EXCLUDING SUBDIVISIONS OF INFINITE CLIQUES

NEIL ROBERTSON, P. D. SEYMOUR, AND ROBIN THOMAS

ABSTRACT. For every infinite cardinal κ we characterize graphs not containing a subdivision of K_{κ} .

1. Introduction

In this paper graphs may be infinite, and may have loops and multiple edges. A graph G is a *subdivision* of a graph H if G can be obtained from H by replacing the edges of H by internally disjoint paths joining the same ends. Let G be a graph. A *tree-decomposition* of G is a pair (T, W), where T is a tree (a connected graph with no circuits) and $W = (W_t : t \in V(T))$ is such that

(W1) $\bigcup_{t \in V(T)} W_t = V(G)$, and every edge of G has both ends in some W_t ,

(W2) if t' lies on the path of T between t and t'', then $W_t \cap W_{t''} \subseteq W_{t'}$. If κ is a cardinal, we say that (T, W) has $width < \kappa$ if $|W_t| < \kappa$ for every $t \in V(T)$, and

$$\left|\bigcup_{i=1}^{\infty}\bigcap_{j\geq i}W_{t_j}\right|<\kappa$$

for every infinite path t_1 , t_2 , ... in T. We shall prove the following result for excluding a subdivision of K_{\aleph_0} , the countable clique.

(1.1) A graph G contains no subgraph isomorphic to a subdivision of K_{\aleph_0} if and only if G admits a tree-decomposition of width $\langle \aleph_0 \rangle$.

One cannot hope for an analogous theorem for uncountable cardinals because of the following [4].

(1.2) For every cardinal κ there exists a graph G with no subgraph isomorphic to a subdivision of K_{\aleph_1} such that for every tree-decomposition (T, W) of G there exists $t \in V(T)$ with $|W_t| \ge \kappa$.

However, the next best weakening works, namely "well-founded tree-decomposition," which we now introduce. A well-founded tree is a nonempty partially ordered set $T=(V,\leq)$ such that for every two elements t_1 , $t_2\in V$ their infimum exists and such that the set $\{t'\in V:t'< t\}$ is well-ordered for every

Received by the editors March 30, 1990.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 05C75.

The first and third authors' research was performed under a consulting agreement with Bellcore. The first author was also supported by NSF under Grant No. DMS-8903132.

The third author was also supported by DIMACS Center, Rutgers University, New Brunswick, New Jersey.

 $t \in V$. It follows that T has a minimum element, called the *root* and denoted by $\operatorname{root}(T)$. We write V(T) = V and call the elements of V(T) the *vertices* of T. If λ is an ordinal we say that T is $<\lambda$ high if every chain in T has order type $<\lambda$. For t_1 , $t_2 \in V(T)$ we define $T[t_1, t_2]$ to be the set of all $t \in V(T)$ such that $\inf(t_1, t_2) \le t$, and either $t \le t_1$ or $t \le t_2$. For t, $t' \in V(T)$ we say that t' is a successor of t, and that t is a predecessor of t', if t < t' and there is no $t'' \in V(T) - \{t, t'\}$ with $t \le t'' \le t'$.

A well-founded tree-decomposition of a graph G is a pair (T, W), where T is a well-founded tree and $W = (W_t : t \in V(T))$ satisfies

- (W1) $\bigcup_{t \in V(T)} W_t = V(T)$, and every edge of G has both ends in some W_t ,
- (W2) if $t' \in T[t, t'']$ then $W_t \cap W_{t''} \subseteq W_{t'}$, and
- (W3) if $C \subseteq V(T)$ is a chain and $c = \sup C \in V(T)$, then $\bigcap_{t \in C} W_t \subseteq W_c$.

We say that (T, W) has $width < \kappa$ if $|\bigcup_{t \in C} \bigcap \{W_{t'} : t' \in C, t' \ge t\}| < \kappa$ for every chain $C \subseteq V(T)$. It follows that if (T, W) has width $< \kappa$ then $|W_t| < \kappa$ for every $t \in V(T)$. We say that (T, W) is $< \kappa$ high if T is $< \kappa$ high.

We say that a well-founded tree T is graph-theoretic if every chain in T has order type $\leq \omega$. Let R be a tree and let $r \in V(R)$. We define $t_1 \leq t_2$ for t_1 , $t_2 \in V(R)$ to mean that t_1 lies on the path between r and t_2 . It is easily seen that $T = (V(R), \leq)$ is a graph-theoretic well-founded tree and that every graph-theoretic well-founded tree arises this way. Moreover, $T[t_1, t_2]$ is the set of all vertices of R which lie on the path between t_1 and t_2 in R. We say that a well-founded tree-decomposition (T, W) is graph-theoretic if T is graph-theoretic. Thus we have proved

(1.3) Let κ be a cardinal. A graph G admits a graph-theoretic well-founded tree-decomposition of width $< \kappa$ if and only if G admits a tree-decomposition of width $< \kappa$.

The true version of (1.1) for larger cardinals is the following.

- (1.4) Let κ be an infinite cardinal and let G be a graph. Then the following two conditions are equivalent:
 - (i) G contains no subgraph isomorphic to a subdivision of K_{κ} ,
 - (ii) G admits a well-founded tree-decomposition of width $< \kappa$.

If $\kappa = \aleph_0$ then the tree-decomposition in (ii) can be chosen graph-theoretic. If κ is regular and uncountable, then (i) and (ii) are equivalent to

- (iii) G admits a well-founded tree-decomposition of width $< \kappa$ which is $< \kappa$ high.
- By (1.3), (1.4) implies (1.1). Notice that if κ is regular and (T, W) is a tree-decomposition of a graph G which is $<\kappa$ high, then (T, W) has width $<\kappa$ if and only if $|W_t|<\kappa$ for every $t\in V(T)$. The equivalence of (i) and (iii) for regular uncountable cardinals is similar to (and interderivable with) a result independently obtained by Diestel [2]. Diestel's theorem generalizes a theorem of Halin [3].

There are other conditions that are equivalent to the conditions of (1.4) when κ is regular uncountable. We now introduce two of them; others can be found in [7]

A linear decomposition of a graph G is a pair (L, X), where L is a (Dedekind) complete linearly ordered set and $X = (X_l : l \in L)$ is such that

(L1) $\bigcup_{l \in I} X_l = V(G)$, and every edge of G has both ends in some X_l ,

- (L2) if $l \leq l' \leq l''$, then $X_l \cap X_{l''} \subseteq X_{l'}$, and
- (L3) $\bigcap_{i \in I} X_i \subseteq X_{\inf(I)} \cap X_{\sup(I)}$ for every nonempty interval $I \subseteq L$.

We say that (L, X) has $width < \kappa$ if $|X_l| < \kappa$ for every $l \in L$. Let us remark that the requirement that L be complete is not restrictive, because any "incomplete" decomposition can be completed in the obvious way. Linear decompositions are motivated by path-decompositions from [5], and their relation to excluding infinite trees is studied in [8].

