AMENABILITY AND THE STRUCTURE OF THE ALGEBRAS $A_p(G)$

BRIAN FORREST

ABSTRACT. A number of characterizations are given of the class of amenable locally compact groups in terms of the ideal structure of the algebras $A_p(G)$. An almost connected group is amenable if and only if for some 1 and some closed ideal <math>I of $A_p(G)$, I has a bounded approximate identity. Furthermore, G is amenable if and only if every derivation of $A_p(G)$ into a Banach $A_p(G)$ -bimodule is continuous.

1. Introduction

Let G be a locally compact group. In [7] Eymard defined the Fourier algebra A(G) of G to be the linear subspace of $C_0(G)$ consisting of all functions of the form $u(x) = (f * \tilde{g})^{\vee}(x)$, where $f, g \in L_2(G)$, $f^{\vee}(x) = f(x^{-1})$ and $\tilde{f}(x) = \overline{f(x^{-1})}$. The space A(G) can be identified with a quotient space of the projective tensor product $L_2(G) \otimes_{\gamma} L_2(G)$. With respect to pointwise multiplication and the quotient norm, A(G) is a commutative Banach algebra.

In [15], Herz introduced the L_p -versions of Eymard's algebra. He defined $A_p(G)$ to be the space of functions of the form $u(x) = \sum_{n=1}^{\infty} (f_i * \tilde{g}_i)^{\vee}$ where $f_i \in L_p(G)$, $g_i \in L_q(G)$, 1/p + 1/q = 1, $1 , and <math>\sum_{n=1}^{\infty} \|f_i\|_p \|g_i\|_q < \infty$. Then

$$||u||_{A_p(G)} = \inf \left\{ \sum_{n=1}^{\infty} ||f_i||_p ||g_i||_q \left| \sum_{n=1}^{\infty} (f_i * \overline{g}_i)^{\vee} \right. \right\}$$

determines a norm on $A_p(G)$ with respect to which $A_p(G)$ is a Banach algebra. When p=2, $A_p(G)=A(G)$.

We began a study of the structure of the closed ideals of A(G) in [9 and 10]. The present investigation will extend many of the principal results of these earlier works to the $A_p(G)$ algebras. We will also prove a number of results which are new even for p=2. In particular, we show that if G is almost connected, then G is amenable if and only if some closed ideal I in $A_p(G)$ has a bounded approximate identity for some 1 . For the class of amenable

Received by the editors July 9, 1990 and, in revised form, July 15, 1992.

¹⁹⁹¹ Mathematics Subject Classification. Primary 43A07, 43A15; Secondary 46J10.

Key words and phrases. Amenable groups, Herz algebra, bounded approximate identities, ideal, automatic continuity, derivations.

groups we are able to improve considerably the main result of [6] which is concerned with invariant projections on $A_p(G)$ -submodules of $PM_p(G)$.

2. Preliminaries

Throughout this paper, G will denote a locally compact group with a fixed left Haar measure λ_G . For $1 , <math>A_p(G)$ will denote the Banach algebra of continuous functions defined in §1.

Denote by $\operatorname{PF}_p(G)$ the closure of $L^1(G)$, considered as convolution operators on $L_p(G)$, with respect to the norm topology of $\mathscr{B}(L_p(G))$, the bounded linear operators on $L_p(G)$. The weak operator topology closure of $L^1(G)$ is denoted by $\operatorname{PM}_p(G)$. The spaces $\operatorname{PF}_p(G)$ and $\operatorname{PM}_p(G)$ are referred to as the p-pseudofunctions and the p-pseudomeasures respectively. It can be shown that $\operatorname{PM}_p(G) = A_p(G)^*$. When p = 2, $\operatorname{PM}_2(G)$ is usually denoted by VN(G) while $\operatorname{PF}_2(G)$ is $C_r^*(G)$, the reduced group C^* -algebra of G (see [7]).

 $B_p(G)$ is the multiplier algebra of $A_p(G)$, consisting of the continuous complex-valued functions v on G such that $vu \in A_p(G)$ for every $u \in A_p(G)$. Define a norm on B_p by

$$||v||_{B_p(G)} = \{||uv||_{A_p(G)}|u \in A_p(G) \text{ and } ||u||_{A_p(G)} \le 1\}.$$

Observe that if $v \in A_p(G)$, then $v \in B_p(G)$ and $||v||_{B_p(G)} \le ||v||_{A_p(G)}$. B(G) denotes the Fourier-Stieltjes algebra of G. Then $B(G) = C^*(G)^*$ is the linear span of the continuous positive definite functions on G.

