SZEGÖ'S THEOREM ON A BIDISC

TAKAHIKO NAKAZI

ABSTRACT. G. Szegö showed that

$$\inf \int_0^{2\pi} |1 - f|^2 w \, d\theta / 2\pi = \exp \int_0^{2\pi} \log w \, d\theta / 2\pi$$

where f ranges over analytic polynomials with mean value zeros. We study extensions of the Szegö's theorem on the disc to the bidisc. We show that the quantity is a mixed form of an arithmetic mean and a geometric one of w in some special cases.

1. Introduction

Let m be the Haar measure of the torus T^2 , the distinguished boundary of the unit bidisc U^2 in the space of 2-complex variables (z_1, z_2) . Let Z be the set of all integers, Z_+ the set of all nonnegative integers, Z^2 the set of all $\alpha = (\alpha_1, \alpha_2)$ with $\alpha_i \in Z$ and Z_+^2 the set of all $\alpha \in Z^2$ with $\alpha_i \in Z_+$ for i = 1, 2. For $1 \le p \le \infty$, $L^p = L^p(T^2, m)$ denotes the Lebesgue space and $H^p = H^p(T^2, m) = \{f \in L^p; \hat{f}(\alpha) = 0 \text{ if } \alpha \notin Z_+^2\}$, that is, H^p denotes the usual Hardy spaces on the bidisc. Let $H_0^p = \{f \in H^p; \hat{f}(\alpha) = 0\}$ and $K_0^p = \{f \in L^p; \hat{f}(\alpha) = 0 \text{ if } -\alpha \in Z_+^2\}$.

Let $\mathscr P$ be a set of all analytic polynomials z_1 , z_2 and $\mathscr P_0 = \{f \in \mathscr P; \int f \, dm = 0\}$. For each nonnegative function $w \in L^1$ we study the following quantity:

$$S(w) = \inf_{f \in \mathscr{P}} \int_0 |1 - f|^2 w \, dm.$$

In the case of one complex variable, G. Szegö [6] showed that

$$S(w) = \exp \int \log w \, dm \, .$$

In the case of two complex variables, this quantity has been studied by A. G. Miamee [1] under some strong condition and then $S(w) = \exp \int \log w \, dm$.

Received by the editors October 4, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 32A35, 46J15; Secondary 60G25

Key words and phrases. Szegö's theorem, bidisc, arithmetic mean, geometric mean, prediction

This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

However it is easy to see that there exists a nonzero function $w \in L^1$ such that $S(w) \neq \exp \int \log w \, dm$. Even if w is zero on some positive measure on T^2 it is possible that S(w) > 0.

In §2 several means are defined to estimate S(w) in the latter sections. In §3 we give expressions in terms of w of the $L^2(w\,dm)$ -distances between 1 and subalgebras of L^∞ which contain \mathcal{P}_0 properly. This follows from the theory of an abstract Hardy space [2]. In §4 we estimate S(w) from the above and the below by means which are defined using conditional expectations. In §5 for special weights we give an expression in terms of w of S(w). In §6 we study the $L^2(w\,dm)$ -distance between 1 and K_0^∞ which is a dual version of S(w). In §7 we study relations between S(w) and an invariant subspace defined by w.

2. VARIOUS MEANS

Three typical means of w are the following:

$$\int w \, dm \ge \exp \int \log w \, dm \ge \left(\int w^{-1} \, dm \right)^{-1} \, .$$

 $\int w\,dm\,,\ \exp\int\log w\,dm\ \ {\rm or}\ \ (\int w^{-1}\,dm)^{-1}\ \ {\rm is\ called\ an\ arithmetic\ mean,\ a}$ geometric mean or a harmonic mean of w, respectively. We would like to define new means in which the means above are mixed. Put $|\alpha|_r=\alpha_1-r\alpha_2$ where r is a real number. For $1\leq p\leq\infty$ \mathcal{L}_r^p denotes the space of all $f\in L^p$ whose Fourier coefficients $\hat{f}(\alpha)=0$, $\alpha\in Z^2$ with $|\alpha|_r=0$. If r is irrational then \mathcal{L}_r^p is trivial but if r is rational then \mathcal{L}_r^p is nontrivial. Moreover $\mathcal{L}_{-\infty}=\mathcal{L}_\infty$. \mathcal{L}_r^∞ is a commutative von Neumann algebra and hence $\mathcal{L}_r^p=L^p(T^2,\mathcal{B}_r,m)$ where \mathcal{B}_r is the σ -algebra of subsets E of E0 for which the characteristic function E1 lies in E2. Let E3 be the E4 be the E5 denote the conditional expectation for sub-E5 as sub-E6 as sub-E7 algebra of E8. Define E9 denote the conditional expectation for sub-E9 as sub-E9 and E9 as E9 as E9. We consider the following three new means for each E9.

