HOLOMORPHIC FLOWS IN C3, 0 WITH RESONANCES

JULIO CESAR CANILLE MARTINS

ABSTRACT. The topological classification, by conjugacy, of the germs of holomorphic diffeomorphisms $f \colon \mathbb{C}^2$, $0 \to \mathbb{C}^2$, 0 with $df(0) = \operatorname{diag}(\lambda_1, \lambda_2)$, where λ_1 is a root of unity and $|\lambda_2| \neq 1$ is given.

This type of diffeomorphism appears as holonomies of singular foliations \mathcal{F}_X induced by holomorphic vector fields $X: \mathbb{C}^3$, $0 \to \mathbb{C}^3$, 0 normally hyperbolic and resonant. An explicit example of a such vector field without holomorphic invariant center manifold is presented.

We prove that there are no obstructions in the holonomies for \mathscr{F}_X to be topologically equivalent to a product type foliation.

INTRODUCTION

In this paper we study germs of holomorphic vector fields $X: \mathbb{C}^3$, $0 \to \mathbb{C}^3$, 0 such that:

- (i) 0 is an isolated singularity,
- (ii) $DX(0) = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3)$ with $\lambda_j \neq 0$, $p\lambda_1 + q\lambda_2 = 0$, p, q relatively prime and λ_3/λ_1 , $\lambda_3/\lambda_2 \notin \mathbf{R}$.

Any such vector field is normally hyperbolic.

Consider the foliation \mathcal{F}_X induced by the differential equation

$$\frac{dz}{dT} = X(z), \qquad z \in \mathbb{C}^3, 0, T \in \mathbb{C},$$

in a neighborhood of $0 \in \mathbb{C}^3$.

The problem is to describe and to classify these foliations in a neighborhood of the singularity. Here we consider the topological description of \mathcal{F}_X .

This note is divided in five sections:

- (I) Formal classification
- (II) Center manifold and holomorphic normal form
- (III) Study of the holonomies
- (IV) Normally hyperbolic diffeomorphisms in \mathbb{C}^2 , 0 with resonance—topological classification
- (V) The problem of the topological classification for the foliation \mathscr{F}_X .

Firstly in §I we present the formal classification. We prove that the formal

Received by the editors December 15, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 32A99, 58F12, 34A25. The author was partially supported by IMPA-CNPq and UNESP-IBLCE.

normal form is

Y:
$$\begin{cases} \dot{x} = x(\lambda_1 + a_1 \cdot x^p y^q + \dots + a_k (x^p y^q)^k), \\ \dot{y} = y(\lambda_2 + b_1 \cdot x^p y^q + \dots + b_k (x^p y^q)^k), \\ \dot{z} = \lambda_3 z. \end{cases}$$

The solutions of this equation are obtained by means of the singular transformation $u = x^p y^q$; $v = x^r y^s$, $ps - qr^* = 1$ which will transform it into a vector field of type saddle-node.

The formal normal form always has the invariant subspace $\{z=0\}=\mathbb{C}^2_{xy}$.

Then all foliations \mathcal{F}_X have a formal invariant surface corresponding to this.

In §II we give an example of a holomorphic vector field which does not have a holomorphic invariant surface corresponding to this formal one.

Then, we prove that this class of foliations has the following holomorphic normal form:

$$X: \begin{cases} \dot{x} = \lambda_{1}x + x^{p}y^{q} \cdot A(x, y, z), \\ \dot{y} = \lambda_{2}y + x^{p}y^{q} \cdot B(x, y, z), \\ \dot{z} = \lambda_{3}z + x^{p}y^{q} \cdot C(x, y, z), \end{cases}$$

where $A, B, C: \mathbb{C}^3, 0 \to \mathbb{C}$ are holomorphic functions.

Definition 1. A foliation \mathscr{F}_X will be called *product type* if it is analytically equivalent (near $0 \in \mathbb{C}^3$) to the foliation \mathscr{F}_{X_0} defined by

$$X_0: \begin{cases} \dot{x} = \lambda_1 x + x^p y^q a(x, y), \\ \dot{y} = \lambda_2 y + x^p y^q b(x, y), \\ \dot{z} = \lambda_3 z, \end{cases}$$

where $a, b: \mathbb{C}^20 \to \mathbb{C}, 0$ are holomorphic functions.

The foliation \mathscr{F}_{X_0} is the product of the saddle-resonant in \mathbb{C}^2_{xy} :

$$\begin{cases} \dot{x} = \lambda_1 x + x^p y^q a(x, y), \\ \dot{y} = \lambda_2 y + x^p y^q b(x, y) \end{cases}$$

by the linear equation $\dot{z} = \lambda_3 z$.

The saddle-resonant in \mathbb{C}^2 have a well-known structure; the topological classification was obtained by C. Camacho and P. Sad in [1]; the analytic classification (as the differentiable ones) by J. Martinet and J. P. Ramis in [3].