Finally, we introduce the following generalization of stoppages from [1]. Let G be a graph. A cut in G is an ordered pair (A, B) of subsets of V(G) such that $A \cup B = V(G)$ and there is no edge between A - B and B - A. The order of (A, B) is $|A \cap B|$. Now let κ be a cardinal. A stoppage of order κ in a graph G is a set $\mathscr S$ of cuts, all of order $< \kappa$, such that

- (i) if (A, B) is a cut in G of order $< \kappa$, then $\mathscr S$ contains one of (A, B), (B, A),
- (ii) if (A_1, B_1) , $(A_2, B_2) \in \mathcal{S}$, then $(G|A_1) \cup (G|A_2) \neq G$ (where G|A is the restriction of G to A), and
- (iii) if $\mathcal{M} \subseteq \mathcal{S}$ is a chain of cuts (that is, for (A_1, B_1) , $(A_2, B_2) \in \mathcal{M}$ either $A_1 \subseteq A_2$ and $B_1 \supseteq B_2$, or $A_1 \supseteq A_2$ and $B_1 \subseteq B_2$) and for

$$A = \bigcup \{A' : (A', B') \in \mathscr{M}\}, \qquad B = \bigcap \{B' : (A', B') \in \mathscr{M}\}$$

the order of (A, B) is $< \kappa$, then $(A, B) \in \mathcal{S}$.

We will refer to (i), (ii), (iii) as the stoppage axioms.

The following result extends (1.4) for κ regular uncountable.

- (1.5) Let G be a graph and let κ be a regular uncountable cardinal. Then the following conditions are equivalent:
 - (i) G has no subgraph isomorphic to a subdivision of K_{κ} ,
 - (ii) G admits $a < \kappa$ high well-founded tree-decomposition of width $< \kappa$,
 - (iii) G admits a linear decomposition of width $< \kappa$.
 - (iv) G has no stoppage of order $\geq \kappa$.

Theorem (1.5) is false for $\kappa = \aleph_0$, because it is shown in [8] that if $\kappa = \aleph_0$ then (iii) is equivalent to not containing a subgraph isomorphic to a subdivision of the \aleph_0 -branching tree. The assumption that κ is regular cannot be dropped either, because of the following (we do not know whether there is a similar counterexample when $cf(\kappa) > \omega$).

(1.6) There exists a graph which contains no subgraph isomorphic to a subdivision of $K_{\aleph_{\omega}}$ and which has no linear decomposition of width $< \aleph_{\omega}$.

The paper is organized as follows: In $\S 2$ we prove (1.4) and in $\S 3$ we prove (1.5) and (1.6). We end this section with the following lemma, a relative of (3.4) from [6].

(1.7) Let G be a graph, let F be the vertex-set of a connected subgraph of G, let (T, W) be a well-founded tree-decomposition of G and let t_1 , $t_2 \in V(T)$ be such that $W_{t_1} \cap F \neq \emptyset \neq W_{t_2} \cap F$. If t, $t' \in T[t_1, t_2]$ are such that $t \leq t'$ and there is no $t'' \in V(T)$ with t < t'' < t' then $W_t \cap W_{t'} \cap F \neq \emptyset$. In particular, if $t \in T[t_1, t_2]$ then $W_t \cap F \neq \emptyset$.

Proof. We proceed by induction on |V(P)|, where P is the shortest path connecting W_{t_1} and W_{t_2} with $V(P) \subseteq F$. If |V(P)| = 1 the result follows from (W2). If $|V(P)| \ge 2$ let $u \in V(P) \cap W_{t_1}$ be an endvertex of P, and let $v \in V(P)$ be the neighbor of u in P. By (W1) there is $r \in V(T)$ such that u, $v \in W_r$. It is easy to see that either t, $t' \in T[t_1, r]$ or t, $t' \in T[r, t_2]$. In the former case $u \in W_t \cap W_{t'} \cap F$ by (W2), and in the latter one the result follows from the induction hypothesis applied to r, t_2 and F. \square

2. Greedy method

In this section we prove (1.4). First we shall prove that (ii) implies (i).

(2.1) Let κ be a cardinal, let G be a graph and let (T, W) be a well-founded tree-decomposition of G of width $< \kappa$. Then G contains contains no subgraph isomorphic to a subdivision of K_{κ} .

Proof. Let (T, W) be as stated in (2.1). Suppose for a contradiction that G contains a subgraph H isomorphic to a subdivision of K_{κ} , and let $V \subseteq V(H)$ be the set of vertices corresponding to vertices of K_{κ} . For each $v \in V$, let t(v) be the minimal $t \in V(T)$ with $v \in W_t$ (it is unique by (W2)).

(1) If $v_1, v_2 \in V$ then either $t(v_1) \le t(v_2)$ or $t(v_2) \le t(v_1)$.

For let $t = \inf(t(v_1), t(v_2))$. There are κ paths of H and hence of G, between v_1 and v_2 , mutually disjoint except for v_1 and v_2 , and all passing through W_t by (1.7). Since $|W_t| < \kappa$ it follows that one of v_1 , $v_2 \in W_t$, and so either $t = t(v_1)$ or $t = t(v_2)$. The claim follows.

(2) If v_1 , $v_2 \in V$ and $t(v_1) \leq t(v_2)$ then $v_1 \in W_t$ for all t with $t(v_1) \leq t \leq t(v_2)$.

For suppose not. Choose t_2 with $t(v_1) \le t_2 \le t(v_2)$ minimal such that $v_1 \notin W_{t_2}$. Since $v_1 \in W_t$ for all t with $t(v_1) \le t < t_2$, it follows that $t_2 \ne \sup\{t : t(v_1) \le t < t_2\}$ by (W3), and so there exists a predecessor t_1 of t_2 . By (1.7), each of the κ internally disjoint paths of H between v_1 and v_2 passes through $W_{t_1} \cap W_{t_2}$, and so one of v_1 , v_2 belongs to $W_{t_1} \cap W_{t_2}$. But $v_1 \notin W_{t_2}$, and $v_2 \notin W_{t_1}$ since $t_1 < t_2 \le t(v_2)$. This is a contradiction, and (2) follows.

Let $C = \{t \in V(T) : t \le t(v) \text{ for some } v \in V\}$.

(3) C is a chain, and $V \subseteq \bigcup_{t \in C} \bigcap \{W_{t'} : t' \in C, t' \geq t\}$.

For C is a chain by (1). Let $v \in V$, and let $t' \in C$, $t' \geq t(v)$. Choose $v' \in V$ with $t' \leq t(v')$. Then $t(v) \leq t(v')$ and by (2), $v \in W_{t'}$. Hence $v \in \bigcap \{W_{t'} : t' \in C, t' \geq t(v)\}$ and the claim follows.