$$\int \exp \mathscr{E}'(\log w) dm, \qquad \left(\int \exp \mathscr{E}'(\log w^{-1}) dm\right)^{-1},$$

and

$$\exp \int \log \mathscr{E}^r(w) dm$$
.

Lemma 1. For any r and any nonnegative w in L^1 , the following inequalities are valid.

$$\int w \, dm \ge \int \exp \mathscr{E}^r(\log w) \, dm \ge \exp \int \log w \, dm$$
$$\ge \left(\int \exp \mathscr{E}^r(\log w^{-1}) \, dm \right)^{-1} \ge \left(\int w^{-1} \, dm \right)^{-1}$$

and

$$\int w \, dm \ge \exp \int \log \mathscr{E}^r(w) \, dm \ge \exp \int \log w \, dm.$$

Proof. We can show the inequality of arithmetic and geometric means for conditional expectation. That is, if v is a real function in L^1 and $\exp v \in L^1$, then $\exp \mathscr{E}^r(v) \leq \mathscr{E}^r(\exp v)$ a.e. Hence

$$\mathscr{E}^r(w) \ge \exp \mathscr{E}^r(\log w)$$
 a.e.

and

$$\mathscr{E}^r(w^{-1}) \ge \exp \mathscr{E}^r(\log w^{-1})$$
 a.e.

This implies the first part of the lemma. For the second part, apply to $\mathscr{E}'(w)$ the classical inequality of arithmetic and geometric means.

For $1 \le j \le n < \infty$, let λ_j be a nonnegative number with $\sum_{j=1}^n \lambda_j = 1$ and put $\mathscr{E}^j = \mathscr{E}^{r_j}$ where r_j is a real number. The following lemma gives the inequality for $\sum_{j=1}^n \lambda_j \mathscr{E}^j$.

Lemma 2. If w is a nonnegative function in L^1 , then

$$\sum_{j=1}^n \lambda_j \mathcal{E}^j(w) \geq \prod_{j=1}^n \mathcal{E}^j(w)^{\lambda_j} \geq \exp \sum_{j=1}^n \lambda_j \mathcal{E}^j(\log w)$$

and hence

$$\int w \, dm \ge \exp \int \log \prod_{j=1}^n \mathscr{E}^j(w)^{\lambda_j} \, dm$$

$$\ge \int \exp \sum_{j=1}^n \lambda_j \mathscr{E}^j(\log w) \, dm \ge \exp \int \log w \, dm$$

$$\ge \left(\int \exp \sum_{j=1}^n \lambda_j \mathscr{E}_j(\log w^{-1}) \, dm \right)^{-1} \ge \left(\int w^{-1} \, dm \right)^{-1}.$$

Let $L_+^p=\{f\in L^p\,;\,\hat{f}(\alpha)=0\ \text{if}\ \alpha=(\alpha_1\,,\,\alpha_2)\ \text{and}\ \alpha_1\alpha_2<0\}$ and $L_-^p=\{f\in L^p\,;\,\hat{f}(\alpha)=0\ \text{if}\ \alpha=(\alpha_1\,,\,\alpha_2)\neq(0\,,\,0)\ \text{and}\ \alpha_1\alpha_2\geq0\}\,.$ $L_+^1+L_-^1\ \text{is ad dense subspace in}\ L^1\ \text{and}\ L_+^1\cap L_-^1\ \text{consists of constant functions.}$ Let P be a projection from $L_+^1+L_-^1$ to L_-^1 . We can define a mean using P,

$$\int \exp P(\log w) \, dm \, .$$

This mean will be used in §5.