G is said to be amenable if there exists $m \in L_{\infty}(G)^*$ such that $m \ge 0$, $m(1_G) = 1$, and $m(x_f) = m(f)$ for every $x \in G$, $f \in L_{\infty}(G)$. 1_A denotes the characteristic function of A and $x_f(y) = f(x_f)$. Amenable groups include all abelian groups and all compact groups. The free group on two generators F_2 is nonamenable.

A locally compact group is called a [SIN]-group if every neighborhood of e contains a compact neighborhood which is invariant under all inner automorphisms. For properties of [SIN]-groups see [22].

Set \mathscr{A} be a commutative Banach algebra. $\Delta(\mathscr{A})$ will denote both the maximal ideal space of \mathscr{A} and the multiplicative linear functions associated with these ideals. By means of the Gelfand transform, \mathscr{A} can be realized as a subalgebra of $C_0(\Delta(\mathscr{A}))$. For an ideal I in \mathscr{A} , we define

$$Z(I) = \{x \in \Delta(\mathscr{A}) | u(x) = 0 \text{ for every } u \in I\}.$$

For $E \subset \Delta(\mathscr{A})$, define

$$I(E) = \{ u \in \mathcal{A} | u(x) = 0 \text{ for every } x \in E \},$$

 $I_0(E) = \{ u \in \mathcal{A} | \text{supp } u \in \mathcal{F}(E) \},$

where $\mathscr{F}(E) = \{K \subset \Delta(\mathscr{A}) | K \text{ is compact and } K \cap \overline{E} = \varnothing\}$. I(E) and $I_0(E)$ are ideals in \mathscr{A} . I(E) is closed. Moreover, if Z(I) = E, then $I_0(E) \subseteq I \subseteq I(E)$.

A closed subset E of $\Delta(\mathcal{A})$ is called a set of spectral synthesis, or simply an s-set if I(E) is the only closed ideal I for which Z(I) = E.

Let G be a locally compact group. Let $A, B \subset G$ be closed. Let

$$\mathcal{S}_{p}(A, B) = \{u \in B_{p}(G) | u(A) \equiv 1, u(B) \equiv 0\},$$

$$s_{p}(A, B) = \begin{cases} \inf\{\|u\|_{B_{p}(G)} | u \in \mathcal{S}_{p}(A, B)\} & \text{if } \mathcal{S}_{p}(A, B) \neq \emptyset, \\ \infty & \text{if } \mathcal{S}_{p}(A, B) = 0, \end{cases}$$

$$\mathcal{F}(A) = \{K \subset G | K \text{ is compact, } K \cap A = \emptyset\},$$

$$s_{p}(A) = \sup\{s_{p}(A, K) | K \in \mathcal{F}(A)\},$$

$$I_{p}(A) = \{u \in A_{p}(G) | u(x) = 0 \text{ for every } x \in A\}.$$

A net $\{u_{\alpha}\}_{{\alpha}\in \mathscr{U}}$ in $A_p(G)$ is a bounded approximate identity in an ideal I if $u_{\alpha}\in I$, $\|u_{\alpha}\|_{A_p(G)}\leq M$ for all $\alpha\in \mathscr{U}$, and $\lim_{\alpha}\|uu_{\alpha}-u\|_{A_p(G)}=0$ for every $u\in I$. Since left and right translations are isometric isomorphisms, the ideals I(A), I(xA), and I(Ax) are all isometric ismorphic.

An ideal I is said to be idempotent if $I = I^2$, where $I^2 = \{\sum_{i=1}^n u_i v_i | u_i, v_i \in I\}$.

3. Amenability, bounded approximate identities and weak factorization

In this section we will extend and improve many of the results of [9] and [10] to the setting of the $A_p(G)$ algebras, $1 . We will also consider weak factorization of ideals in <math>A_p(G)$.

Lemma 3.1. Let G be an amenable locally compact group. Let $u \in B(G)$. Then $u \in B_p(G)$ for every $1 . Furthermore, for each <math>I , there exists a constant <math>C_p$ independent of u such that $\|u\|_{B_p(G)} \le C_p \|u\|_{B(G)}$.