But $|V| = \kappa$, and so (3) contradicts the fact that (T, W) has width $< \kappa$. \square

Next we prove the rest of (1.4). We first prove that every graph G admits a "standard decomposition" and then prove that if G is as in (1.4)(i) then this decomposition satisfies the conclusion of (1.4)(ii). If X is a set we put ||X|| = 0 if X is finite, and ||X|| = |X| otherwise. If G is a graph and $K \subseteq V(G)$, then N(K) is the set of all vertices in V(G) - K which are adjacent to a vertex in K, $G \setminus K$ is the graph obtained from G by deleting the vertices of K and all edges incident with these vertices, and a K-flap is the set of vertices of a component of $G \setminus K$.

Let (T, W) be a well-founded tree-decomposition of a graph G. We say

that (T, W) is a standard decomposition of G if

- (S1) $W_{\text{root}(T)} = \emptyset$,
- (S2) if t' is a successor of t in T, then $||W_{t'}|| \le ||W_t||$ and $W_{t'} W_t \ne \emptyset$,
- (S3) for every chain C in T which does not have a maximal element, any two nonadjacent vertices in $W_C := \bigcup_{t \in C} \bigcap \{W_{t'} : t' \in C, t' \geq t\}$ are joined in G by $\|W_C\|$ internally disjoint paths, and if C has a supremum, say t, then $W_t = W_C$ and t has at least one successor,
- (S4) for every $t \in V(T)$, every W_t -flap of G which intersects $\bigcup_{t \le t'} W_{t'}$ is intersected by $W_{t'}$ for some successor t' of t.
- (2.2) Every graph admits a standard decomposition.

Proof. Let G be a graph. Let u, $v \in X \subseteq V(G)$ and let μ be a cardinal. If there exists a set $Y \subseteq X - \{u, v\}$ with $\|Y\| \le \mu$ which meets every path P joining u, v with $V(P) \subseteq X$, then we let $\Theta(u, v, X, \mu)$ be one such set Y, and if not we define $\Theta(u, v, X, \mu) = \emptyset$.

For some ordinal λ , we shall construct a transfinite sequence W_{α} $(\alpha \leq \lambda)$ of subsets of V(G) satisfying

(1) $\emptyset = W_0 \subseteq W_1 \subseteq \cdots \subseteq W_{\alpha} \subseteq \cdots \subseteq W_{\lambda} = V(G)$. Also, for each $\alpha < \lambda$ we shall construct a partition \mathscr{X}_{α} of V(G)

Also, for each $\alpha < \lambda$ we shall construct a partition \mathscr{K}_{α} of $V(G) - W_{\alpha}$ into nonempty sets satisfying

- (2) for all $\alpha < \lambda$ if K, $K' \in \mathcal{K}_{\alpha}$ are distinct then no vertex of K has a neighbor in K', and
- (3) for $\alpha \leq \beta < \lambda$, every member of \mathcal{K}_{β} is a subset of a member of \mathcal{K}_{α} . Third, for each $\alpha < \lambda$ and each $K \in \mathcal{K}_{\alpha}$ we shall construct a subset $W_{(K,\alpha)}$ of $K \cup W_{\alpha}$.

The inductive definition is as follows. Let $W_0 = \varnothing$, $\mathscr{K}_0 = \{V(G)\}$, and $W_{(V(G),\,0)} = \varnothing$. Suppose that for some ordinal α we have defined W_β , \mathscr{K}_β and $W_{(K,\,\beta)}$ $(K \in \mathscr{K}_\beta)$ for all $\beta < \alpha$. Now we wish to define W_α , \mathscr{K}_α , $W_{(K,\,\alpha)}$ $(K \in \mathscr{K}_\alpha)$. Let

 $(4) W_{\alpha} = \bigcup \{W_{(K,\beta)} \colon \beta < \alpha, K \in \mathcal{K}_{\beta}\}.$

If $W_{\alpha} = V(G)$ we set $\lambda = \alpha$ and stop. Otherwise, there are two cases.

If α is a successor ordinal, say $\alpha=\beta+1$, let \mathscr{K}_{α} be the set of all W_{α} -flaps of G. For each $K\in\mathscr{K}_{\alpha}$ let $L\in\mathscr{K}_{\beta}$ include K, let $w\in K$ be arbitrary, let $Z=\{w\}\cup N(K)$, and let

$$W_{(K,\alpha)} = Z \cup \bigcup \{\Theta(u, v, K \cup N(K), \|W_{(L,\beta)}\|) : u, v \in Z\}.$$

Now, let α be a limit ordinal. For each $u \in V(G) - W_{\alpha}$ and each $\beta < \alpha$, let $K_{\beta}(u)$ be the member of \mathscr{K}_{β} containing u; then, by (3),

$$K_0(u) \supseteq K_1(u) \supseteq \cdots \supseteq K_{\beta}(u) \supseteq \cdots$$
.

Let $K(u)=\bigcap_{\beta<\alpha}K_\beta(u)$, and let $\mathscr{K}_\alpha=\{K(u):u\in V(G)-W_\alpha\}$. For $u\in V(G)-W_\alpha$, let

$$W_{(K(u),\alpha)} = \bigcup_{\beta < \alpha} \bigcap_{\beta < \gamma < \alpha} W_{(K_{\gamma}(u),\gamma)}.$$

This completes the inductive definition. It is easy to see that the ordinal λ indeed exists, that $W_{(K,\alpha)} \subseteq K \cup W_{\alpha}$ for every $\alpha < \lambda$ and every $K \in \mathcal{K}_{\alpha}$, and that (1), (2), (3) are satisfied.

We put $V(T) = \{(K, \alpha) : K \in \mathcal{H}_{\alpha}, \alpha \leq \lambda\}$ and define $(K, \alpha) \leq (K', \alpha')$ if $K \supseteq K'$ and $\alpha \leq \alpha'$. We put $T = (V(T), \leq)$. It follows easily that T is a well-founded tree. Let $W = (W_{(K, \alpha)} : (K, \alpha) \in V(T))$. We shall show that (T, W) is the desired standard decomposition, but we need several observations before we do so.

(5) $N(K) \subseteq W_{(K,\alpha)}$ for every $K \in \mathcal{K}_{\alpha}$ and every ordinal $\alpha < \lambda$.

We prove this by transfinite induction on α . The statement is obviously satisfied when $\alpha=0$, so let α be an ordinal and assume that (5) holds for all $\beta<\alpha$. Let $K\in \mathscr{K}_{\alpha}$ and let $v\in N(K)$. If α is a successor ordinal then $v\in W_{(K,\alpha)}$ by the definition of $W_{(K,\alpha)}$ so let α be a limit ordinal. Let u be a neighbor of v in K. Define $K_{\beta}(u)$ ($\beta<\alpha$) as before; then $K=\bigcap_{\beta<\alpha}K_{\beta}(u)$. Since $v\notin K$, there exists $\beta<\alpha$ with $v\notin K_{\beta}(u)$, and hence with $v\notin K_{\gamma}(u)$ for $\beta<\gamma<\alpha$. Since u, v are adjacent and $u\in K_{\gamma}(u)$, it follows that $v\in N(K_{\gamma}(u))\subseteq W_{(K_{\gamma}(u),\gamma)}$ for $\beta<\gamma<\alpha$, by the inductive hypothesis; and thus $v\in W_{(K,\alpha)}$ by the definition of $W_{(K,\alpha)}$. This proves (5).