We would like to calculate the means for some special functions w. Let w_j be a nonnegative function in L^1 with $\log w_1 \in L^1_+$ and $\log w_2 \in L^1_-$. If $w = w_1 w_2 \in L^1$ then

$$\int \exp P(\log w) dm = \exp \int \log w_1 dm \int w_2 dm.$$

Let w_r (or w_s) be a nonnegative function in \mathscr{L}_r^1 (or \mathscr{L}_s^1) and $r \neq s$. If $w = w_r w_s \in L^1$ then

$$\begin{split} &\int \exp \mathscr{E}^r(\log w) \, dm = \exp \int \log w_s \, dm \int w_r \, dm \,, \\ &\left(\int \exp \mathscr{E}^r(\log w^{-1}) \, dm \right)^{-1} = \exp \int \log w_s \, dm \left(\int w_r^{-1} \, dm \right)^{-1} \,, \\ &\exp \int \log \mathscr{E}^r(w) \, dm = \exp \int \log w_r \, dm \int w_s \, dm \,, \\ &\int \exp \frac{\mathscr{E}^r + \mathscr{E}^s}{2} (\log w) \, dm = \int w^{1/2} \, dm \exp \int \log w^{1/2} \, dm \,, \end{split}$$

and

$$\left(\int \exp \frac{\mathscr{E}^r + \mathscr{E}^s}{2} (\log w^{-1}) \, dm\right)^{-1} = \left(w^{-1/2} \, dm\right)^{-1} \exp \int \log w^{1/2} \, dm \, .$$

The results above shows that the means with respect to three operators: \mathscr{E}^r , $\sum \lambda_j \mathscr{E}^j$ and P, are mixed ones of arithmetic and geometric means.

3. Extended weak-* Dirichlet algebra

Let $\mathbf{H}_r = \{f \in L^\infty \ ; \ \hat{f}(\alpha) = 0 \ \text{if} \ \alpha \in \mathbf{Z}^2 \ \text{and} \ |\alpha|_r < 0\}$, then $\mathbf{H}_r \cap \overline{\mathbf{H}}_r = \mathcal{L}_r^\infty$, \mathcal{E}^r is multiplicative on \mathbf{H}_r and $\mathbf{H}_r + \overline{\mathbf{H}}_r$ is weak-* dense in L^∞ . That is, \mathbf{H}_r is an extended weak-* Dirichlet algebra with respect to \mathcal{E}^r [2]. If r is irrational then \mathbf{H}_r is a weak-* Dirichlet algebra [5]. Let $I_r = \{f \in L^\infty \ ; \ \hat{f}(\alpha) = 0 \ \text{if} \ \alpha \in \mathbf{Z}^2 \ \text{and} \ |\alpha|_r \leq 0\}$ then $I_r = \{f \in \mathbf{H}_r \ ; \ \mathcal{E}^r(f) = 0\}$. $\mathbf{H}_r = \mathcal{L}_r^\infty + I_r$. Let $\mathcal{H}_r^\infty = \{f \in \mathcal{L}_r^\infty \ ; \ \hat{f}(\alpha) = 0 \ \text{if} \ \alpha_2 < 0\}$ and $\mathcal{H}_{r,0}^\infty = \{f \in \mathcal{H}_r^\infty \ ; \ f dm = 0\}$. $\mathcal{H}_r^\infty + I_r$ is a weak-* Dirichlet algebra. Putting $\mathbf{H}_{r,0} = \{f \in \mathbf{H}_r, f \in \mathbf{$

$$K_0^{\infty} \supset \mathbf{H}_{r=0} \supset \mathcal{H}_{r=0}^{\infty} + I_r \supset I_r \supset H_0^{\infty}$$
.

The following lemma and proposition are essentially known [2].

Lemma 3. Let w be a nonnegative function in L^1 . For any $v \in \mathscr{L}_r^{\infty}$ and any r,

$$\mathbf{S}(v, r) = \inf \left\{ \int |v - f|^2 w \, dm; \ f \in I_r \right\}$$
$$= \int \exp \mathscr{E}^r(\log w) |v| \, dm.$$

Hence

$$\inf \left\{ S(v, r); \int \log |v| \, dm \ge 0 \right\} = \exp \int \log w \, dm$$

and

$$\inf \left\{ \mathbf{S}(v, r); \int v \, dm = 1 \right\} = \left(\int \exp \mathscr{E}^r(\log w^{-1}) \, dm \right)^{-1}.$$

Proposition 1. Let w be a nonnegative function in L^1 . Then, for any r

(1)
$$\inf \int_{f \in \mathscr{H}_{r,0}^{\infty}} |1 - f|^2 w \, dm = \exp \int \log \mathscr{E}'(w) \, dm,$$