Proof. Since G is amenable, $B_p(G) = \operatorname{PF}_p(G)^*$. Let $K \subset G$ be compact. Since $u \in B(G)$, Cowling [3] has shown that $u_{|_K} \in A_2(K) = \{v_{|_K}; v \in A(G)\}$ and that

$$||u|_{K}||_{A_{2}(K)} = \inf\{||v||_{A(G)}; v|_{K} = u|_{K}\} \le ||u||_{B(G)}.$$

Let $i\colon A(G)\to A_p(G)$ be the canonical injection. Since i is continuous [15], there exists a constant C_p such that $\|v\|_{A_p(G)\leq C_p}\|v\|_{A(G)}$ for every $v\in A(G)$. Let $v_0\in A(G)$ be such that $v_{0|_K}=u_{|_K}$. Then $i(v_0)_{|_K}=u_{|_K}$, so $u_{|_K}\in A_p(K)$. Moreover,

$$||u_{|_{K}}||_{A_{p}(K)} \leq \inf\{||i(v)||_{A_{p}(G)}; v \in A(G), v_{|_{K}} = u_{|_{K}}\}$$

$$\leq \inf\{C_{p}||v||_{A_{p}(G)}; v \in A(G), v_{|_{K}} = u_{|_{K}}\}$$

$$\leq C_{p}||u||_{B(G)}.$$

By the converse of Cowling's result, $u \in B_p(G)$ and $||u||_{B_p(G)} \le C_p ||u||_{B(G)}$. \square

Proposition 3.2. Let G be an amenable locally compact group. Let $A \subset G$ be closed. If $s_2(A) < \infty$, then $s_p(A) < \infty$ for every 1 .

Proof. It follows from Lemma 3.1 that if $K \in \mathcal{F}(A)$ and $u \in \mathcal{S}_2(A, K)$, then $u \in \mathcal{S}_p(A, K)$ and $\|u\|_{B_p(G) \leq C_p} \|u\|_{B(G)}$. Hence, $s_p(A) \leq C_p s_2(A)$. \square

Corollary 3.3. Let G be an amenable locally compact group. Let H be a closed subgroup of G which is either (i) open, (ii) compact, (iii) normal. Then $s_p(H) < \infty$. Furthermore, if G is a [SIN]-group and H is any closed subgroup, then $s_p(H) < \infty$.

Proof. If H satisfies (i), (ii), or (iii) above, then by [10, Lemma 3.6], $s_2(H) = 1$. Proposition 3.2 implies that $s_p(H) < \infty$.

If G is a [SIN]-group, then $s_2(H) = 1$ for every closed subgroup H of G [11, Proposition 3.10]. Again, by Proposition 3.2, $s_p(H) < \infty$. \square

A straightforward modification of the proof of [10, Proposition 3.2] establishes the next proposition.

Proposition 3.4. Let G be an amenable locally compact group. Let A be a closed set of spectral synthesis for $A_p(G)$. If $s_p(G) < \infty$, then $I_p(A)$ has a bounded approximate identity $\{u_\alpha\}_{\alpha \in \mathcal{U}}$ which satisfies

- (i) $||u_{\alpha}||_{A_p(G)} \leq 2 + s_p(A)$ for every $\alpha \in \mathcal{U}$,
- (ii) $u_{\alpha} \in A_p(G) \cap C_{00}(G)$ for every $\alpha \in \mathcal{U}$,
- (iii) if $K \in \mathcal{F}(A)$, there exists a sequence $\{u_{K_n}\}\subseteq \{u_{\alpha}\}_{{\alpha}\in\mathcal{U}}$ such that $\|vu_{K_n}-v\|_{A_p(G)}\leq 1/n$ for every $v\in A_p(G)$ with $\operatorname{supp} v\subseteq K$.

Corollary 3.5. Let G be an amenable locally compact group. Let H be a closed subgroup of G which is (i) open, (ii) compact, or (iii) normal. Then $I_p(H)$ has a bounded approximate identity for every $1 and hence <math>I_p(H)$ is idempotent. If G is a [SIN]-group, then $I_p(H)$ has a bounded approximate identity, and hence is idempotent for every closed subgroup H of G and every 1 .

Proof. Since G is amenable, every closed subgroup is a set of spectral synthesis for each $A_p(G)$, $1 [14]. The result follows immediately from Corollary 3.5 and from Cohen's Factorization Theorem [17, Theorem 32.22]. <math>\Box$

Definition 3.6. Let $\mathcal{R}(G)$ denote the ring of subsets of G generated by the open left-cosets of G. Define $\mathcal{R}_c(G) = \{A \subset G; A \text{ is closed}, A \in \mathcal{R}(G_d)\}$ where G_d is the group G together with the discrete topology. The sets $A \in \mathcal{R}_c(G)$ can be characterized by following an argument due to Gilbert [12] originally presented for abelian groups. We have $A \in \mathcal{R}_c(G)$ if and only if $A = \bigcup_{i=1}^n x_i(H_i \setminus \Delta_i)$ where H_i is a closed subgroup of G, $\Delta_i \in \mathcal{R}(H_i)$, and $x_i \in G$ for every $1 \le i \le n$ [11, Lemma 3.5].