(6) For $\alpha \leq \beta < \lambda$, if $K \in \mathcal{K}_{\alpha}$ and $L \in \mathcal{K}_{\beta}$ and $L \subseteq K$ then $W_{(L,\beta)} \subseteq W_{(K,\alpha)} \cup K$.

We prove this by transfinite induction on β . We may assume that $\alpha < \beta$. If β is a successor, $\beta = \gamma + 1$ say, let (L, β) be a successor of (M, γ) . Then

$$W_{(L,\beta)} \subseteq L \cup N(L) \subseteq M \cup N(M) \subseteq M \cup W_{(M,\gamma)}$$

by (5), and $W_{(M,\gamma)} \subseteq W_{(K,\alpha)} \cup K$ by the induction hypothesis. It follows that $W_{(L,\beta)} \subseteq M \cup W_{(K,\alpha)} \cup K \subseteq W_{(K,\alpha)} \cup K$, as required. Now assume that β is a limit ordinal. Let $v \in W_{(L,\beta)}$. By definition of $W_{(L,\beta)}$ there exists (M,γ) with $(K,\alpha) \leq (M,\gamma) < (L,\beta)$ with $v \in W_{(M,\gamma)}$. By the induction hypothesis, $W_{(M,\gamma)} \subseteq W_{(K,\alpha)} \cup K$, and so $v \in W_{(K,\alpha)} \cup K$. The result follows.

Let $v \in V(G)$. A pair $(K, \alpha) \in V(T)$ is called a *nest* of v if $v \in W_{(K,\alpha)}$ and for every ordinal $\beta < \alpha$ there is no $L \in \mathscr{K}_{\beta}$ such that $v \in W_{(L,\beta)}$. Since $W_{\lambda} = V(G)$, it follows from (4) with $\alpha = \lambda$ that there is a nest of v, for every $v \in V(G)$.

(7) Let (K, α) be a nest of $v \in V(G)$. Then $v \in K$.

For it follows from the minimality of α and (4) that $v \notin W_{\alpha}$. Since $v \in W_{(K,\alpha)} \subseteq K \cup W_{\alpha}$, the claim follows.

(8) If (K, α) is a nest of $v \in W_{(L,\beta)}$, then $(K, \alpha) \leq (L, \beta)$.

For $\alpha \leq \beta$, by the minimality of α . Let $K' \in \mathcal{K}_{\alpha}$ with $L \subseteq K'$. Since $v \in K$ by (7), and $v \in W_{(L,\beta)} \subseteq W_{(K',\alpha)} \cup K' \subseteq W_{\alpha} \cup K'$ by (6), we deduce that $K \cap (W_{\alpha} \cap K') \neq \emptyset$, and so K = K'. The result follows.

From (8) we deduce that the nest of v is unique.

(9) (T, W) is a well-founded tree-decomposition.

We must verify (W1)-(W3). We start with (W1). Certainly $\bigcup_{t\in V(T)} W_t = V(T)$, by (4) with $\alpha = \lambda$. Let e be an edge of G with endvertices u, v, say. Let (K, α) be the nest of u and let (L, β) be the nest of v. We may assume that $\alpha \leq \beta$. It follows from (7) that $u \in K$ and $v \in L$, and since they are adjacent we deduce that $L \subseteq K$. If $\alpha = \beta$ then K = L and we are done, and so we assume that $\alpha < \beta$. Then $u \notin L$ since $W_{(K,\alpha)} \subseteq W_{\alpha+1} \subseteq W_{\beta}$ and $L \cap W_{\beta} = \emptyset$. Hence $u \in N(L)$ and so $u \in W_{(L,\beta)}$ by (5), as desired. This proves (W1).

To verify (W2) let $v \in W_{(K,\alpha)} \cap W_{(L,\beta)}$. First let $(K,\alpha) < (M,\gamma) < (L,\beta)$. Then $L \subseteq M \subseteq K$ and $v \notin M$ because M is disjoint from $W_{(K,\alpha)}$. Therefore,

 $v \in W_{(L,\beta)} - M \subseteq W_{(M,\gamma)}$ by (6). Hence (W2) holds for t, t', t'' if t < t' < t''. Now let $K \cap L = \emptyset$. Let (N, δ) be the nest of v; then $(N, \delta) \le (K, \alpha)$ and $(N, \delta) \le (L, \beta)$ by (8). This together with the above shows that $v \in W_{(M,\gamma)}$ for every $(M, \gamma) \in T[(K, \alpha), (L, \beta)]$.

Finally, condition (W3) follows directly from the construction. This completes the proof of (9).

(10) If (K, α) , $(L, \alpha+1) \in V(T)$ and $(L, \alpha+1)$ is a successor of (K, α) , then $N(L) \subseteq W_{(K, \alpha)}$.

For let $v \in N(L)$ and let (M, β) be the nest of v. Since $v \in N(L) \subseteq W_{\alpha+1}$ by (2), it follows from (4) that $\beta \leq \alpha$. If $\beta = \alpha$ then K = M and $v \in W_{(M,\beta)} = W_{(K,\alpha)}$, while if $\beta < \alpha$ then $v \notin K$ because $K \cap W_{(M,\beta)} = \emptyset$, and hence $v \in N(K) \subseteq W_{(K,\alpha)}$ by (5).

(11) (T, W) is a standard decomposition.

We must verify (S1)-(S4). Condition (S1) is clear. To see (S2) let $(K, \alpha+1)$ be a successor of (L, α) . Then $N(K) \subseteq W_{(L, \alpha)}$ by (10), and by the construction

$$W_{(K,\,\alpha+1)} = Z \cup \bigcup \{\Theta(u\,,\,v\,,\,K \cup N(K)\,,\,\|W_{(L\,,\,\alpha)}\|): u\,,\,v \in Z\}\,,$$

where $Z = \{w\} \cup N(K)$ and $w \in K$. Thus $w \in W_{(K,\alpha+1)} - W_{(L,\alpha)} \neq \emptyset$, and

$$||W_{(K,\alpha+1)}|| \le ||Z|| + ||Z||^2 \cdot ||W_{(L,\alpha)}|| \le ||W_{(L,\alpha)}||,$$