(2)
$$\inf \int_{f \in I_{-}} |1 - f|^{2} w \, dm = \int \exp \mathscr{E}'(\log w) \, dm,$$

(3)
$$\inf \int_{f \in \mathscr{H}_{\infty}^{\infty}} |1 - f|^2 w \, dm = \exp \int \log w \, dm,$$

(4)
$$\inf \int_{f \in \mathbf{H}_{r,0}} |1 - f|^2 w \, dm = \left(\int \exp \mathscr{E}^r(\log w^{-1}) \, dm \right)^{-1}.$$

4. S(w) and means with respect to \mathscr{E}^r

In this section we will improve the following known inequality:

$$\int w \, dm \ge S(w) \ge \exp \int \log w \, dm.$$

Theorem 2. Let w be a nonnegative function in L^1 .

(1) If $0 \le s \le \infty$ and $-\infty < r < 0$, then

$$\exp \int \log \mathscr{E}^{s}(w) dm \geq S(w) \geq \int \exp \mathscr{E}^{r}(\log w) dm$$

(2) Suppose $0 > r_j > -\infty$, $\lambda_j \ge 0$, $\sum_{j=1}^n \lambda_j = 1$ and $n < \infty$, and $0 \le s_j \le \infty$, $\gamma_i \ge 0$, $\sum_{j=1}^l \gamma_j = 1$ and $l < \infty$. Then

$$\exp \int \log \prod_{j=1}^{l} \mathscr{E}^{j}(w)^{\gamma_{j}} dm \geq S(w) \geq \int \exp \sum_{j=1}^{n} \lambda_{j} \mathscr{E}^{j}(\log w) dm.$$

Proof. (1) Since $-\infty < r < 0$, $H_0^{\infty} \subset I_r$ and hence by (2) of Proposition 1

$$S(w) \ge \inf_{f \in I_r} \int |1 - f|^2 w \, dm = \int \exp \mathscr{E}^r(\log w) \, dm.$$

Since $0 \le r \le \infty$, $\mathscr{H}_{r,0}^{\infty} \subset H_0^{\infty}$ and hence by (1) of Proposition 1

$$S(w) \leq \inf_{f \in \mathscr{X}_{t,0}^{\infty}} \int |1 - f|^2 w \, dm = \exp \int \log \mathscr{E}'(w) \, dm.$$

(2) Since $-\infty < r_j < 0$, if $f \in H_0^{\infty}$ then $f \in \bigcap_{j=1}^n I_{r_j}$ and hence by the first part of Lemma 2,

$$\int |1 - f|^2 w \, dm \ge \int \exp \sum_{j=1}^n \lambda_j \mathscr{E}^j (\log |1 - f|^2 w) \, dm$$

$$\ge \int \exp \sum_{j=1}^n \lambda_j \mathscr{E}^j (\log w) \, dm.$$

Since $0 \le s_i \le \infty$, by (1)

$$\exp\int\log\prod_{j=1}^{l}\mathscr{E}^{j}(w)^{\lambda_{j}}\,dm=\prod_{j=1}^{l}\left(\exp\int\log\mathscr{E}^{j}(w)\,dm\right)^{\lambda_{j}}\geq S(w)\,.$$

Corollary 1. If $w = w_t w_l \in L^1$ where $w_t \in \mathcal{L}^1$, $w_l \in \mathcal{L}^1$, $-\infty < t < 0$ and $0 \le l \le \infty$, then

$$\exp \int \log \mathscr{E}^l(w) dm = S(w) = \int \exp \mathscr{E}^l(\log w) dm$$

and hence

$$S(w) = \int w_l dm \exp \int \log w_l dm.$$

Proof. It is easy to see that

$$\begin{split} \exp \int \log \mathscr{E}^l(w) \, dm &= \int w_t \, dm \exp \int \log w_l \, dm \\ &= \int \exp \mathscr{E}^l(\log w) \, dm \, . \end{split}$$

Hence (1) of Theorem 2 implies the corollary.

We can ask whether if

$$\inf_{0 \le s \le \infty} \exp \int \log \mathscr{E}^s(w) \, dm = S(w) = \sup_{-\infty < r < 0} \int \exp \mathscr{E}^r(\log w) \, dm \, .$$

Unfortunately this equality does not hold for some w. Suppose $w=w_tw_l\in L^1$, and both $w_t\in \mathscr{L}^1$ and $w_l\in \mathscr{L}^1$ are nonconstant functions.

