left(T;\,f_n^{-1}\left(\sum(Q_i^1\times\{0\})\right)\right)\sim \left(\prod C_P^*\left(\sum\mu_i^n\right)\right)_c^*.$$

Thus,

$$\begin{split} \boldsymbol{C}_{P}^{*}(T) &\sim \boldsymbol{C}_{P}^{*}\left(\sum \boldsymbol{\mu}_{i}^{n}\right) \times \left(\prod \boldsymbol{C}_{P}^{*}\left(\sum \boldsymbol{\mu}_{i}^{n}\right)\right)_{c}^{*} \sim \left(\prod \boldsymbol{C}_{P}^{*}\left(\sum \boldsymbol{\mu}_{i}^{n}\right)\right)_{c}^{*} \\ &\sim \left(\prod \boldsymbol{C}_{P}^{*}\left(\sum \boldsymbol{\mu}_{i}^{n}\right)\right)_{c}^{*} \times \left(\prod \boldsymbol{C}_{P}^{*}\left(\sum \boldsymbol{\mu}_{i}^{n}\right)\right)_{c}^{*} \\ &\sim \left(\prod \boldsymbol{C}_{P}^{*}\left(\sum \boldsymbol{\mu}_{i}^{n}\right)\right)_{c}^{*} \times \boldsymbol{C}_{P}^{*}(T). \end{split}$$

Finally we get

$$\begin{split} C_P^*\left(\sum \mu_i^n\right) &\sim C_P^*(T) \times C_P^*\left(\sum \mu_i^n\,;\,T\right) \\ &\sim \left(\prod C_P^*\left(\sum \mu_i^n\right)\right)_c^* \times C_P^*(T) \times C_P^*\left(\sum \mu_i^n\,;\,T\right) \\ &\sim \left(\prod C_P^*\left(\sum \mu_i^n\right)\right)_c^* \times C_P^*\left(\sum \mu_i^n\right) \sim \left(\prod C_P^*\left(\sum \mu_i^n\right)\right)_c^*. \end{split}$$

3.12 **Lemma.** Suppose p is a mapping from a space X onto a space Y such that for every compact subset K of Y the preimage $p^{-1}(K)$ is also compact.

Let p admit a regular averaging operator $u: C_p(X) \to C_p(Y)$. Then $C_p^*(X) \sim C_p^*(Y) \times E_1$ and $(\prod C_p^*(X))_c^* \sim (\prod C_p^*(Y))_c^* \times (\prod E_1)_c^*$, where $E_1 = \{g - u(g) \circ p: g \in C_p^*(X)\}$.

Proof. Consider the mapping $r: Y \to P_\infty(X)$ defined by r(y)(g) = u(g)(y) for all $g \in C_p(X)$. We have $\operatorname{supp}(r(y)) \subset p^{-1}(y)$ for each $y \in Y$. The last implies that $\|u(g)\|_K \leq \|g\|_{p^{-1}(K)}$ for every $g \in C_p^*(X)$ and $K \subset Y$. Hence, $u(C_p^*(X)) = C_p^*(Y)$ and the mapping $v(g) = (u(g), g - u(g) \circ p)$ is a linear homeomorphism from $C_p^*(X)$ onto $C_p^*(Y) \times E_1$. Next, let $(g_1, \ldots, g_n, \ldots) \in (\prod C_p^*(X))_c^*$ and K be a compact subset of Y. Since, $\|u(g_n)\|_K \leq \|g_n\|_{p^{-1}(K)}$ and $p^{-1}(K)$ is compact, we have $(u(g_1), \ldots, u(g_n), \ldots) \in (\prod C_p^*(Y))_c^*$ and $(g_1 - u(g_1) \circ p, \ldots, g_n - u(g_n) \circ p, \ldots) \in (\prod C_p^*(Y))_c^*$ obviously, $(g_1, \ldots, g_n, \ldots) \in (\prod C_p^*(X))_c^*$ if $(u(g_1), \ldots, u(g_n), \ldots) \in (\prod C_p^*(Y))_c^*$ and $(g_1 - u(g_1) \circ p, \ldots, g_n - u(g_n) \circ p, \ldots) \in (\prod E_1)_c^*$. Thus, the mapping

$$v_0(g_1, \ldots, g_n, \ldots) = ((u(g_1), \ldots, u(g_n), \ldots), (g_1 - u(g_1) \circ p, \ldots, g_n - u(g_n) \circ p, \ldots))$$

is a linear homeomorphism from $(\prod C_P^*(X))_c^*$ onto $(\prod C_P^*(Y))_c^* \times (\prod E_1)_c^*$.