The holomorphic normal form X has the three coordinate axes invariant, and they are the only separatrices of the foliation.

We denote their holonomies by $H_{X,x}$; $H_{X,y}$ and $H_{X,z}$ (where $H_{X,z}$ is the holonomy of \mathscr{F}_X with respect to the axis).

The main objective of this note is to prove

Theorem B. The holonomies give no obstruction for \mathscr{F}_X to be topologically equivalent to a foliation of product type.

The diffeomorphisms of holonomy $H_{X_0,x}$ and $H_{X_0,y}$ (X_0 is a vector field of product type) are diffeomorphisms of \mathbb{C}^2 , 0 that satisfy:

- (1) The linear part has eigenvalues λ_1 , λ_2 such that $\lambda_1^n = 1$; $0 \neq |\lambda_2| \neq 1$ (for some n: natural number).
 - (2) They have the two coordinate axes invariant.

In the axis corresponding to the eigenvalue λ_1 we have a diffeomorphism of \mathbb{C} , 0 with linear part multiplication by a root of unity.

The dynamics of these diffeomorphisms is well known; see [2] where one can find their topological classification; in [3] one finds the analytical and differentiable classification.

The diffeomorphisms of \mathbb{C}^2 , 0 with $\lambda_1^n = 1$ and $|\lambda_2| \neq 1$ are normally hyperbolic, then applying the results of J. Palis and F. Takens (see [5]) we obtain that the holonomies $H_{X_0,x}$ and $H_{X_0,y}$ are topologically conjugate to diffeomorphism of the form

$$(x, y) \mapsto (\lambda_1 x + x^{kn+1}, \lambda_2 y).$$

In §III we study the diffeomorphisms $f: \mathbb{C}^2$, $0 \to \mathbb{C}^2$, 0 with eigenvalues λ_1 , λ_2 such that $\lambda_1^n = 1$; $|\lambda_2| \neq 1$ (normally hyperbolic with resonance).

There exist diffeomorphisms of this class that have no holomorphic invariant curve tangent to the direction corresponding to λ_1 (see §III, (b)).

By the Center Manifold Theorem we can choose an f-invariant curve S of class C^m where m can be taken arbitrarily large (see [7, pp. 64-67]).

If we take m sufficiently big we can determine the dynamics of f|S by the results of Dumortier, Rodrigues and Roussarie (see [6]).

In this way we obtain the topological classification of these diffeomorphisms.

Theorem A. Let $f: \mathbb{C}^2, 0 \to \mathbb{C}^2, 0$ a holomorphic diffeomorphism.

Suppose $df(0) = diag(\lambda_1, \lambda_2)$ with $\lambda_1^n = 1$ and $|\lambda_2| \neq 1$.

Then f is topologically conjugate to

$$(x, y) \rightarrow (\lambda_1 x + x^{kn+1}, \lambda_2 y)$$

where k is the order of the first resonance of f.

Finally, although the holonomies give no topological obstructions for the foliation to be topologically a product, we cannot yet prove this.

This work is part of my doctoral thesis submitted to IMPA, under the guidance of C. Camacho.

I would like to express my gratitude to C. Camacho and A. Lins Neto for their valuable suggestions and encouraging words.

Also I wish to thank P. Sad and R. Roussarie for conversations on the subject.

I. FORMAL CLASSIFICATION

Consider an equation X, with the hypotheses given in the introduction. It is well known (see (4)) that there exists a formal transformation conjugating

It is well known (see (4)) that there exists a formal transformation conjugating X and Y where Y is defined by

$$Y: \begin{cases} \dot{x} = \lambda_1 x + \sum_{j=1}^{\infty} a_j x^{jp+1} y^{jq}, \\ \dot{y} = \lambda_2 y + \sum_{j=1}^{\infty} b_j x^{jp} y^{jq+1}, \\ \dot{z} = \lambda_3 z + z \sum_{j=1}^{\infty} c_j x^{jp} y^{jq}. \end{cases}$$

Y is the best formal normal form that we can obtain with transformations tangent to the identity of \mathbb{C}^3 .

Consider now the transformation

where $p, q, r, s \in \mathbb{N}$; ps - qr = 1.

Substitution into Y yields

$$Y_{1}: \begin{cases} \dot{u} = \sum_{j=1}^{\infty} (pa_{j} + qb_{j})u^{j+1}, \\ \dot{v} = v(r\lambda_{1} + s\lambda_{2}) + v \sum_{j=1}^{\infty} (ra_{j} + sb_{j})u^{j}, \\ \dot{z} = z \left(\lambda_{3} + \sum_{j=1}^{\infty} c_{j}u^{j}\right). \end{cases}$$

Note that Y_1 is a vector field of type saddle-node.