because $||Z|| \le ||W_{(L,\alpha)}||$. To prove (S3) let C be a chain in T which does not have a maximal element, and let $W_C = \bigcup_{t \in C} \bigcap \{W_{t'} : T' \in C, t' \geq t\}$. Suppose for a contradiction that $u, v \in W_C$ are separated by a cutset, say A, of cardinality $< ||W_C||$. It follows that $||W_C|| = |W_C| \ge \aleph_0$. Then there exists $(K, \alpha) \in C$ such that $|W_{(K,\alpha)}| \geq |A|$ and $u, v \in W_t$ for every $t \in C$ with $t \ge (K, \alpha)$. Let $(L, \alpha+1) \in C$ be the successor of (K, α) , and let $(M, \alpha+2) \in C$ C be the successor of $(L, \alpha + 1)$. It follows that $u, v \in N(L) \cap N(M)$. By construction $W_{(L,\alpha+1)} - \{u,v\}$ meets every path P joining u and v with $V(P) \subseteq L \cup N(L)$, but that contradicts the fact that $u, v \in N(M)$ since $M \cap W_{(L,\alpha+1)} = \emptyset$ and M is a $W_{\alpha+2}$ -flap. Hence u, v are not separated by a cutset of size $< \|W_C\|$, and the first part of (S3) follows. Now if C has a supremum, say $t = (K, \beta)$, then $W_t = W_C$ follows directly from the construction. It also follows that β is a limit ordinal, and $\beta < \lambda$. Since $W_{(M,\beta)} \subseteq W_{\beta}$ for all $M \in \mathcal{X}_{\beta}$ from the construction, and hence $W_{\beta+1} = W_{\beta}$, it follows that K includes a $W_{\beta+1}$ -flap L since $K \neq \emptyset$, and hence $(L, \beta+1)$ is a successor of (K, β) . This proves (S3).

To prove (S4) let $t=(K,\alpha)$ and let F be a W_t -flap which intersects $\bigcup_{t\leq t'}W_{t'}$. We claim that $F\cap W_{\alpha+1}=\varnothing$. For if, say, $F\cap W_{(L,\beta)}\neq\varnothing$, where $\beta\leq\alpha$ then $t\not<(L,\beta)$ and so $F\cap W_t\neq\varnothing$ by (1.7), a contradiction. Hence $F\cap W_{\alpha+1}=\varnothing$. It follows that F is a $W_{\alpha+1}$ -flap and thus $F\in\mathscr{K}_{\alpha+1}$. But $F\cap W_{(F,\alpha+1)}\neq\varnothing$ by the construction, as desired. \square

The following is an easy lemma and the proof is left to the reader.

(2.3) Let G be a graph and let κ be an infinite cardinal. If there exists a set $X \subseteq V(G)$ with $|X| \ge \kappa$ such that every two nonadjacent vertices of X are joined by κ internally disjoint paths, then G contains a subgraph H isomorphic to a subdivision of K_{κ} in such a way that every vertex of H which corresponds to a vertex of K_{κ} belongs to X.

The following result implies $(i) \Rightarrow (ii)$ of (1.4), because (1.4) obviously holds for finite graphs.

(2.4) Let κ be an infinite cardinal, let G be an infinite graph which contains no subgraph isomorphic to a subdivision of K_{κ} and let (T, W) be a standard decomposition of G. Then $|V(T)| \leq |V(G)|$ and (T, W) has width $< \kappa$.

Proof. Let $f: V(T) - \{ root(T) \} \rightarrow V(G)$ be a mapping satisfying

- (i) if t' is a successor of t then $f(t') \in W_{t'} W_t$, and
- (ii) if $t \neq \text{root}(T)$ does not have a predecessor then $f(t) \in W_{t'} W_t$, where t' is a successor of t.

Such a mapping exists by (S2) and (S3). It follows from (W2) that $|f^{-1}(v)| \le 2$ for every $v \in V(G)$, and hence $|V(T)| \le |V(G)|$ because G is infinite.

To prove the assertion about width we must prove that

(1) for every chain $C \subseteq V(T)$, the set $W_C = \bigcup_{t \in C} \bigcap \{W_{t'} : t' \in C, t' \geq t\}$ has cardinality $< \kappa$.

We prove (1) by transfinite induction on the ordinal type of the set $\{t' \in V(T): t' \leq t \text{ for some } t \in C\}$, which we denote by h(C). From (S1) we deduce that (1) is true if $h(C) \leq 1$. So assume that (1) is true for all C with $h(C) < \alpha$ and let C with $h(C) = \alpha > 1$ be given. If C has a maximal element, say t, and t does not have a predecessor, then $W_C = W_t = W_{C-\{t\}}$ by (S3), which has cardinality $< \kappa$ by the induction hypothesis. If t has a predecessor, say t', then $W_C = W_t$, $W_{C-\{t\}} = W_{t'}$ and $|W_t| < \kappa$ by (S2) and the induction hypothesis. Finally, if C does not have a maximal element, then $|W_C| < \kappa$ by (S3) and (2.3).

This proves (1) and hence (2.4). \Box

If $T=(V, \leq)$ is a well-founded tree and $t \in V$, then the order type of the set $\{t' \in V : t' < t\}$ is called the *height* of t and is denoted by $\operatorname{ht}(t)$. The following implies that if $\kappa = \aleph_0$ then the well-founded tree-decomposition in (ii) of (1.4) can be chosen graph-theoretic.

(2.5) Let κ be an infinite regular cardinal, and let G and (T, W) be as in (2.4). Then every chain in T has order type $\leq \kappa$.

Proof. Suppose not. Then there is a vertex $t_0 \in V(T)$ with $\operatorname{ht}(t_0) = \kappa$. By (S3) there exists a successor t_0' of t_0 , and by (S2) there exists a W_{t_0} -flap F with $F \cap W_{t_0'} \neq \varnothing$. For every $v \in W_{t_0}$ there exists, by (S3), $t_v < t_0$ such that $v \in W_t$ for all t with $t_v \leq t \leq t_0$. Let $t_1 = \sup\{t_v : v \in W_{t_0}\}$. Since $|W_{t_0}| < \kappa$ by (2.4) and since κ is regular, we deduce that t_1 is well-defined and that $t_1 < t_0$. Since $W_{t_0} \subseteq W_{t_1}$, it follows that either $F \cap W_{t_1} \neq \varnothing$, or F is a W_{t_1} -flap in which case $F \cap W_{t_1'} \neq \varnothing$ for some successor t_1' of t_1 , by (S4). In either case, $F \cap W_{t_0} \neq \varnothing$ by (1.7), a contradiction. \square

Our next result implies (i) \Rightarrow (iii) of (1.4) for regular uncountable cardinals and thus completes the proof of (1.4).

(2.6) Let κ be a regular uncountable cardinal, and let G and (T, W) be as in (2.4). Then T is $< \kappa$ high.

Proof. Suppose for a contradiction that C is a chain in T of order type κ . We may assume that C has the property that if $t \in C$ and $t' \le t$ then $t' \in C$.

Let $X = \bigcup_{t \in C} \bigcap \{W_{t'} : t' \in C, t' \geq t\}$. From (2.4), $|X| < \kappa$, and since κ is regular it follows that there exists $t_0 \in C$ such that $X \subseteq W_t$ for every $t \in C$ with $t_0 \leq t$.

(1) For every $t_1 \in C$ with $t_1 \geq t_0$ there exists $t \in C$ with $t \geq t_1$ such that $X = W_t$.