3.13 **Proposition.** Let $\{U_i : i \in N\}$ be an infinite locally finite functionally open cover of a space X. Suppose there is a space Y such that $C_p^*(Y) \sim C_p^*(\sum \operatorname{cl}_X(U_i)) \sim (\prod C_p^*(\sum \operatorname{cl}_X(U_i)))_c^*$. Then $C_p^*(X) \sim C_p^*(Y)$ if X contains an l^* -embedded copy of Y.

Proof. There exists a natural mapping p from $\sum \operatorname{cl}_X(U_i)$ onto X such that $p^{-1}(K)$ is compact for every compact subset K of X. As in the proof of Proposition 2.13 we conclude that p admits a regular averaging operator

$$u: C_P\left(\sum \operatorname{cl}_X(U_i)\right) \to C_P(X).$$

By Lemma 3.12, $(\prod C_p^*(\sum \operatorname{cl}_X(U_i)))_c^* \sim (\prod C_p^*(X))_c^* \times (\prod E_1)_c^*$, where $E_1 = \{g - u(g) \circ p \colon g \in C_p^*(\sum \operatorname{cl}_X(U_i))\}$. Since Y is l^* -embedded in X, $C_p^*(X) \sim C_p^*(Y) \times C_p^*(X;Y)$. Then we have

$$\begin{split} C_P^*(X) &\sim C_P^*(Y) \times C_P^*(X\,;\,Y) \sim \left(\prod C_P^*\left(\sum \operatorname{cl}_X(U_i)\right)\right)_c^* \times C_P^*(X\,;\,Y) \\ &\sim \left(\prod C_P^*\left(\sum \operatorname{cl}_X(U_i)\right)\right)_c^* \times C_P^*\left(\sum \operatorname{cl}_X(U_i)\right) \times C_P^*(X\,;\,Y) \\ &\sim \left(\prod C_P^*\left(\sum \operatorname{cl}_X(U_i)\right)\right)_c^* \times C_P^*(Y) \times C_P^*(X\,;\,Y) \\ &\sim \left(\prod C_P^*\left(\sum \operatorname{cl}_X(U_i)\right)\right)_c^* \times C_P^*(X) \\ &\sim \left(\prod C_P^*(X)\right)_c^* \times \left(\prod E_1\right)_c^* \times C_P^*(X) \sim \left(\prod C_P^*(X)\right)_c^* \times \left(\prod E_1\right)_c^* \\ &\sim \left(\prod C_P^*\left(\sum \operatorname{cl}_X(U_i)\right)\right)_c^* \sim C_P^*(Y). \end{split}$$

3.14 **Theorem.** Suppose X is a noncompact Y-manifold, where Y is one of the spaces Q, I^n , μ^n , l_2 . Then $C_P^*(X) \sim C_P^*(\sum Y)$.

Proof. Let $\{U_i; i \in N\}$ be an infinite locally finite open cover of X such that each $\operatorname{cl}_X(U_i)$ is regularly closed subset of Y. By Corollary 3.5, Proposition 3.11 and Theorem 3.8 we have $C_P^*(\sum Y) \sim (\prod C_P^*(\sum Y))_c^*$. Since each set $\operatorname{cl}_X(U_i)$ is closed in Y and contains a closed copy of Y, it follows from Corollary 3.7 that $(\prod C_P^*(\sum \operatorname{cl}_X(U_i)))_c^* \sim C_P^*(\sum Y)$. Obviously X contains a closed copy of $\sum Y$. Thus, by Proposition 3.13, $C_P^*(X) \sim C_P^*(\sum Y)$.

3.15 **Theorem.** Let U be a functionally open subset of I^{τ} and τ be an uncountable cardinal. Then $C_p^*(U) \sim C_p^*(\sum I^{\tau})$.