If $-\infty < t$, l < 0 and $w \in L_{-}^{1}$ then

$$\inf_{0 \le s \le \infty} \exp \int \log \mathscr{E}^{s}(w) \, dm = S(w)$$

$$\underset{-\infty}{\not\ge} \sup_{-\infty} \int \exp \mathscr{E}^{r}(\log w) \, dm.$$

In fact,

$$\inf_{0 \le s \le \infty} \exp \int \log \mathscr{E}^s(w) \, dm = \int w \, dm$$

and

$$\begin{split} \sup_{-\infty < r < 0} \int \exp \mathcal{E}^r(\log w) \, dm \\ &= \max \left\{ \exp \int \log w \, dm \, , \, \int w_l \, dm \exp \int \log w_l \, dm \, , \right. \\ &\left. \exp \int \log w_l \, dm \int w_l \, dm \right\} \, . \end{split}$$

By (1) of Theorem 4, $S(w) = \int w dm$.

If $0 \le t$, $l \le \infty$ and $w \in L^1_+$ then

$$\inf_{0 \le s \le \infty} \exp \int \log \mathscr{E}^{s}(w) \, dm \ngeq S(w)$$
$$= \sup_{-\infty \le r \le 0} \int \exp \mathscr{E}^{r}(\log w) \, dm.$$

In fact,

$$\begin{split} &\inf_{0 \leq s \leq \infty} \exp \int \log \mathscr{E}^s(w) \, dm \\ &= \min \left\{ \int w \, dm \, , \, \exp \int \log w_t \, dm \int w_l \, dm \, , \, \int w_t \, dm \exp \int \log w_l \, dm \right\} \end{split}$$

and

$$\sup_{-\infty < r < 0} \int \exp \mathscr{E}^r(\log w) \, dm = \exp \int \log w \, dm.$$

While by (2) of Theorem 4 if $w_l \in \mathscr{L}_l^\infty S(w) = \exp \int \log w \, dm$. Moreover we can ask whether if $S(w) = \inf_{0 \leq s \leq \infty} \exp \int \log \mathscr{E}^s(w) \, dm$ or $S(w) = \sup_{-\infty < r < 0} \int \exp \mathscr{E}'(\log w) \, dm$. However this is also not true. For such an example, suppose $w = w_l w_l w_k$ where $w_j \in \mathscr{L}_j^\infty$ $(j = t, l, k), -\infty < t < 0$ and $0 \leq l, s \leq \infty$.

There does not exist a universal finite constant γ_0 such that

$$S(w) \le \gamma_0 \exp \int \log w \, dm$$

for all w in L^{∞} with $w^{-1} \in L^{\infty}$. Let $D_r^{\infty} = \mathscr{H}_r^{\infty} + I_r$ and $D_r^2 = \mathscr{H}_r^2 + [I_r]$. For $-\infty \le r \le 0$, let γ_r be the norm of the orthogonal projection form K^2 onto D_r^2 in $L^2(w^{-1}\,dm)$. If both w and w^{-1} are in L^{∞} then for each r γ_r is finite.

Theorem 3. Let w be a nonnegative function in L^1 . If $w^{-1} \in L^{\infty}$ then

$$S(w) \le (\gamma_0 + \gamma_\infty) \exp \int \log w \, dm$$
.

Proof. By the duality

$$S(w) = \sup \left| \int gw \, dm \right|$$

where g ranges over the unit ball of $(H_0^{\infty})^{\perp} \cap L^2(w \, dm)$. If $w^{-1} \in L^{\infty}$ then

$$(H_0^{\infty})^{\perp} \cap L^2(w \, dm) = w^{-1} \overline{K}^2.$$

Since

$$K^2 = D_0^2 + D_{\infty}^2 = D_0^2 \oplus \{D_{\infty}^2 \ominus [K^2 \ominus D_0^2]\},$$

if $F \in K^2$ then

$$w^{-1}F = w^{-1}F_0 + w^{-1}F_{\infty}$$

for some $F_0 \in D_0^2$ and $F_\infty \in D_\infty^2 \ominus [K^2 \ominus D_0^2]$. By hypothesis if $\int |w^{-1}F|^2 w \, dm < 1$ then