Theorem 3.7. Let G be an amenable [SIN]-group. Let $A \in \mathcal{R}_c(G)$. Then $I_p(A)$ has a bounded approximate identity $\{u_\alpha\}_{\alpha \in \mathcal{U}}$ such that

- (i) $u_{\alpha} \in A_p(G) \cap C_{00}(G)$,
- (ii) if $K \in \mathcal{F}(A)$, then there exists a sequence $\{u_{K_n}\} \subseteq \{u_{\alpha}\}_{{\alpha} \in \mathcal{U}}$ such that if $v \in I(A)$ and $\sup v \subseteq K$, then

$$||u_{K_n}v-v||_{A_p(G)} \leq 1/n.$$

In particular, A is an s-set for $A_p(G)$.

Proof. That A is an s-set follows immediately if we establish the existence of a bounded approximate identity satisfying (i).

It follows from Corollary 3.5 that $I_p(H)$ has a bounded approximate identity for any closed subgroup H of G.

Let $A = \bigcup_{i=1}^n x_i(H_i \setminus \Delta_i)$ where $\Delta_i \in \mathcal{R}(H_i)$. By Host's idempotent theorem, $1_{\Delta_i} \in B(H_i)$. By [4, Theorem 2], 1_{Δ_i} extends to a $u \in \mathcal{S}_2(\Delta_i, H_i \setminus \Delta_i)$. Lemma 3.1 shows that $u \in \mathcal{S}_p(\Delta_i, H_i \setminus \Delta_i)$.

As G is amenable, $A_p(G)$ has a bounded approximate identity [24, p. 96]. Arguing as in [11, Lemma 3.9 and Theorem 3.11], we see that $I_p(H_i)$ has a bounded approximate identity and therefore so must $I_p(H_i \setminus \Delta_i)$. It is then clear that $I_p(X_i(H_i \setminus \Delta_i))$ has a bounded approximate identity. By again following

[11, Theorem 3.11], we see that $I_p(A)$ has a bounded approximate identity $\{u_\alpha\}_{\alpha\in \mathscr{U}}$.

That $\{u_{\alpha}\}_{{\alpha}\in\mathbb{Z}}$ can be chosen to satisfy (i) and (ii) follows from a careful examination of the proofs of [10, Proposition 3.2; 11, Lemma 3.9, and Theorem 3.11]. \square

Theorem 3.8. Let G be an amenable group. Let X be a weak*-closed $A_p(G)$ -submodule of $PM_p(G)$. Then the following are equivalent:

- (i) X is invariantly complemented,
- (ii) $^{\perp}X$ has a bounded approximate identity.

Furthermore, if G is any locally compact group for which $^{\perp}X$ has a bounded approximate identity whenever X is a weak*-closed invariantly complemented submodule of $PM_n(G)$, then G is amenable.

Proof. As G is amenable, $A_p(G)$ has a bounded approximate identity. The first part follows from [10, Proposition 6.4].

Let $X = \{0\}$. Then X is invariantly complemented and $A_p(G) = {}^{\perp}X$ has a bounded approximate identity if and only if G is amenable so the last statement follows. \square

Corollary 3.9. Let G be an amenable locally compact group. Let H be a closed subgroup of G which is (i) open, (ii) compact or (iii) normal. Then $I_p(H)^{\perp}$ is invariantly complemented. Furthermore, if G is also a [SIN]-group and $A \in \mathscr{R}_c(G)$, then $I_p(A)^{\perp}$ is invariantly complemented.

Corollary 3.9 extends for the class of amenable groups a recent result of Derighetti [6, Théorème 2] who shows that $I_p(H)^{\perp}$ is invariantly complemented whenever H is a closed normal subgroup and G is an arbitrary locally compact group. In the case p=2, Derighetti's result is due to Lau and Losert [21, Theorem 2].

Theorem 3.10. Let G be an abelian locally compact group. Then for every $1 , <math>A_p(G)$ is an amenable Banach algebra.

Proof. Let \widehat{G} denote the dual group of G. Then since \widehat{G} is amenable, $L^1(\widehat{G})$ is amenable [19, Theorem 2.5]. Hence A(G) is an amenable Banach algebra. For every 1 , <math>A(G) embeds continuously into $A_p(G)$ as a dense subalgebra. Therefore, $A_p(G)$ is amenable [19, Proposition 5.3]. \square

Corollary 3.11. Let G be an abelian locally compact group. Let X be a weak*-closed $A_p(G)$ -submodule of $PM_p(G)$. Then X is complemented if and only if X is invariantly complemented.

Proof. Assume that X is complemented. Then since $A_p(G)$ is amenable, $^{\perp}X$ has a bounded approximate identity [5, Theorem 3.7]. It follows from Theorem 3.8 that X is invariantly complemented.