Proof. Take a projection p from I^{τ} onto a countable face I^{ω} of I^{τ} such that $p^{-1}(p(U)) = U$ (for the existence of a such projection see [PP]). Now, let $\{U_i; i \in N\}$ be a locally finite open cover of p(U) such that $\operatorname{cl}_{I^{\omega}}(U_i) \subset p(U)$ for each $i \in N$. Then $\{p^{-1}(U_i): i \in N\}$ is an infinite locally finite functionally open cover of U with $\operatorname{cl}_{I^{\tau}}(p^{-1}(U_i)) \subset U$ for every $i \in N$. Since p is an open mapping we have $\operatorname{cl}_{I^{\tau}}(p^{-1}(U_i)) = p^{-1}(\operatorname{cl}_{I^{\omega}}(U_i))$. Thus, by Lemma 2.1, each set $\operatorname{cl}_{I^{\tau}}(p^{-1}(U_i))$ is strongly l-embedded in I^{τ} and contains a strongly l-embedded copy of I^{τ} . Hence, it follows from Corollary 3.5 and Corollary 3.7 that $C_p^*(\sum \operatorname{cl}_{I^{\tau}}(p^{-1}(U_i))) \sim C_p^*(\sum I^{\tau})$. On the other hand U contains an l^* -embedded copy of $\sum I^{\tau}$ (see the proof of Theorem 2.15). Therefore, by Proposition 3.13, $C_p^*(U) \sim C_p^*(\sum I^{\tau})$.

3.16 **Theorem.** Let Y be one of the spaces Q, I^n , μ^n and X be a locally compact subset of a Y-manifold. Then $C_p^*(X) \sim C_p^*(\sum Y)$ if X contains a closed copy of $\sum Y$.

Proof. Let X be a locally compact subspace of a Y-manifold Z and let X contain a closed copy of $\sum Y$. Then $C_P^*(X) \sim C_P^*(\sum Y) \times C_P^*(X; \sum Y)$. Take an infinite locally finite open cover $\{V_i : i \in N\}$ of X such that each set $\operatorname{cl}_X(V_i)$ is compact and $\operatorname{cl}_X(V_i) \subset U_i$, where U_i is an open subset of Y. Thus, each $\operatorname{cl}_X(V_i)$ is contained in a copy Y_i of Y. Let $u: C_P(\sum \operatorname{cl}_X(V_i)) \to C_P(X)$ be a regular averaging operator for the natural mapping $p: \sum \operatorname{cl}_X(V_i) \to X$. As in the proof of Proposition 3.13, we get $(\prod C_P^*(\sum \operatorname{cl}_X(V_i)))_c^* \sim (\prod C_P^*(X))_c^* \times (\prod E)_c^*$, where E is a linear subspace of $C_P^*(\sum \operatorname{cl}_X(V_i))$. Since $\sum \operatorname{cl}_X(V_i)$ is a closed subset of $\sum Y_i$, by Corollary 3.3 we have $(\prod C_P^*(\sum Y_i))_c^* \sim (\prod C_P^*(\sum \operatorname{cl}_X(V_i)))_c^* \times (\prod G)_c^*$, where $G = C_P^*(\sum Y_i; \sum \operatorname{cl}_X(V_i))$. Thus,

$$\left(\prod C_p^* \left(\sum Y_i\right)\right)_c^* \sim \left(\prod C_p^* (X)\right)_c^* \times \left(\prod E\right)_c^* \times \left(\prod G\right)_c^*.$$

Then

$$\begin{split} \boldsymbol{C}_{P}^{*}(\boldsymbol{X}) &\sim \boldsymbol{C}_{P}^{*}\left(\sum \boldsymbol{Y}\right) \times \boldsymbol{C}_{P}^{*}\left(\boldsymbol{X}\,;\,\sum \boldsymbol{Y}\right) \\ &\sim \left(\prod \boldsymbol{C}_{P}^{*}\left(\sum \boldsymbol{Y}\right)\right)_{c}^{*} \times \boldsymbol{C}_{P}^{*}\left(\boldsymbol{X}\,;\,\sum \boldsymbol{Y}\right) \end{split}$$

because $C_P^*(\sum Y) \sim (\prod C_P^*(\sum Y))_c^*$ (see Corollary 3.5 and Proposition 3.11). Hence

$$\begin{split} C_{p}^{*}(X) &\sim \left(\prod C_{p}^{*}\left(\sum Y\right)\right)_{c}^{*} \times C_{p}^{*}\left(X;\sum Y\right) \\ &\sim \left(\prod C_{p}^{*}\left(\sum Y\right)\right)_{c}^{*} \times C_{p}^{*}\left(\sum Y\right) \times C_{p}^{*}\left(X;\sum Y\right) \\ &\sim \left(\prod C_{p}^{*}\left(\sum Y\right)\right)_{c}^{*} \times C_{p}^{*}(X) \\ &\sim \left(\prod C_{p}^{*}(X) \times \left(\prod C_{p}^{*}(X)\right)_{c}^{*} \times \left(\prod E\right)_{c}^{*} \times \left(\prod G\right)_{c}^{*} \\ &\sim \left(\prod C_{p}^{*}(X)\right)_{c}^{*} \times \left(\prod E\right)_{c}^{*} \times \left(\prod G\right)_{c}^{*} \\ &\sim \left(\prod C_{p}^{*}\left(\sum Y\right)\right)_{c}^{*} \sim C_{p}^{*}\left(\sum Y\right). \end{split}$$