Suppose $pa_j + qb_j = 0$, j = 1, ..., k - 1, and $pa_k + qb_k \neq 0$. Then Y_1 is analytically equivalent to

$$Y_2: \begin{cases} \dot{u} = u^{k+1}, \\ \dot{\xi} = \xi(\alpha_0 + \alpha_1 u + \dots + \alpha_k u^k), \\ \dot{\eta} = \eta(\beta_0 + \beta_1 u + \dots + \beta_k u^k). \end{cases}$$

Now, using (*) we obtain that X is formally equivalent to

$$Y_{3}: \begin{cases} \dot{x} = x(\lambda_{1} + \alpha_{1}x^{p}y^{q} + \dots + \alpha_{k}(x^{p}y^{q})^{k}), \\ \dot{y} = y(\lambda_{2} + \beta_{1}x^{p}y^{q} + \dots + \beta_{k}(x^{p}y^{q})^{k}), \\ \dot{z} = \lambda_{3}z. \end{cases}$$

Then, Y_3 is the formal normal form for the foliation \mathscr{T}_X . So, \mathscr{T}_X has only finitely many formal invariants.

Using the general solution of Y_2 we have that the leaves of \mathscr{F}_{Y_3} are given by the level lines of

$$F(x, y, z) = (x^r y^s \varphi(u) u^{-\alpha_k} \exp(\Gamma_1(u)); z \psi(u) u^{-\beta_k} \exp(\Gamma_2(u)))$$

where

$$u = x^{p} y^{q}, \quad \varphi(u) = 1 + \varphi_{1} u + O(u^{2}), \quad \psi(u) = 1 + \psi_{1} u + O(u^{2}),$$

$$\Gamma_{1}(u) = \frac{\alpha_{0}}{k u^{k}} + \dots + \frac{\alpha_{k-1}}{u}, \quad \Gamma_{2}(u) = \frac{\beta_{0}}{k u^{k}} + \dots + \frac{\beta_{k-1}}{u}.$$

That is, for each $(c, d) \in \mathbb{C}^2$, the curve F(x, y, z) = (c, d) is a leaf of the foliation \mathscr{F}_{Y_3} . This provides us with a good description of \mathscr{F}_{Y_3} .

Note that \mathscr{F}_{Y_3} is the simplest product type foliation that we can have.

Remarks. (1) F has an essential singularity in $u = x^p y^q = 0$.

(2) In the plane $\{z=0\}$ we have the first integral

$$x^r y^s \varphi(u) u^{-\alpha_k} \exp(\Gamma_1(u))$$
 for $\mathscr{F}_{Y_3} | \mathbb{C}^2_{x_y}$.

(3) If in the formal normal form Y we have

$$pa_i + qb_i = 0$$
 $\forall j = 1, 2, \ldots,$

then X and Y are analytically conjugate (see [4]).

In this case \mathcal{F}_X is given by the equation

$$\dot{x} = \lambda_1 x$$
, $\dot{y} = \lambda_2 y$,
 $\dot{z} = \lambda_3 z (1 + f(u))$, where $u = x^p y^q$,

and $f: \mathbb{C}, 0 \to \mathbb{C}, 0$ is holomorphic. Note that $G(x, y, z) = x^p y^q$ is a first integral for this equation.

II. CENTER MANIFOLD AND HOLOMORPHIC NORMAL FORM

We have seen that the class of vector fields in study has the formal normal form Y.

Then \mathscr{F}_Y is a product type foliation with $\{z=0\}$ invariant. Thus all vector fields X have a formal invariant surface corresponding to $\{z=0\}$.

We present now an example of a holomorphic vector field which has no invariant surface of the type

$$z = \varphi(x, y), \qquad \varphi(0, 0) = D\varphi(0, 0) = 0,$$

 φ holomorphic in a neighborhood of $0 \in \mathbb{C}^2$.

Example. Consider the differential equation

Z:
$$\begin{cases} \dot{x} = \lambda_1 x, \\ \dot{y} = \lambda_2 y + a \cdot x^p y^{q+1}, \\ \dot{z} = \lambda_3 z + \sum_{n=1}^{\infty} (x^p y^q)^n. \end{cases}$$

If $S = \{(x, y, z) \in \mathbb{C}^3 \mid z = \varphi(x, y)\}$ is invariant by Z, then φ is a solution of the partial differential equation

(E.1)
$$\lambda_1 x \cdot \frac{\partial \varphi}{\partial x} + (\lambda_2 y + a x^p y^{q+1}) \frac{\partial \varphi}{\partial y} = \lambda_3 \varphi + \sum_{n=1}^{\infty} (x^p y^q)^n.$$

Substitution of $\varphi = \sum_{j+k>2} \varphi_{jk} x^j y^k$ into (E.1) yields

(E.2)
$$\sum_{j+k\geq 2} (j\lambda_1 + k\lambda_2 - \lambda_3)\varphi_{jk}x^j y^k + \sum_{j+k\geq 2} ak\varphi_{jk}x^{j+p}y^{k+q} = \sum_{n=1}^{\infty} (x^p y^q)^n.$$

Solving formally we have

- if $(j, k) \neq n(p, q)$ then $\varphi_{jk} = 0$,
- if (j, k) = n(p, q) then $(-\lambda_3)\varphi_{n(p,q)} + a \cdot q(n-1)\varphi_{(n-1)(p,q)} = 1$ for $n \geq 1$.

