CORRECTIONS TO "FIRST STEPS IN DESCRIPTIVE THEORY OF LOCALES"

JOHN ISBELL

The paper $[I_2]$ contains one false result, 2.6, and two others whose proofs require substantial repair: 2.5 and 2.24. All errors were discovered by one critical reader, Till Plewe.

In 2.5 of $[I_2]$, which characterizes those sober spaces X that have a largest pointless sublocale pl(X), the last six words of proof are not true, e.g. in the real line with a generic point adjoined. Argue instead:

The meet of $\{x\}^-$ and $\operatorname{pl}^+(X)$ is dense in the irreducible space $\{x\}^-$. Now every dense sublocale of an irreducible space Y contains (i.e. D(Y) contains) the generic point y. For every sublocale of any locale is an intersection of complemented sublocales C whose complements are open \cap closed $[I_2]$, so it suffices to show that every such C dense in Y has y in it. Otherwise the complement C' would contain y, so no closed subspace except Y contains C', so C' is open; and as C is dense, C' = 0, contradicting $y \in C'$.

2.6 says that for a dense-in-itself regular space X the locale pl(X) has the same weight as X. This is false—refuted by many pairs (X, X') of regular spaces with the same $pl(pl(X) \approx pl(X'))$ but different weights, e.g. the space Q of rationals and a subspace of βQ consisting of Q and one more point.

The last result in the paper, 2.24, is that (with everything metrizable; in contrast to O_{δ} 's) no nonzero pointless-absolute F_{σ} locale exists. The correct proof, now presented, amounts to showing that (1) any nonzero F_{σ} sublocale A of a pointless-absolute O_{δ} has a closed sublocale $B = \operatorname{pl}(\mathbb{C})$, \mathbb{C} a Cantor set; that (2) B is not pointless-absolute F_{σ} , being not F_{σ} in a suitable metrizable extension $\operatorname{pl}(E)$; and (3) boosting the extension E of B to an extension of A. In $[I_2]$, (1) is done correctly in three lines, and four more lines of the proof (the fourth and the last three) do (2). For (3), a pushout construction is proposed; but it is not hard to check that the pushout need not be first countable. Instead use F. Hausdorff's theorem [H]:

Theorem (Hausdorff). A metric on a closed subspace of a metrizable space Y can be extended to a compatible metric on Y.

This applies to the situation in 2.24: $\mathbb{C}\backslash Q$ closed in Y and densely embedded in \mathbb{C}^2 . Induce a metric on $\mathbb{C}\backslash Q$ from \mathbb{C}^2 , extend over Y by the theorem, and extend uniquely back over the limit points in \mathbb{C}^2 .

468 JOHN ISBELL

REFERENCES

- [H] F. Hausdorff, Erweiterung einer Homöomorphie, Fund. Math. 16 (1930), 353-360.
- [I₁] J. Isbell, Atomless parts of spaces, Math. Scand. 31 (1972), 5-32.
- [I₂] ____, First steps in descriptive theory of locales, Trans. Amer. Math. Soc. 327 (1991), 353-

Department of Mathematics, State University of New York, Buffalo, New York 14214