Added in proof. After this paper was submitted for publication Arhangel'skii [A4] introduced the notion of an S-stable space. A space X is S-stable if $C_P(X) \sim C_P(X \times S)$, where $S = \{0, 1/n, n \in N\}$. Obviously, if $X \times S$ is a k_R -space, then X is S-stable iff $(\prod C_P(X))_c \sim C_P(X)$. An elementary proof of the S-stability of μ^n (without using Dranishnikov's results, see the proof of this fact in our Theorem 2.9) is given in [A4]. Arhangel'skii [A4] generalized our Theorem 2.8(ii) by proving that if a compact metric space X contains a subspace Y with $C_P(Y) \sim C_P(Q)$ then $C_P(X) \sim C_P(Q)$.

REFERENCES

- [A1] A. V. Arhangel'skii, The principal of τ-approximation and a test for equality of dimension of compact Hausdorff spaces, Soviet Math. Dokl. 21 (1980), 805–809.
- [A2] ____, On linear homeomorphisms of function spaces, Soviet Math. Dokl. 25 (1982), 852-
- [A3] _____, O nekotoryh topologičeskih prostranstvah vstrečajuscihsja v funkcional'nom analize, Uspehi Mat. Nauk 31 (1978), 17-32.
- [A4] _____, On linear topological and topological classification of spaces $C_p(X)$, Zbornik Radova Filozofskog Fakulteta u Nišu, Ser. Matematika 3 (1989), 3-12.
- [AČ] A. V. Arhangel'skii and M. M. Čoban, Funktional' nye vlojenija Tihonovskih prostranstv i obobscennye retracty, preprint.
- [BGM] J. Baars, J. de Groot and J. van Mill, Topological equivalence of certain function spaces II, VU (Amsterdam) report 321, December 1986.
- [BGMP] J. Baars, J. de Groot, J. van Mill and J. Pelant, On topological and linear homeomorphisms of certain function spaces, University of Amsterdam, report 87-17, 1987.
- [B] C. Bessaga, On topological classification of complete linear metric spaces, Fund. Math. 56 (1965), 251-288.
- [Bt] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Ph.D. thesis, The Univ. of Tennessee, Knoxville, 1984.
- [Dr1] A. N. Dranishnikov, Absoljutnye F-značnye retrakty i prostranstva funkcii v topologii potočečnoi shodimosti, Sibirsk Mat. J. 27 (1986), 74–86.
- [Dr2] ____, Universal'nye mengerovskie kompacty i universal'nye otobrajenija, Mat. Sb. 129 (1986), 121-139.

- [D] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367.
- [GH] S. Gul'ko and T. Hmyleva, Kompaktnost'ne sohranjaetsja otnošeniem t-ekvivalentnosti, Mat. Zametki 39, 8 (1986), 895-903.
- [KO] A. Koyama and T. Okada, On compacta which are 1-equivalent to Iⁿ, Tsukuba J. Math. 11, 1 (1987), 147-156.
- [M] J. van Mill, Topological equivalence of certain function spaces, Compositio Math. 63 (1987), 159–188.
- [N] N. Noble, The continuity of functions on Cartesian products, Trans. Amer. Math. Soc. 149 (1970), 187-198.
- [Pv] D. Pavlovskii, On spaces of continuous functions, Soviet Math. Dokl. 22 (1980), 34-37.
- [P] A. Pelczynski, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.
- [Ps] V. Pestov, The coincidence of the dimension dim of l-equivalent topological spaces, Soviet Math. Dokl. 28 (1982), 380-383.
- [PP] E. Pol and R. Pol, Remarks on Cartesian products, Fund. Math. 93 (1976), 57-69.

DEPARTMENT OF MATHEMATICS, SOFIA STATE UNIVERSITY, 1126 SOFIA, A. IVANOV 5, BULGARIA