$$\int |w^{-1}F_r|^2 w \, dm \leq \gamma_r \, (r=0, \, \infty) \, .$$

Hence

$$S(w) \leq \sum_{r=0,\infty} \gamma_r \sup \left\{ \left| \int hw \, dm \right|; \, h \in (D_{r,0}^{\infty})^{\perp} \cap L^2(w \, dm) \right.$$

$$\text{and } \int |h|^2 w \, dm \leq 1 \right\}.$$

Again by the duality

$$S(w) \leq \sum_{r=0,\infty} \gamma_r \inf \left\{ \int |1-f|^2 w \, dm \, ; \, f \in D_{r,0}^{\infty} \right\} \, .$$

Thus by (3) of Proposition 1 the theorem follows.

5. ARITHMETIC MEAN AND GEOMETRIC ONE

The function $g \in H^2$ is called an outer function if

$$\int \log |g| \, dm = \log \left| \int g \, dm \right| > -\infty.$$

The function $g \in H^2$ is called a generator if $[g\mathscr{P}] = H^2$. If $g \in H^2$ is a generator then it is an outer function [4, p. 73]. However there exists an outer function which is not a generator [4, p. 76]. The following lemma is known [4, pp. 73 and 77].

Lemma 4. Let $w \in L^1$ be a nonnegative function. There exists an outer function $g \in H^2$ such that $w = |g|^2$ if and only if $\log w \in L^1_+$.

Theorem 4. Let w be a nonnegative function in L^1 .

(1) $w \in L^1_-$ if and only if

$$S(w) = \int w \, dm.$$

(2) $w = |g|^2$ for some generator $g \in H^2$ if and only if

$$S(w) = \exp \int \log w \, dm.$$

Proof. (1) If w is a nonzero function in L_{-}^{1} and $\int w \, dm = a$ then $w \, dm/a$ is a representing measure of the evaluation at the origin and hence for any f in H_{0}^{∞} ,

$$\int |1-f|^2 w \, dm/a \ge 1.$$

Thus $S(w) = \int w \, dm$. Conversely if $S(w) = \int w \, dm$ then for any $f \in H_0^{\infty}$,

$$\int |f|^2 w \, dm \ge 2 \operatorname{Re} \int f w \, dm \, .$$

Hence for any $f \in H_0^{\infty}$ and for any positive number ε ,

$$\varepsilon \int |f|^2 w \, dm \ge 2 \left| \int f w \, dm \right|.$$

As $\varepsilon \to 0$,

$$\int fw\,dm=0$$

and hence $w \in L^1_-$.

(2) If $w = |g|^2$ and g is a generator then

$$S(w) = \left| \int g \, dm \right|^2$$

and by the remark above g is an outer function. Thus $S(w) = \exp \int \log w \, dm$. Conversely if $S(w) = \exp \int \log w \, dm$ then by (1) of Theorem 2 for any r with $-\infty < r < 0$,

$$\int \exp \mathscr{E}'(\log w) \, dm = \exp \int \log w \, dm$$

and hence

$$\mathscr{E}'(\log w) = \int \log w \, dm.$$

Assuming $\log w \in L^1$ without loss of the generality, $(\log w)^{\hat{}}(\alpha) = 0$ if $|\alpha|_r = 0$ and $-\infty < r < 0$, and so $\log w \in L^1_+$. By Lemma 4 $w = |g|^2$ for some outer $g \in H^2$. Then g has the decomposition $g = g_0 + g_1$ where $g_0 \in [g\mathscr{P}] \ominus [g\mathscr{P}_0]$ and $g_1 \in [g\mathscr{P}_0]$. Hence since $S(w) = \exp \int \log w \, dm$,

$$S(w) = \int |g_0|^2 dm = \left| \int g_0 dm \right|^2 > 0.$$

Thus g_0 is constant and hence g is a generator.

We want to present a mixed form of (1) and (2) of Theorem 4.