The case p=2 in Corollary 3.11 is again due to Lau and Losert [21]. It is worthwhile to note that Theorem 3.10 and Corollary 3.11 will hold whenever G is such that A(G) is amenable. There is reason to believe that this is the case precisely when G is amenable.

For $A \subseteq G$, let bdy A and int A denote the boundary of A and the interior of A respectively. \square

Proposition 3.12. Let $A \subset G$ be closed. Assume that $I_p(A)$ factorizes weakly. Then $\lambda(\operatorname{bdy} A) = 0$ and $\operatorname{int}(A)$ is a clopen subset of G.

Proof. $I_p(A)$ is a weakly selfadjoint subalgebra of $A_p(G)$. Hence by [8, Theorem 1.3], there exists an $0 < M < \infty$ such that for every $K \in \mathscr{F}(A)$, there exists a $u_K \in I_p(A)$ with $\|u_K\|_{A_p(G)} \leq M$, $u_K(x) \geq 1$ for every $x \in K$ and $u_K \geq 0$. Let $\mathscr{F}(A)$ be directed by inclusion. Then $\{u_K\}_{K \in \mathscr{F}(A)}$ is a bounded net in $W_p(G) = \operatorname{PF}_p(G)^*$. Hence we can assume that $\{u_K\}_{K \in \mathscr{F}(A)}$ converges in the weak *-topology to some $u \in W_p(G)$ with $\|u\|_{W_p(G)} \leq M$ (otherwise choose a convergent subnet). It is easy to see that $u(x) \geq 0$, $u(x) \geq 1$ on $G \setminus A$ and that u(x) = 0 for every $x \in \operatorname{int}(A)$. Hence $u(x) \geq 1$ on $\operatorname{bdy}(A)$. Since u is continuous, $\operatorname{int}(A)$ is clopen.

Assume that $\lambda(\text{bdy }A) > 0$. Then we can find a subset V of bdy A with $0 < \lambda(V) < \infty$. Let $f = 1_V$. Then $f \in L_1(G) \subseteq \text{PF}_p(G)$ and

$$0 < \lambda(V) \le \int_G u(x)f(x) dx = \langle u, f \rangle = \lim_k \langle u_K, f \rangle = 0$$

since $u_K(x) = 0$ for every $x \in \text{bdy } A$. As this is impossible, $\lambda(\text{bdy } A) = 0$. \square

Proposition 3.13. Let $A \subset G$ be closed. Suppose that I is a closed ideal of $A_p(G)$ with Z(I) = A. If I has a bounded approximate identity, then $\lambda(\text{bdy }A) = 0$ and int(A) is clopen. Moreover, $1_{G \setminus \text{int } A} \in W_p(G) = \text{PF}_p(G)^*$.

Proof. Let $\{u_{\alpha}\}_{{\alpha}\in\mathscr{U}}$ be a bounded approximate identity in I. We may assume that $\mathbf{w}^* - \lim_{\alpha} u_{\alpha} = u$ for some $u \in W_p(G)$.

Let $v \in I$. Let $f \in L_1(G)$ and $\varepsilon > 0$. Then

$$\langle uv, f \rangle = \langle u, vf \rangle = \lim_{\alpha} \langle u_{\alpha}, vf \rangle = \lim_{\alpha} \langle u_{\alpha}v, f \rangle.$$

Let

$$(*) = |\langle uv, f \rangle - \langle v, f \rangle| \le |\langle uv, f \rangle - \langle u_{\alpha}v, f \rangle| + |\langle u_{\alpha}v, f \rangle - \langle v, f \rangle|.$$

Choose α such that $|\langle uv, f \rangle - \langle u_{\alpha}v, f \rangle| < \varepsilon$ and $\|u_{\alpha}v - v\|_{A_p(G)} < \varepsilon$. Then $(*) \leq \varepsilon + \varepsilon \|f\|_{\operatorname{PF}_p(G)}$. Since ε is arbitrary and f is fixed, it follows that $\langle uv, f \rangle = \langle v, f \rangle$ for every $f \in L_1(G)$. Hence uv = v. It follows also that u(x) = 1 on $G \setminus A$ and that u(x) = 0 on $\operatorname{int} A$. Therefore $u = 1_{G \setminus \operatorname{int} A}$. \square

Proposition 3.14. Let I be a closed ideal in $A_p(G)$ with Z(I) = A. If either I is weakly selfadjoint or I has a bounded approximate identity, then either $\lambda(A) > 0$ or G is amenable.

Proof. Assume that $\lambda(A) = 0$. Let $K \subset G$ be compact. Let $y \in C_{00}^+(G)$, with supp $\varphi \subseteq K$. Let ε , $\varepsilon_1 > 0$. We can find an open neighborhood V_{ε_1} of A such that $\lambda(V) \|\varphi\|_{\infty} < \varepsilon_1$.