For
$$n = 1$$
: $\varphi_{p,q} = -1/\lambda_3$.

For
$$n = 2$$
: $\varphi_{2(p,q)} = -1/\lambda_3 \cdot (1 + aq/\lambda_3)$.

For
$$n = 2$$
: $\varphi_{2(p,q)} = -1/\lambda_3 \cdot (1 + aq/\lambda_3)$.
For $n = 3$: $\varphi_{3(p,q)} = -(1/\lambda_3)(1 + (2aq/\lambda_3)(1 + aq/\lambda_3))$.

For n = k + 1:

$$\varphi_{k+1(p,q)} = -\frac{1}{\lambda_3} \left(1 + \frac{kaq}{\lambda_3} (1 + (k-1) \frac{aq}{\lambda_3} \left(1 + \dots + \left(1 + \frac{aq}{\lambda_3} \right) \right) \dots \right).$$

Then, we can verify that

$$|\varphi_{n(p,q)}| > (n-1)|\varphi_{(n-1)(p,q)}|.$$

So, φ has a divergent power series, and is not a holomorphic germ.

Remarks. (1) The coefficient $j\lambda_1 + k\lambda_2 - \lambda_3$ of φ_{jk} in equation (E.2) is never zero but it has minimum module when (j, k) = n(p, q) $n \ge 1$. The idea for obtaining divergence is to take the subseries of the coefficients φ_{jk} corresponding to the minimum of $|j\lambda_1 + k\lambda_2 - \lambda_3|$.

(2) The divergent series that we obtained in the example diverges as $\sum k!x^k$. Then it is Gevrey of order two, and we can prove that it belongs to $\mathbb{C}\{x\}[[y]] \cap \mathbb{C}\{y\}[[x]]$; see [3]. In the following we obtain the best holomorphic normal form for the class of foliations in study.

Proposition 1 (Holomorphic normal form). There exists a holomorphic change of coordinates near $0 \in \mathbb{C}^3$ transforming a vector field X into the normal form

$$\dot{x} = \lambda_1 x + x^p y^q A(x, y, z),
\dot{y} = \lambda_2 y + x^p y^q B(x, y, z),
\dot{z} = \lambda_3 z + x^p y^q C(x, y, z),$$

where A, B and C are holomorphic functions.

Proof. Consider the vectors fields

X:
$$\begin{cases} \dot{x}_{1} = \lambda_{1}x_{1} + f_{1}(x), \\ \dot{x}_{2} = \lambda_{2}x_{2} + f_{2}(x), \\ \dot{x}_{3} = \lambda_{3}x_{3} + f_{3}(x), \end{cases} f_{j}(x) = \sum_{|Q| \geq 2} f_{jQ}x^{Q},$$

and

Y:
$$\begin{cases} \dot{y}_1 = \lambda_1 y_1 + g_1(y), \\ \dot{y}_2 = \lambda_2 y_2 + g_2(y), \\ \dot{y}_3 = \lambda_3 y_3 + g_3(y). \end{cases} g_j(y) = \sum_{|Q| \ge 2} g_{jQ} y^Q,$$

Let H(y) = y + h(y) = x, $y = (y_1, y_2, y_3)$, $x = (x_1, x_2, x_3)$, $h(y) = (h_1(y), h_2(y), h_3(y))$, such that dH(Y) = X(H); suppose X holomorphic. Then we have the equations

(E.3)
$$\sum_{|Q| \ge 2} [((Q, \Lambda) - \lambda_j)h_{jQ} + g_{jQ}]y^Q$$

$$= f_j(y + h(y)) - \sum_{k=1}^3 g_k(y) \cdot \frac{\partial h_j}{\partial y_k} \quad \text{for } j = 1, 2, 3$$

where $Q = (q_1, q_2, q_3), q_j \ge 0$: natural numbers

$$\Lambda = (\lambda_1, \lambda_2, \lambda_3), \qquad h_j(y) = \sum_{|Q| \geq 2} h_{jQ} y^Q.$$

Define

- if $y^Q \notin (y_1^p y_2^q)$ then $g_{jQ} = 0$ and $h_{jQ} = ((Q, \Lambda) \lambda_j)^{-1}$ (coefficient of y^Q in the right member of (E_j)).
- if $y^Q \in \langle y_1^p y_2^q \rangle$ then $h_{jQ} = 0$ and $g_{jQ} =$ coefficient of y^Q in the right member of (E_j) . Note that $y^Q \notin \langle y_1^p y_2^q \rangle$ if and only if $q_1 < p$ or $q_2 < q$.