To prove (1) we shall construct a sequence $t_1 < t_2 < \cdots$ of elements of C as follows. Assume that $n \ge 1$ and that t_n has already been constructed. We may assume that $W_{t_n} - X \ne \varnothing$, for otherwise we are done. For every $v \in W_{t_n} - X$ there exists $t_v \in C$ with $t_v \ge t_n$ and such that $v \notin W_{t_v}$. Since $|W_{t_n}| < \kappa$ and κ is regular, it follows that $t_{n+1} := \sup\{t_v : v \in W_{t_n} - X\}$ exists and belongs to C, and that $(W_{t_n} - X) \cap W_{t_{n+1}} = \varnothing$. Since $W_{t_n} - X \ne \varnothing$ we deduce that $t_{n+1} > t_n$. Since κ is regular uncountable it follows that $t = \sup t_n$ exists and belongs to C. We claim that t is as desired. For suppose for a contradiction that $v \in W_t - X$. Then $v \in W_{t'}$ for some t' < t by (S3), and hence $v \in W_{t_n}$ for some n. But then $v \notin W_{t_{n+1}}$, contrary to (W2). Hence such a choice of v is impossible, which proves (1).

From (1) we deduce that there exist t_1 , $t_2 \in C$ with $t_0 \le t_1 < t_2$ such that $W_{t_1} = W_{t_2} = X$. Let $t_2' \in C$ be the successor of t_2 in C. By (S2), $W_{t_2'} \cap F \ne \emptyset$ for some X-flap F of G. By (S4), $W_{t_1'} \cap F \ne \emptyset$ for some successor t_1' of t_1 . But $X \cap F = W_{t_2} \cap F \ne \emptyset$ by (1.7), a contradiction. \square

A natural question arises whether a highly connected graph can be decomposed into highly connected pieces. This turns out to be true, as follows. If μ is a cardinal we say that a graph G is μ -connected if $|V(G)| \ge \mu$ and $G \setminus X$ is connected for every $X \subseteq V(G)$ with $|X| < \mu$. We say that a subset $A \subseteq V(G)$ is μ -connected if the graph induced by A is μ -connected.

- (2.7) Let κ be a regular uncountable cardinal, let $\mu < \kappa$ be an infinite cardinal, and let G be a μ -connected graph which contains no subgraph isomorphic to a subdivision of K_{κ} . Then there exists a well-founded tree-decomposition (T,W) of G such that
 - (i) $|V(T)| \leq |V(G)|$,
 - (ii) every chain of T has order type $< \kappa$,
 - (iii) $|W_t| < \kappa$ and W_t is μ -connected for every $t \in V(T)$, and
 - (iv) for t, $t' \in V(T)$, if $t' \leq t$ then $W_{t'} \subseteq W_t$, and if ht(t) is a limit ordinal then $W_t = \bigcup_{t' \leq t} W_{t'}$.

Proof. Let (T, W'') be a standard decomposition of G. Then by (2.4), $|V(T)| \le |V(G)|$ and (T, W'') has width $<\kappa$, and by (2.6) every chain in T has order type $<\kappa$. Since G is μ -connected there exists a μ -connected set $M\subseteq V(G)$ with $|M|=\mu$. For $t\in V(T)$ let $W_t=W_t''\cup M$, and let $W=(W_t:t\in V(T))$. Then (T,W) is a well-founded tree-decomposition of G of width $<\kappa$.

- (1) Let $t_1 \in V(T)$ be a successor of $t_0 \in V(T)$. There is a subset $D_{t_1} \subseteq \bigcup_{t \geq t_1} W_t$ such that
 - (i) $W_{t_1} \subseteq D_{t_1}$ and $|D_{t_1}| < \kappa$, and
 - (ii) there is no cut (A, B) of the restriction of G to D_{t_1} such that $|A \cap B| < \mu$, $A \nsubseteq B \nsubseteq A$, and $W_{t_0} \cap W_{t_1} \subseteq A$.

For since G is μ -connected there is a μ -connected $F \subseteq V(G)$ with $W_{t_1} \subseteq F$ and with $|F| = \max(\mu, |W_{t_1}|)$. Set $D_{t_1} = F \cap \bigcup_{t \ge t_1} W_t$; then (i) is clearly

satisfied. To prove that D_{t_1} satisfies (ii) suppose for a contradiction that (A, B) is a cut as in (ii). Since the restriction of G to F is μ -connected there exists a path P in G joining a vertex of A-B to a vertex of B-A with $V(P)\subseteq F-(A\cap B)$. Let us choose such a path with |V(P)| minimum. Since (A, B) is a cut of the restriction of G to D_{t_1} it follows that $V(P)-\bigcup_{t\geq t_1}W_t\neq\varnothing$. From (W1) and (1.7) it follows that P contains a proper subpath joining a vertex $u\in W_{t_0}\cap W_{t_1}\subseteq A$ to a vertex in B-A. But $u\notin B$ and this subpath is shorter than P, a contradiction. Thus D_{t_1} satisfies both (i) and (ii) and the proof of (1) is complete.

Let $D_{\text{root}(T)} = M$, and for each $t \in V(T) - \{\text{root}(T)\}$ with no predecessor, let $D_t = \emptyset$. For each $t \in V(T)$ let $W'_t = \bigcup_{t' \le t} D_{t'}$.

(2) For each $t \in V(T)$, $|W'_t| < \kappa$ and W'_t is μ -connected.

For since every chain of T has order type $<\kappa$ and each $|D_{t'}|<\kappa$ and κ is regular, it follows that each $|W'_t|<\kappa$. We prove that W'_t is μ -connected by transfinite induction on $\operatorname{ht}(t)$. Certainly $|W'_t|\geq \mu$ since $D_{\operatorname{root}(T)}\subseteq W'_t$. If t is a successor of some t_0 then $W'_t=W'_{t_0}\cup D_t$. Suppose that (A,B) is a cut of the restriction of G to W'_t with $|A\cap B|<\mu$ and A-B, $B-A\neq\varnothing$. Now from the inductive hypothesis, W'_{t_0} is μ -connected, and so not both $(A-B)\cap W'_{t_0}$, $(B-A)\cap W'_{t_0}\neq\varnothing$. We assume that $W'_{t_0}\subseteq A$. Now $(A\cap D_t,B\cap D_t)$ is a cut of the restriction of G to D_t , and certainly $B\cap D_t\subseteq A\cap D_t$ since $B\not\subseteq A$ and $W'_{t_0}\subseteq A$. From the choice of D_t it follows that $A\cap D_t\subseteq B\cap D_t$, and so $D_t\subseteq B$. Thus $W_{t_0}\cap W_t\subseteq W'_{t_0}\cap D_t\subseteq A\cap B$, and so $|W_{t_0}\cap W_t|<\mu$. But $M\subseteq W_{t_0}\cap W_t$, a contradiction. Finally, suppose that t has no predecessor. Since $W'_{\operatorname{root}(T)}$ is μ -connected we may assume that $t\neq \operatorname{root}(T)$. Let $C=\{t'\in V(T):t'< t\}$. Then $W'_t=\bigcup_{t'\in C}W'_{t'}$ since $D_t=\varnothing$, and so W'_t is μ -connected since it is the union of a nested sequence of μ -connected subsets. This proves (2).