In either of the above cases, we can find a $u \in I$ with $||u||_{A_p(G)} < M < \infty$ (M independent of K) which is such that $\inf\{R_{\ell}u(x); x \in K \setminus V\} \ge 1 - \varepsilon$. Then

$$|\langle u, \varphi \rangle| \le ||L_{\varphi}||_{CV_{n'}} ||u||_{A_p(G)} \le M ||L_{\varphi}||_{CV_{n'}}$$

where $\|L_{\varphi}\|_{CV_{p'}}$ is the norm of φ as a convolution operator on $L_{p'}(G)$. But

$$R_e\langle u, \varphi \rangle = \int_G R_e u(x) \varphi(x) dx \ge (1 - \varepsilon) \|\varphi\|_1 - \varepsilon_1.$$

Therefore $\|\varphi\|_1 \leq M \|L_{\varphi}\|_{CV_{p'}}$.

As K was arbitrary, $\|\psi\|_1 \le M\|L_{\psi}\|_{CV_{p'}}$ for every $\psi \in C_{00}^+(G)$. Given $\psi \in C_{00}^+(G)$, we have

$$\|\psi\|_1^n = \|\psi^{*n}\|_1 \le M\|L_{\psi^{*n}}\|_{CV_{n'}} \le M\|L_{\psi}\|_{CV_{n'}}.$$

Hence $\|\psi\|_1 = \|L_{\psi}\|_{CV_{p'}}$ for every $\psi \in C_{00}^+(G)$. This implies that G is amenable. \square

In [11], we established a connection between the existence of bounded approximate identities in A(G) and the existence of either "large" amenable subgroups or open amenable subgroups. It was conjectured that if there is a closed ideal in A(G) with a bounded approximate identity, then G must have an open amenable subgroup. We have further evidence to support this conjecture and more.

Theorem 3.15. Let G be a connected locally compact group. Let I be a nonzero closed ideal in $A_p(G)$, 1 , which is such that either <math>I has a bounded approximate identity or I is weakly selfadjoint and weakly factorizes. Then G is amenable.

Proof. Let Z(I) = A. If G is nonamenable, then by Proposition 3.14 $\lambda(A) > 0$. It follows from Propositions 3.12 and 3.13 that $\operatorname{int}(A)$ is a nonempty clopen set. Since G is connected, A = G. But then $I = \{0\}$ which is impossible. Hence G is amenable. \square

Corollary 3.16. Let G be an almost connected locally compact group. Let I be a nonzero closed ideal in $A_p(G)$, 1 , with a bounded approximate identity, then <math>G is amenable.

Proof. Let A = Z(I). Since I is nonzero, $A \neq G$. Therefore, by translating if necessary, we can assume that there exist $x_0 \in G_0 \setminus A$, where G_0 is the connected component of G. Let $I_{G_0} = \{u_{|G_0}; u \in I\}^-$ (the closure of $\{u_{|G_0}; u \in I\}$ in $A_p(G)$). Since $A_p(G)_{|G_0} = A_p(G_0)$ [16, Theorem 1], I_{G_0} is a closed ideal in $A_p(G_0)$. Let $\{u_\alpha\}_{\alpha \in \mathscr{U}}$ be a bounded approximate identity in I. As $\|u_{|G_0}\|_{A_p(G_0)} \leq \|u\|_{A_p(G)}$ for every $u \in A_p(G)$, $\{u_{|G_0}\}_{\alpha \in \mathscr{U}}$ is a bounded approximate identity for the closed ideal I_{G_0} , which is nonzero since $x_0 \in G_0 \setminus A$. By Theorem 3.15, G_0 is amenable. But G is almost connected, so G/G_0 is compact and hence amenable. Therefore G is also amenable [24, Proposition 13.4]. □

4. Cofinite ideals in $A_p(G)$

Definition 4.1. An ideal I in $A_p(G)$ is called cofinite if the dimension of $A_p(G)/I$ is finite. The codimension of I is dim $A_p(G)/I$.

We can proceed as in [10, §5] to obtain the following characterization of amenable groups which extends [10, Corollary 5.6, Lemma 5.7, and Theorem 5.8].

Theorem 4.2. Let G be a locally compact group. Then the following are equivalent:

- (a) G is amenable.
- (b) For every $1 and every cofinite ideal <math>I \subset A_p(G)$, I = I(A) for some finite set $A = \{x_1, \ldots, x_n\} \subset G$ with $n = \operatorname{codim} I$.