Then there exists $\delta > 0$: cte. such that

$$|(Q, \Lambda) - \lambda_j| \ge \delta \cdot |Q| \quad \forall j = 1, 2, 3; \forall Q, |Q| \ge 2.$$

In the following we use only that

$$|(Q, \Lambda) - \lambda_j| \ge \delta > 0$$

for Q such that $y^Q \notin \langle y_1^p y_2^q \rangle$.

Observing that

$$\sum_{k=1}^{3} g_k(y) \frac{\partial h_j}{\partial y_k} \in \langle y_1^p y_2^q \rangle \quad \text{for } j = 1, 2, 3$$

we obtain the majorations in (E_i) :

$$\delta \sum |h_{jQ}|y^Q < \sum |(Q,\Lambda) - \lambda_j| \, |h_{jQ}|y^Q < \overline{f}_j(y + \overline{h}(y))$$

(where if $f(y) = \sum f_Q y^Q$ then $\overline{f}(y) = \sum |f_Q| y^Q$ and $\overline{\overline{f}}(w) = \sum |f_Q| w^{|Q|}$ ($w = y_1 = y_2 = y_3$), and < is the notation for majorations between series).

Then addition with respect to j yields

$$\delta \sum_{|Q| \ge 2} (|h_{1Q}| + |h_{2Q}| + |h_{3Q}|) y^{Q} < \sum_{j=1}^{3} \overline{f}_{j} (y + \overline{h}(y))$$

making $y_1 = y_2 = y_3 = w$, $\sum (|h_{1Q}| + |h_{2Q}| + |h_{3Q}|) w^{|Q|} = w \cdot u$, $u(w) = u_1 w + u_2 w^2 + \cdots$, we obtain

$$u \cdot w < \delta^{-1} \sum_{i=1}^{3} \overline{\overline{f}}_{i}(w + wu) < \frac{A_{0}w^{2}(1+u)^{2}}{1 - Aw(1+u)}$$
 where $A_{0} > 0$,

and A > 0 are constants, and

$$\sum_{j=1}^{3} \overline{\overline{f}}_{j}(w) < \frac{A_{0}w^{2}}{1 - Aw}.$$

Then

$$u < \frac{A_0 w (1+u)^2}{1-A w (1+u)}$$
.

Now we can prove that the holomorphic solution $v = A_0 w + \cdots$ of the equality

$$v = \frac{A_0 w (1+v)^2}{1 - A w (1+v)}$$

is a majorant for u (see [4]).

So u is holomorphic and consequently H(y). As $g_j(y) \in \langle y_1^p y_2^q \rangle$ we can write $g_j(y) = y_1^p y_2^q \cdot \overline{g}_j(y_1, y_2)$. Thus Y is in the form enunciated in the proposition.

III. STUDY OF THE HOLONOMIES

The holomorphic normal form given by Proposition 1 of §II has the coordinate axes invariant.

Now we compute their holonomies.

(a) Holonomy of the z axis. Let Σ be a transversal section to the C_z -axis by the point (0, 0, 1).

Take the loop $z = e^{i\theta}$, $0 \le \theta \le 2\pi$, in the C_z axis. Then $dz = ie^{i\theta} d\theta$, and substitution in

$$\frac{dx}{dz} = \frac{\lambda_1 x + x^p y^q A(x, y, z)}{\lambda_3 z + x^p y^q C(x, y, z)},$$

$$\frac{dy}{dz} = \frac{\lambda_2 y + x^p y^q B(x, y, z)}{\lambda_3 z + x^p y^q C(x, y, z)}$$

vields

$$\begin{split} \frac{dx}{d\theta} &= \left(i \cdot \frac{\lambda_1}{\lambda_3}\right) x + x^p y^q \overline{A}(x, y, e^{i\theta}), \\ \frac{dy}{d\theta} &= \left(i \cdot \frac{\lambda_2}{\lambda_3}\right) y + x^p y^q \overline{B}(x, y, e^{i\theta}). \end{split}$$

Integrating for $0 \le \theta \le 2\pi$ we obtain the diffeomorphism $H_{X,z}$: $(\Sigma, 1) \approx$ $(\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ defined by

$$H_{X,z}(x,y) = (e^{2\pi i \lambda_1/\lambda_3} x + x^p y^q h(x,y), e^{2\pi i \lambda_2/\lambda_3} y + x^p y^q g(x,y))$$

(h, g) are holomorphic functions).