Let $W' = (W'_t : t \in V(T))$.

(3) (T, W') is a well-founded tree-decomposition.

We observe first that $W_t \subseteq W_t'$ for each $t \in V(T)$. This is clear if $t = \operatorname{root}(T)$ or t is a successor. Otherwise let C be the set of all t' < t which are successors. Then $W_t \subseteq \bigcup_{t' \in C} W_{t'}$ by (S3); each such $W_{t'} \subseteq W_{t'}$, and $\bigcup_{t' \in C} W_{t'}' \subseteq W_t'$ by the definition of W'. This proves that $W_t \subseteq W_t'$ for each $t \in V(T)$ and (W1) follows. To see (W2), let t_1 , t_2 , $t_3 \in V(T)$ with $t_2 \in T[t_1, t_3]$; and let $v \in W_{t_1}' \cap W_{t_3}'$. Choose $t_1' \subseteq t_1$ with $v \in D_{t_1'}$, and $t_3' \subseteq t_3$ similarly. If $t_1' \subseteq t_2$ or $t_3' \subseteq t_2$ then $v \in W_{t_2}'$ as required, and so we assume not. Hence $t_2 \in T[t_1', t_3']$. Now $v \in D_{t_1'} \subseteq \bigcup_{t \ge t_1'} W_t$, and similarly $v \in \bigcup_{t \ge t_3'} W_t$. Since $t_2 \in T[t_1', t_3']$ and $t_2 \subseteq t_1'$, t_3' it follows from (W2) (for (T, W)) that $v \in W_{t_2} \subseteq W_{t_2}'$ as required. Condition (W3) is clear because $W_t' \subseteq W_{t_1}'$ for $t \le t'$.

Finally, we observe that if $t \in V(T) - \{\text{root}(T)\}$ has no predecessor (i.e., ht(t) is a limit ordinal) then since $D_t = \emptyset$,

$$W'_t = \bigcup_{t' < t} D_{t'} = \bigcup_{t' < t} W_{t'}.$$

The result follows. \Box

For an application of (2.7) see [9].

3. Linear decompositions and stoppages

Now we prove (1.5). By (1.4), (i) \Rightarrow (ii). We shall prove (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i). We start with (ii) \Rightarrow (iii).

(3.1) Let κ be an uncountable regular cardinal, let G be a graph and let (T,W) be a $<\kappa$ high well-founded tree-decomposition of G of width $<\kappa$. Then G admits a linear decomposition of width $<\kappa$.

Proof. Let \leq' be a well-ordering of V(T) with the property that

(1) for every $t \in V(T)$, the order type of the set of successors of t is not a limit ordinal.

Let L be the set of maximal chains of T and let \leq be defined on L as follows. For l_1 , $l_2 \in L$ we say that $l_1 \leq l_2$ if either $l_1 = l_2$, or $l_1 \neq l_2$ and $t_1 \leq' t_2$, where $t_i = \min\{t \in l_i : t \notin l_1 \cap l_2\}$. It follows that L is linearly ordered by \leq .

(2) (L, \leq) is complete.

We must verify that every nonempty subset of L has a supremum and an infimum. We shall do it for supremum, for the infimum case is analogous and in fact easier. So let $C \subseteq L$. Let $t_0 = \operatorname{root}(T)$ and assume that we have already constructed $t_0, \ldots, t_\beta, \ldots (\beta < \alpha)$, where $\operatorname{ht}(t_\beta) = \beta$ and $t_0 \le t_1 \le \cdots \le t_\beta \le \cdots$. If $\{t_\beta\}_{\beta < \alpha}$ is a maximal chain in T we stop, and otherwise we choose $t_\alpha \in V(T)$ such that

- (i) $ht(t_{\alpha}) = \alpha$,
- (ii) $t_{\beta} \leq t_{\alpha}$ for every $\beta < \alpha$,
- (iii) $t \le t'$ for every t such that $ht(t) = \alpha$, $t_{\beta} \le t$ for every $\beta < \alpha$, and $t \in l$ for some $l \in C$,
- (iv) t_{α} is \leq '-minimal subject to (i)-(iii).

Such a choice is possible, because it follows from (1) that there exists at least one vertex satisfying (i)-(iii). (We remark that this vertex is unique when α is a limit ordinal, because any two vertices of T have an infimum.) Let α be the least ordinal such that t_{α} is undefined, and let $l = \{t_{\beta} : \beta < \alpha\}$. Then $l = \sup C$, as is easily seen. This proves (2).

We define, for $l \in L$, $X_l = \bigcup_{t \in l} W_t$, and put $X = (X_l : l \in L)$. We claim that (L, X) is a linear decomposition of G of width $< \kappa$. For condition (L1) is obviously satisfied. To prove (L2) let $l_1 < l < l_2$ and let $v \in X_{l_1} \cap X_{l_2}$. Then $v \in W_{t_1} \cap W_{t_2}$ for some $t_1 \in l_1$ and some $t_2 \in l_2$. Let $t = \inf(t_1, t_2)$; then $t \in l$ and so $W_t \subseteq X_l$, but $v \in W_t$ by (W2) and so $v \in X_l$, as required. To prove (L3) let $I \subseteq L$ be a nonempty interval. Again, it is enough to show that $\bigcap_{i \in I} X_i \subseteq X_{\sup(I)}$. So let $l = \sup I$ and let $i_1 \in I$; we may assume that $i_1 \neq l$. Then there exists $i_2 \in I$ such that $i_1 \cap i_2 \subseteq l$. Let $t_j = \inf\{t \in V(T) : t \in i_j - i_{3-j}\}$ (j = 1, 2) and let $t = \inf(t_1, t_2)$. Then $\bigcap_{i \in I} X_i \subseteq X_{i_1} \cap X_{i_2} \subseteq \bigcup_{t' \leq t} W_{t'} \subseteq X_l$ using (W2), as desired.

Hence (L,X) is a linear decomposition. The statement about width follows easily, because κ is regular and each X_l is the union of $<\kappa$ sets, each of cardinality $<\kappa$. \square

(3.2) Let κ be a cardinal and let G be a graph. If G admits a linear decomposition of width $< \kappa$, then G has no stoppage of order $\geq \kappa$.

Proof. Suppose for a contradiction that (L, X) is a linear decomposition of

G of width $<\kappa$ and that $\mathscr S$ is a stoppage in G of order $\geq \kappa$. For $l \in L$ let $C_l = (\bigcup_{l' \leq l} X_{l'}, \bigcup_{l' \geq l} X_{l'})$. We observe that C_l is a cut in G of order $<\kappa$. Let A be the set of all $l \in L$ such that $C_l \in \mathscr S$. We deduce from the second stoppage axiom that if $l \in A$ and $l' \leq l$, then $l' \in A$.

(1) A has a maximum element.