- (c) For every $1 and every cofinite ideal <math>I \subset A_p(G)$, I has a bounded approximate identity.
- (d) For some $1 and some closed cofinite ideal <math>I \subset A_p(G)$, $I^2 = I$.

Lemma 4.3. Let G be an amenable locally compact group. Let I be a closed in $A_p(G)$ with infinite codimension. Then there exist sequences $\{u_n\}$, $\{v_n\}$ in $A_p(G)$ such that $u_nv_1\cdots v_{n-1}\notin I$ but $u_nv_1\cdots v_n\in I$.

The proof of this lemma is identical to that of the case p = 2 (see [9, Lemma 2]).

Definition 4.4. Let $\mathscr A$ be a Banach algebra and let X be a Banach $\mathscr A$ -bimodule. A derivation $D:\mathscr A\to X$ is a linear map which satisfies $D(uv)=u\cdot D(v)+D(u)\cdot v$ for every $u,v\in\mathscr A$. Let X be a left Banach $\mathscr A$ -module. A linear operator $T:\mathscr A\to X$ is said to be of class $\mathscr T$ if for every $u,v\in\mathscr A$

$$T(uv) = u \cdot T(v) + L(u, v)$$

where $L(\cdot, \cdot)$ is a bilinear operator from $\mathscr{A} \times \mathscr{A}$ to X for which $v \mapsto L(u, v)$ is continuous for each $u \in \mathscr{A}$.

Proceeding as in [9, Theorem 1] and [10, Theorem 5.9] we have the following

Theorem 4.5. Let G be a locally compact group. Then the following are equivalent:

- (i) G is amenable.
- (ii) For every $1 , every homomorphism from <math>A_p(G)$ with finite-dimensional range is continuous.
- (iii) For every $1 , every derivation of <math>A_p(G)$ into a finite-dimensional commutative Banach $A_p(G)$ -bimodule is continuous.
- (iv) For every $1 , every derivation of <math>A_p(G)$ into a Banach $A_p(G)$ -bimodule is continuous.

Theorem 4.6. Let G be a compact group. Let $1 . If <math>S: A_p(G) \to X$ is of class \mathcal{F} , then S is continuous.

Proof. First assume that G is separable. Then $A_p(G)$ is a separable Banach algebra with identity. Since $A_p(G)$ is a normal algebra, every prime ideal is contained in a unique maximal ideal (see [1, p. 97]). Let J be a closed prime ideal. Then since $Z(J) = \{x_0\}$ for some $x_0 \in G$, $J = I(\{x_0\})$. Hence J is a maximal ideal. Moreover, if $I = I(\{x\})$ is a maximal ideal, then $I^2 = I$. It follows from [1, Theorem 4.2] that every operator of class $\mathscr F$ is bounded.

Now assume that G is an arbitrary compact group and that $T: A_p(G) \to X$ is class \mathscr{F} . Assume that T is discontinuous. Let $\{u_n\}$ be a sequence in $A_p(G)$ such that $u_n \to 0$ while $Tu_n \to 0$. For each n we can find a compact normal subgroup K_n of G such that G/K_n is separable and u_n is constant on cosets of K_n . Let $K = \bigcap_{n=1}^{\infty} K_n$. Then K is compact and normal. Furthermore each u_n is constant on cosets of K and G/K is separable.

There exists an isometric isomorphism ρ from $A_p(G/K)$ onto the subspace of $A_p(G)$ consisting of functions which are constant on cosets of K [16, Proposition 6]. X becomes a left Banach $A_p(G/K)$ -module with respect to the module action as defined by $\tilde{u} \circ x = \rho(\tilde{u})x$ for every $\tilde{u} \in A_p(G/K)$. Similarly $\tilde{T}: A_p(G/K) \to X$ defined by $\tilde{T}(\tilde{u}) = T(\rho(\tilde{u}))$ for every $\tilde{u} \in A_p(G/K)$ is of

class \mathscr{F} . If we choose $\tilde{u}_n \in A_p(G/K)$ such that $\rho(\tilde{u}_n) = u_n$, then $\tilde{u}_n \to 0$, but $\tilde{T}(\tilde{u}_n) \nrightarrow 0$. Hence \tilde{T} is discontinuous. By the above argument, this is impossible. \square

Remark. The class $\mathscr T$ was introduced by Bade and Curtis [1] in order to handle both homomorphisms and derivations simultaneously in their investigation of automatically continuous linear functions. They also considered the linear map T from $\mathscr A$ into a Banach $\mathscr A$ -bimodule which satisfies Leibniz rule of order n. That is, there exist operators T_j and $\widetilde T_j$, $j=1,\ldots,n-1$, such that T_j and $\widetilde T_j$ satisfy a Leibniz rule of order j and

$$T(ab) = aT(b) + \sum_{j=1}^{n-1} T_j(a) \widetilde{T}_{n-j}(b) + T(a)b.$$

In particular, if $T_j = \widetilde{T}_j$, then $\{T_1, \ldots, T_n\}$ is called a higher derivation of rank n. It is a simple induction argument to show that if S satisfies a Leibniz rule of order n then S is bounded if every $T: \mathscr{A} \to X$ of class \mathscr{T} is bounded.