Note that $H_{X,z}$ is a hyperbolic resonant diffeomorphism of \mathbb{C}^2 , 0, that is, we have

$$(e^{2\pi i\lambda_1/\lambda_3})^p \cdot (e^{2\pi i\lambda_2/\lambda_3})^q = 1$$

and

$$|e^{2\pi i\lambda_j/\lambda_3}| \neq 1$$
 $(j=1, 2).$

So $H_{X,x}$ has a well-known dynamics, it is topologically linearizable (see (5)). (b) Holonomy of the x-axis. Take a section Σ transversal to the C_x axis in the point (1,0,0); and the loop $x=e^{i\theta}$. Then $dx=ie^{i\theta}d\theta$, and substitution in

$$\frac{dy}{dx} = \frac{\lambda_2 y + x^p y^q B(x, y, z)}{\lambda_1 x + x^p y^q A(x, y, z)},$$

$$\frac{dz}{dx} = \frac{\lambda_3 z + x^p y^q C(x, y, z)}{\lambda_1 x + x^p y^q A(x, y, z)}$$

yields

$$\frac{dy}{d\theta} = \left(i\frac{\lambda_2}{\lambda_1}\right)y + y^q \overline{A}(e^{i\theta}, y, z),$$
$$\frac{dz}{d\theta} = \left(i\frac{\lambda_3}{\lambda_1}\right)z + y^q \overline{B}(e^{i\theta}, y, z).$$

Integrating for $0 \le \theta \le 2\pi$ we have the diffeomorphism $H_{X,x}$: \mathbb{C}^2 , $0 \to \mathbb{C}^2$, 0defined by

$$H_{X,x}(y, z) = (e^{2\pi i \lambda_2/\lambda_1} y + y^q h(y, z), e^{2\pi i \lambda_3/\lambda_1} z + y^q g(y, z)).$$

Note that

$$(e^{2\pi i\lambda_2/\lambda_1})^q = 1$$
 and $|e^{2\pi i\lambda_3/\lambda_1}| \neq 1$.

Thus, $H_{X,x}$ is a resonant, normally hyperbolic diffeomorphism of \mathbb{C}^2 , 0. The axis y=0 is invariant by $H_{X,x}$, and $H_{X,x}$ restricted to it is linear (a contraction or an expansion).

The axis z=0 may or may not be invariant by $H_{X,x}$. We can construct examples where no holomorphic invariant curve (tangent to the y-axis) by $H_{X,x}$ exists, e.g. take the holonomy of the equation considered in the example of §II.

(c) Holonomy of the y-axis. Making $y = e^{i\theta}$ and proceeding analogously to case (b) we obtain the diffeomorphism

$$H_{X,y}(x,z) = (e^{2\pi i \lambda_1/\lambda_2} x + x^p h(x,z), e^{2\pi i \lambda_3/\lambda_1} z + x^p h(x,z)).$$

Note that

$$(e^{2\pi i\lambda_1/\lambda_2})^p=1$$
, $|e^{2\pi i\lambda_3/\lambda_1}|\neq 1$.

So $H_{X,y}$ has the same properties as $H_{X,x}$.

Remark. If the foliation \mathscr{T}_X has a holomorphic center surface (tangent in 0 to the \mathbb{C}^2_{xy} -plane) then the holonomy $H_{X,x}$ (and $H_{X,y}$) has one holomorphic invariant curve (center manifold) tangent to the \mathbb{C}_y -axis. In this case $H_{X,x}$ has the form

$$(y, z) \mapsto (e^{2\pi i \lambda_2/\lambda_1} y + y^q h(y, z), e^{2\pi i \lambda_3/\lambda_1} z + z y^q g(y, z)).$$

In the invariant axis $\{z = 0\}$ we obtain the diffeomorphism

$$(v,0) \mapsto (e^{2\pi i \lambda_2/\lambda_1} v + v^q h(v,0),0).$$

This is a diffeomorphism of C, 0 with linear part a root of unity.

The dynamics of these diffeomorphisms is well known, they have a dynamic like a flower (see [2, 3]) (see Figure 1).

In this way, a foliation of product type like \mathscr{F}_{X_0} , has the following picture for their holonomies. (See Figure 2.)

In Σ_1 we have the illustration shown in Figure 3.

In Σ_2 we have the illustration shown in Figure 4.

In Σ_3 we have the illustration shown in Figure 5.

In Σ_1 and Σ_2 we are in presence of normal hyperbolicity, with known dynamics in the center manifold.

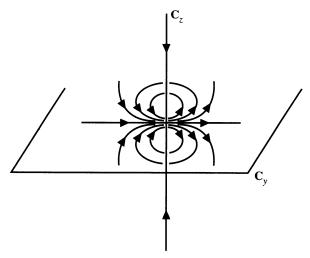
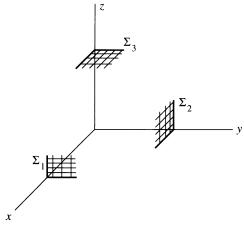


FIGURE 1. $(y, z) \mapsto (y + y^2, \lambda_3 z), |\lambda_3| < 1$



 $\Sigma_1, \Sigma_2, \Sigma_3$: transversal sections

Figure 2. $(\lambda_1=1\,,\,\lambda_2=-1)$ (order of resonance two)