Proposition 5. Let w_j be a nonnegative function in L^1 and $w=w_1w_2\in L^1$. (1) If $\log w_1\in L^1_+$ and $w_2\in L^1_-$ then

$$S(w) \ge \exp \int \log w_1 \, dm \int w_2 \, dm \, .$$

(2) If $w_1 = |g|^2$ for some generator in H^2 and $w_2 \in L^{\infty}_-$ then

$$S(w) = \exp \int \log w_1 \, dm \int w_2 \, dm \, .$$

Proof. (1) By Lemma 4 $w_1 = |g|^2$ for some outer function $g \in H^2$ and by the hypothesis $w_2 \in L^1_-$. Hence

$$\begin{split} S(w) &= \inf_{f \in \mathcal{P}_0} \int |g - gf|^2 w_2 \, dm \\ &\geq \inf_{f \in \mathcal{P}_0} \left| \int g w_2 \, dm - \int g f w_2 \, dm \right|^2 \left(\int w_2 \, dm \right)^{-1} \\ &= \left| \int g w_2 \, dm \right|^2 \left(\int w_2 \, dm \right)^{-1} \\ &= \left| \int g \, dm \right|^2 \int w_2 \, dm \\ &= \exp \int \log w_1 \, dm \int w_2 \, dm \, . \end{split}$$

(2) Since $w_2 \in L^{\infty}$, H_0^2 is in the closure of $g\mathscr{P}_0$ in $L^2(w_2 dm)$ and hence

$$\begin{split} \inf_{f \in \mathscr{P}_0} \int \left| g - g f \right|^2 & w_2 \, dm \le \left| \int g \, dm \right|^2 \int w_2 \, dm \\ &= \exp \int \log w_1 \, dm \int w_2 \, dm \, . \end{split}$$

Let $L_{-+}^{\infty}=\{f\in L^{\infty}\,;\; \hat{f}(\alpha)=0\; \text{if}\; \alpha=(\alpha_1\,,\,\alpha_2)\,,\; \alpha_1\leq 0\; \text{and}\; \alpha_2\geq 0\}\,.$ $L_{-+}^{\infty}+\overline{L_{-+}^{\infty}}\; \text{is weak-* closed algebra. If}\; w$ satisfies that

$$\log w \in L^1_+ + L^\infty_{-+} + \overline{L^\infty_{-+}}$$

then $w=w_1w_2\,,\,\log w_1\in L^1_+\,,\,\log w_2\in L^1_-$ and $w_2\in L^\infty_-$ and

$$\int \exp P(\log w) dm = \exp \int \log w_1 dm \int w_2 dm.$$

6. The dual version of Szegö's Theorem

 \overline{K}_0^∞ is an annihilator of \mathscr{P} (and hence H^∞) in L^∞ . Hence we would like to give an expression in terms of w of the following quantity:

$$S^{\perp}(w) = \inf_{f \in K_0^{\infty}} \int |1 - f|^2 w \, dm.$$

For any r with $-\infty < r < 0$,

$$H_0^{\infty} \subset I_r \subset \mathscr{H}_{r,0}^{\infty} + I_r \subset \mathbf{H}_{r,0} \subset K_0^{\infty}$$

and hence by (3) of Proposition 1

$$\int w \, dm \ge S(w) \ge \exp \int \log w \, dm \ge S^{\perp}(w) \ge \left(\int w^{-1} \, dm\right)^{-1}$$

and moreover by (4) of Proposition 1

$$\left(\int \exp \mathscr{E}^r(\log w^{-1}) \, dm\right)^{-1} \geq S^{\perp}(w) \, .$$

If both w and w^{-1} are in L^{∞} , by Theorem 1 in [3]

$$S^{\perp}(w) = S(w^{-1})^{-1}$$
.

Unfortunately we do not know whether if both w and w^{-1} in L^1 then $S^{\perp}(w) = S(w^{-1})^{-1}$. However by Theorem 1 in [3]

$$S(w) \ge S(w^{-1})^{-1} \ge \exp \int \log w \, dm$$

 $\ge S^{\perp}(w) \ge S(w^{-1})^{-1} \ge \left(\int w^{-1} \, dm \right)^{-1}.$

Hence by (1) of Theorem 2, for any s with $0 \le s \le \infty$,

$$S^{\perp}(w) \ge \left(\exp \int \log \mathscr{E}^s(w^{-1}) dm\right)^{-1}.$$

If $w=|g|^2$ for some generator $g\in H^2$, by (2) of Theorem 4 then $S^\perp(w)=S(w^{-1})^{-1}$. If both w and w^{-1} are in L^1_- , by (1) of Theorem 4 then $S^\perp(w)=S(w^{-1})^{-1}$.