For let $a = \sup A$. We deduce from the third stoppage axiom that

$$\left(\bigcup_{l< a} X_l, \bigcup_{l\geq a} X_l\right) \in \mathscr{S}.$$

If $(\bigcup_{l \leq a} X_l, \bigcup_{l \geq a} X_l) \notin \mathcal{S}$ then $(\bigcup_{l \geq a} X_l, \bigcup_{l \leq a} X_l) \in \mathcal{S}$ by the first stoppage axiom, and yet $(G|\bigcup_{l < a} X_l) \cup (G|\bigcup_{l \geq a} X_l) = G$, contrary to the second axiom. Hence $(\bigcup_{l \leq a} X_l, \bigcup_{l \geq a} X_l) \in \mathcal{S}$ and thus $a \in A$.

Similarly let B be the set of all $l \in L$ such that $(\bigcup_{l' \geq l} X_{l'}, \bigcup_{l' \leq l} X_{l'}) \in \mathcal{S}$. Analogously, B has a minimum element, say b. It follows that a < b and that there is no $l \in L$ with a < l < b. Hence $(G|\bigcup_{l \leq a} X_l) \cup (G|\bigcup_{l \geq b} X_l) = G$, contrary to the second stoppage axiom. \square

(3.3) Let κ be an infinite cardinal, let G be a graph and let H be a subgraph of G isomorphic to a subdivision of K_{κ} . Then G has a stoppage of order κ .

Proof. Let V be the set of vertices of H which correspond to a vertex of K_{κ} . If (A, B) is a cut in G of order $< \kappa$, then exactly one of A, B contains V. Let $\mathscr S$ be the set of all cuts (A, B) in G of order $< \kappa$ such that $V \subseteq B$. Then it is easy to verify that the stoppage axioms are satisfied. \square

Thus we have proved (1.5). Now we prove (1.6) which we restate.

(3.4) There exists a graph which contains no subgraph isomorphic to a subdivision of $K_{\aleph_{\omega}}$ and which has no linear decomposition of width $\langle \aleph_{\omega} \rangle$.

Proof. Let T be the well-founded tree with every chain of order type $\leq \omega$ in which every element $t \in V(T)$ has \aleph_{ω} successors. For every $t \in V(T)$ we choose a set M_t and an element $m_t \in M_t$ in such a way that $|M_t| = \aleph_{\operatorname{ht}(t)}$ and $M_t \cap M_{t'} = \varnothing$ for distinct t, $t' \in V(T)$. Let G be the simple graph with vertex set $\bigcup_{t \in V(T)} M_t$ and such that for u, $v \in V(G)$ there exists an edge in G with endvertices u, v if and only if $u \neq v$, and either u, $v \in M_t$ for some $t \in V(T)$, or $u \in M_t$ and $v = m_{t'}$ for a successor $t' \in V(T)$ of $t \in V(T)$ of $t \in V(T)$. For $t \in V(T)$ let G_t be the subgraph of G induced by the set $\bigcup_{t' \geq t} M_{t'}$. Let $W_{\operatorname{root}(T)} = M_{\operatorname{root}(T)}$, and if $t' \in V(T)$ is a successor of $t \in V(T)$ let $W_{t'} = M_t \cup M_{t'}$. Let $W = (W_t : t \in V(T))$. It is easy to see that (T, W) is a well-founded tree-decomposition of G of width $k \in \mathbb{N}_{\omega}$, and hence $k \in W$ has no subgraph isomorphic to a subdivision of $k \in W$.

It remains to be shown that G has no linear decomposition of width $< \aleph_{\omega}$ either. So suppose for a contradiction that G has a linear decomposition (L, X) of width $< \aleph_{\omega}$. A *clique* in G is a subset $M \subseteq V(G)$ such that every pair of distinct members of M are adjacent.

(1) For every clique M, the set $I(M) = \{l \in L : M \subseteq X_l\}$ is a nonempty closed interval in L.

For $v \in M$, $I(\{v\})$ is a closed interval by (L2) and (L3), and by (L1) any two of these intervals meet. We deduce that $\{l \in L : M \subseteq X_l\} = \bigcap_{v \in M} I(\{v\})$ is as desired.

For $t\in V(T)$ let $a(t)\leq b(t)$ be the endvertices of $I(M_t)$. Let $t_0=\operatorname{root}(T)$ and assume that we have already constructed t_0,\ldots,t_n . Let t_{n+1} be a successor of t_n such that $M_{t_{n+1}}\cap (X_{a(t_n)}\cup X_{b(t_n)})=\varnothing$. Such a choice is possible since $|X_{a(t_n)}\cup X_{b(t_n)}|<\aleph_\omega$ and there are \aleph_ω such successors. This completes the inductive definition of t_0,t_1,\ldots .

Now for each $n \geq 0$, $M = M_{t_n} \cup \{m_{t_{n+1}}\}$ is a clique, and so $\emptyset \neq I(M) = I(M_{t_n}) \cap I(\{m_{t_{n+1}}\})$. Yet $a(t_n)$, $b(t_n) \notin I(\{m_{t_{n+1}}\})$, and hence $I(\{m_{t_{n+1}}\}) \subseteq I(M_{t_n})$. But $I(M_{t_{n+1}}) \subseteq I(\{m_{t_{n+1}}\})$, and so $I(M_{t_{n+1}}) \subseteq I(M_{t_n})$. By the completeness of L there exists $l \in L$ such that $l \in \bigcap_{n \geq 0} I(M_{t_n})$, that is, $M_{t_n} \subseteq X_l$ for all $n \geq 0$. But $|M_{t_0} \cup M_{t_1} \cup \cdots| = \aleph_{\omega} > |X_l|$, a contradiction. \square

REFERENCES

- 1. D. Bienstock, N. Robertson, P. D. Seymour, and R. Thomas, *Quickly excluding a forest*, J. Combin. Theory Ser. B **52** (1991), 274–283.
- 2. R. Diestel, Graph decompositions, Oxford University Press, Oxford 1990.
- 3. R Halin, Unterteilungen vollständiger Graphen in Graphen mit unendlicher chromatische Zahl, Abh. Math. Sem. Univ. Hamburg 31 (1967), 156-165.
- 4. I. Kříž and R. Thomas, Clique-sums, tree-decompositions and compactness, Discrete Math. 81 (1990), 177-185.
- 5. N. Robertson and P. D. Seymour, *Graph minors*. I. *Excluding a forest*, J. Combin. Theory Ser. B 35 (1983), 39-61.
- 6. ____, Graph minors. III. Planar tree-width, J. Combin. Theory Ser. B 36 (1984), 49-63.
- 7. N. Robertson, P. D. Seymour, and R. Thomas, *Excluding infinite minors*, Discrete Math. **95** (1991), 303-319.
- 8. P. D. Seymour and R. Thomas, *Excluding infinite trees*, Trans. Amer. Math. Soc. (to appear).
- 9. ____, An end-faithful spanning tree counterexample, Proc. Amer. Math. Soc. 113 (1991), 1163-1171.

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210 E-mail address: robertso@function.mps.ohio-state.edu

Bellcore, 445 South Street, Morristown, New Jersey 07962 E-mail address: pds@breeze.bellcore.com

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332 *E-mail address*: thomas@math.gatech.edu