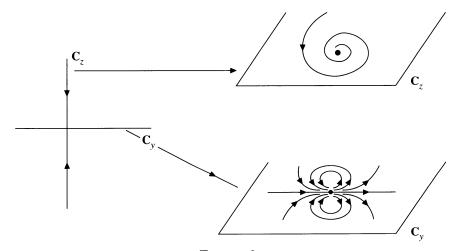


FIGURE 3

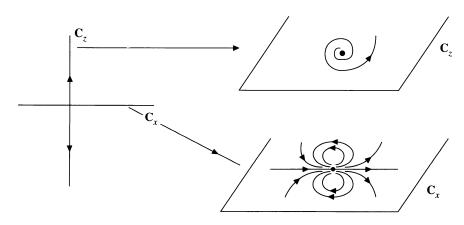


Figure 4

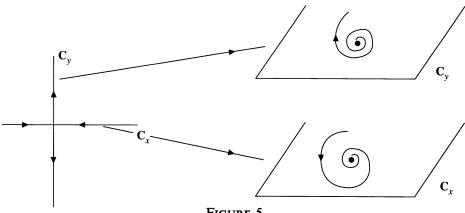


FIGURE 5

By the theorem of Palis and Takens (see [5]), we get that

$$H(y, z) = (e^{2\pi i \lambda_2/\lambda_1} y + y^q h(y, z), e^{2\pi i \lambda_3/\lambda_1} z + z y^q g(y, z))$$

is topologically conjugate to

$$G(y, z) = (e^{2\pi i \lambda_2/\lambda_1} y + y^q h(y, 0), e^{2\pi i \lambda_3/\lambda_1} z).$$

But, by the classification theorem of Camacho (see [2]) G is topologically conjugate to

$$(y, z) \mapsto (e^{2\pi i \lambda_2/\lambda_1} y + y^{kq+1}, e^{2\pi i \lambda_3/\lambda_1} z)$$

(here k is the order of the first resonance).

IV. Normally hyperbolic diffeomorphisms of \mathbb{C}^2 , 0 WITH RESONANCE-TOPOLOGICAL CLASSIFICATION

Consider a germ of holomorphic diffeomorphism

$$f: \mathbf{C}^2, 0 \to \mathbf{C}^2, 0,$$

$$f(x, y) = (\lambda_1 x + \alpha(x, y), \lambda_2 y + \beta(x, y))$$

with $\lambda_1 = e^{2\pi i p/q}$, $0 \neq |\lambda_2| \neq 1$, α , β : \mathbb{C}^2 , $0 \to \mathbb{C}$ holomorphic functions. We can choose coordinates in \mathbb{C}^2 , 0 relatively to which f is written as

$$f(x, y) = (\lambda_1 x + x^q \overline{\alpha}(x, y), \lambda_2 y + x^q \overline{\beta}(x, y)).$$

In this system of coordinates the Cy-axis is invariant. As we have already observed, in some cases there does not exist a holomorphic center manifold invariant by f.

In this case we ask about the existence of an invariant curve for f which is differentiable of class C^m , and how large we can take m.

By the Center Manifold Theorem (see [7, pp. 64-67]) we have always an invariant curve S for f, tangent to the x-axis through 0 in \mathbb{C}^2 , and this curve can be chosen with class of differentiability m, m as large as we want (if mincreases the neighborhood in which S is defined decreases).

This invariant curve is of the form

$$S = \{(x, y) | y = u(x); u: \mathbb{C}, 0 \to \mathbb{C}, 0 \text{ is of class } \mathbb{C}^m\}.$$

Note that we cannot assert that S is unique. But we know that two invariant curves S and S' of class C^m are such that f|S and f|S' have the same dynamics.

Now, using the Normal Hyperbolicity Theory of Palis and Takens (see [5]) we have that the dynamics of f in a neighborhood of $0 \in \mathbb{C}^2$ depends only on the dynamics of f|S, from the topological point of view.

A natural question now is: What is the dynamics of f|S?

The answer is given by the following theorem.

Theorem (Dumortier, Rodrigues, and Roussarie [6]). Let $f: \mathbb{C}, 0 \to \mathbb{C}, 0$ a germ of diffeomorphism of class \mathbb{C}^m with

$$f(z) = \lambda z + a \cdot z^k + O(|z|^k), \qquad \lambda^n = 1, a \neq 0, k > 2.$$

Suppose m > k. Then f is topologically conjugate to $z \mapsto \lambda z + z^k$.

If m is big enough we can take k = ln + 1 for some $l \ge 1$. (l is the order of the first resonance.)