7. Invariant subspace

A closed subspace M of L^2 is said to be invariant if

$$z_j M \subseteq M$$
 for $j = 1, 2$.

In this section we study invariant subspaces M which are singly generated, that is, $M = [vH^{\infty}]$ for some $v \in L^2$. Then we can give an expression in terms of w of S(w).

Let w be a nonnegative function in L^1 and $H^2(w)$ the $L^2(w \, dm)$ -closure of \mathscr{P} . It is easy to see that

$$w^{1/2}H^2(w) = [w^{1/2}H^{\infty}] \subset L^2$$

and

$$\operatorname{dist}(w^{1/2}, [w^{1/2}H_0^{\infty}]) = S(w)^{1/2}.$$

Let w_2 be a nonnegative function in L^1 . Then

$$H^{2}(w_{2}) = [1] \oplus H^{2}_{0}(w_{2})$$

where $H_0^2(w_2)$ is the $L^2(w_2 dm)$ -closure of \mathcal{P}_0 . We can expect that $w_2^{1/2}H^2(w_2) = [w_2^{1/2}\mathcal{P}]$ has a simple structure.

Conjecture. If M is a singly generated invariant subspace and $S_0 = M \ominus [\mathscr{S}_0 M] \neq [0]$, then S_0 is one dimension and contains a cyclic vector.

Proposition 6. Suppose the conjecture is true for a singly generated invariant subspace M of L^2 with $S_0 \neq [0]$.

- (1) $M = qw_2^{1/2}H^2(w_2)$ where q is unimodular and $w_2 \in L^1$.
- (2) Let g be a nonzero function in L^2 . If M is generated by g then

$$\left|g\right|^2 = \left|h\right|^2 w_2$$

where $w_2 \in L^1_-$ and h is a generator for $H^2(w_2)$.

(3) Let w be a nonnegative function in L^1 . If M is generated by $w^{1/2}$ then

$$S(w) = \left| \int h w_2 \, dm \right|^2 \left(\int w_2 \, dm \right)^{-1}$$

where $w_2 \in L_-^1$, h is a generator for $H^2(w_2)$ and $w = |h|^2 w_2$.

Proof. (1) Suppose $S_0 = [u]$. Since u is orthogonal to $u\mathscr{P}_0$, $|u|^2 \in L^1$. Put

$$q(x) = \left\{ \begin{array}{ll} u(x)/|u(x)| & \text{if } u(x) \neq 0\,, \\ 1 & \text{if } u(x) = 0\,, \end{array} \right.$$

and $w_2 = |u|^2$, then $u = qw_2^{1/2}$. Since M is generated by u,

$$M = [qw_2^{1/2}\mathcal{S}] = qw_2^{1/2}H^2(w_2).$$

(2) is clear by (1), (3). By (2), putting $g = w^{1/2} w = |h|^2 w_2$. Hence

$$\begin{split} S(w) &= \inf \left\{ \int \left| h - h f \right|^2 w_2 \, dm \, ; \, f \in \mathscr{P}_0 \right\} \\ &= \left| \int h w_2 \, dm \right|^2 \left(\int w_2 \, dm \right)^{-1} \, . \end{split}$$

In (3) of Proposition 6 if $w_2^{-1} \in L^{\infty}$ then $S(w) = |\int h \, dm|^2 \int w_2 \, dm$. If w_2 is in L^{∞} then putting $w_1 = |h|^2$

$$S(w) = \exp \int \log w_1 \, dm \int w_2 \, dm \, .$$

REFERENCES

- A. G. Miamee, Extension of three theorems for Fourier series on the disc to the torus, Bull. Austral. Math. Soc. 33 (1986), 335-350.
- 2. T. Nakazi, Extended weak-* Dirichlet algebras, Pacific J. Math. 81 (1979), 493-513.
- 3. ____, Two problems in prediction theory, Studia Math. 78 (1984), 7-14.
- 4. W. Rudin, Function theory in polydiscs, Benjamin, New York, 1969.
- 5. T. P. Srinivasan and J. K. Wang, Weak-* Dirichlet algebras, Proc. Internat. Sympos. on Function Algebras (Tulane Univ., 1965), Scott-Foresman, Chicago, Ill., 1966, pp. 216-249.
- G. Szegö, Beiträge zur Theorie der Toeplitzschen Formen (Erste Mitteilung), Math. Z. 6 (1920), 167-202.

Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060, Japan