With these results we can prove the following:

Theorem A (Topological classification of resonant normally hyperbolic diffeomorphisms). Let $f: \mathbb{C}^2$, $0 \to \mathbb{C}^2$, 0 holomorphic with

$$df(0) = \operatorname{diag}(\lambda_1, \lambda_2), \qquad \lambda_1^q = 1, \ 0 \neq |\lambda_2| \neq 1.$$

Then f is topologically conjugate to

$$g(x, y) = (\lambda_1 x + x^{kq+1}, \lambda_2 y)$$

where k is the order of the first resonance in the formal normal form of f. Proof. It is well known that f has the formal normal form

$$F(x, y) = \left(\lambda_1 x + \sum_{j=1}^{\infty} a_j x^{jq+1}, \lambda_2 y + y \sum_{j=1}^{\infty} b_j x^{jq}\right).$$

Let $k = \min\{l \in \mathbb{N} \mid a_l \neq 0\}$. (If $k = \infty$ f is analytically linearizable, see [4].) Suppose $k < \infty$.

By a holomorphic change of coordinates we can write f in the form

$$f(x, y) = (\lambda_1 x + a_k x^{kq+1} + R_1(x, y), \lambda_2 y + x^q R_2(x, y))$$

where $R_1 = o(|(x, y)|^{kq+1})$.

Now, we can choose an invariant curve for f of class C^m , through 0 in \mathbb{C}^2 and tangent to the \mathbb{C}_x -axis in 0, with m > kq + 1 (see [7, pp. 64-67]).

This invariant curve is defined by

$$S = \{(x, y) | y = u(x), u(x) = u_{kq}x^{kq} + r(x); r(x) = O(|x|^{kq}), r \text{ of class } C^m\}.$$

Then f|S is given by

$$f(x, u(x)) = (\lambda_1 x + a_k x^{kq+1} + R_1(x, u(x)), \lambda_2 u(x) + x^q R_2(x, u(x))).$$

In this way, we obtain that f|S is a diffeomorphism of \mathbb{R}^2 , 0 of class C^m defined by the expression:

$$(C, 0) \approx (\mathbf{R}^2, 0) \to \mathbf{R}^2, 0,$$

 $x \to \lambda_1 x + a_k x^{kq+1} + R_1(x, u(x)).$

By the theorem of Dumortier, Rodriques, and Roussarie we get that f|S is topologically conjugate to $x \to \lambda_1 x + x^{kq+1}$.

Finally, by the normal hyperbolicity we have that f is topologically conjugate to

$$(x, y) \rightarrow (\lambda_1 x + x^{kq+1}, \lambda_2 y).$$

V. The problem of the topological classification for the foliation \mathscr{F}_X

We are interested in the description of the foliation \mathscr{F}_X , when X is any holomorphic normal form given by Proposition 1 of §II.

If two foliations \mathcal{F}_X and \mathcal{F}_Y are topologically equivalent, then their holonomies are topologically conjugate.

So, by Theorem A of §IV we see that all equations in study have holonomies of one of the two types:

- saddle-hyperoblic (holonomy of the C_z -axis), or
- normally hyperbolic (holonomies of the C_x and C_y axes).

In the second case they have dynamics like a product of a "flower" in the center manifold with a linear contraction or expansion.

As the foliations type product (like \mathscr{F}_{X_0}) have these same types of holonomies we can resume these facts in the following.

Theorem B. The holonomies of the separatrices of \mathcal{F}_X give no obstructions for the foliation to be topologically equivalent to a product type foliation.

ACKNOWLEDGMENT

The author wishes to thank the referee for useful comments.

REFERENCES

- C. Camacho and P. Sad, Topological classification and bifurcations of holomorphic flows with resonances in C², Invent. Math. 67 (1982), 447-472.
- C. Camacho, On the local structure of conformal mappings and holomorphic vector fields in C², Astérisque 59-60 (1978).
- 3. J. Martinet and J. P. Ramis, Classification analytique des équations differentielles non linéaires réssonantes du premier ordre, Ann. Sci. Ecole Norm. Sup. 16 (1983), 571-621.
- A. D. Brjuno, Analytical form of differential equations, Trans. Moscow Math. Soc. 25 (1971), 131-288.
- 5. J. Palis and F. Takens, Topological equivalence of normally hyperbolic dynamical systems, Topology 16 (1977).
- F. Dumortier, P. R. Rodrigues and R. Roussarie, Germs of diffeomorphisms in the plane, Lecture Notes in Math., vol. 902, Springer-Verlag, Berlin and New York, 1981.
- M. Hirsch, C. Pugh and M. Shub, *Invariant manifolds*, Lecture Notes in Math., vol. 583, Springer-Verlag, Berlin and New York, 1977.
- 8. J. C. Canille Martins, Contribuição ao estudo local de fluxos holomorfos com ressonância, Tese de Doutorado, IMPA-CNPq, Brasil.

UNESP IBLCE, DEPARTAMENTO DE MATEMÁTICA, RUA CRISTOVÃO COLOMBO 2245, 15.100, SÃO JOSÉ DO RIO PRETO (SP), BRASIL