Bade and Curtis also observe that if X is a separable Banach space with an ordered Schauder basis $\{x_i\}$ and if $\mathscr A$ is an algebra such that every operator that satisfies a Leibniz rule of order n is continuous, then every homomorphism ρ from $\mathscr A$ into $\mathscr B(X)$ for which $\rho(u)$ is upper triangular for all $u \in \mathscr A$ is continuous (see [1, pp. 99–100]).

Theorem 4.7. Let G be a compact group. Let 1 . Let <math>X be a Banach $A_p(G)$ -bimodule. If $T: A_p(G) \to X$ is a linear map which satisfies a Liebniz rule of order n, then T is continuous. In particular, if $\{T_1, \ldots, T_n\}$ is a derivation of rank n on $A_p(G)$, then each T_i is continuous.

Corollary 4.8. Let G be a compact group. Let 1 . Let <math>X be a Banach space with an ordered Schauder basis. If $\rho: A_p(G) \to \mathcal{B}(X)$ is a homomorphism for which each $\rho(u)$, $u \in A_p(G)$, can be represented by an upper triangular matrix, then ρ is continuous.

In [26], Warner and Whitley proved that if X is a closed subspace in $L^1(\mathbb{R}) \cong A(\mathbb{R})$ of codimension n for which every $f \in X$ belongs to at least n distinct maximal ideals, then X is an ideal. In particular, $X \cong I(\{x_1, \ldots, x_n\})$ for some subset $\{x_1, \ldots, x_n\}$ of \mathbb{R} . This result is related to a classic theorem of Gleason-Kahane-Zelazko for subspaces of codimension 1 in unitary Banach algebras (see [13, 20]). Warner and Whitley ask for which locally compact abelian groups does $L^1(G)$ and hence A(G) have this property. Recent work of Chen and Cohen [2] has led to the solution of this question. Using a recent result of Rao, we may prove the following.

Proposition 4.9. Let G be a locally compact group. Let $1 . Assume that g is <math>\sigma$ -compact and separable. Then $A_p(G)$ has property (*):

(*) If X is a closed subspace of $A_p(G)$ of codimension n which is such that every $u \in X$ vanishes at least n distinct points in G, then X is an ideal in $A_p(G)$. In particular, $X = I(\{x_1, \ldots, x_n\})$ for some $\{x_1, \ldots, x_n\} \subset G$.

Moreover, if $A_p(G)$ has property (*), then G is σ -compact and separable.

Proof. The algebras $A_p(G)$ are all semisimple, selfadjoint regular Banach algebras. If G is separable, then $\{x\}$ is a G_{δ} -set for each $x \in G$. Finally, since G

is σ -compact, the statement follows from [25, Theorem 2.3] and the fact that finite subsets of G are s-sets for $A_p(G)$.

Conversely, if G is not σ -compact, then since $A_p(G) \subset C_p(G)$, every function $u \in A_p(G)$ vanishes at infinitely many points of G. Hence (*) cannot hold.

If G is not separable and $u(x_0) = 0$ for some $u \in A_p(G)$ and $x_0 \in G$, then there exists a compact normal subgroup K of G, $K \neq \{e\}$, such that $u(x_0k) = 0$ for every $k \in K$. Hence $A_p(G)$ is not strongly separating and thus (*) fails (see [25, p. 242]). \square

REFERENCES

- 1. W. G. Badé and P. C. Curtis, Prime ideals and automatic continuity problems for Banach algebras, J. Funct. Anal. 29 (1978), 88-103.
- C. P. Chen and P. J. Cohen, Ideals of finite codimension in commutative Banach algebras, preprint.
- 3. M. Cowling, An application of the Littlewood-Paley theory in harmonic analysis, Math. Ann. 241 (1979), 83–86.
- 4. M. Cowling and P. Rodway, Restriction of certain function spaces to closed subgroups of locally compact groups, Pacific J. Math. 80 (1979), 91-104.
- 5. P. C. Curtis and R. J. Loy, The structure of amenable Banach algebras, J. London Math. Soc. 40 (1989), 89-104.
- 6. A. Derighetti, *Convoluteurs et projecteurs*, Harmonic Analysis, Lecture Notes in Math., vol 1359, Springer-Verlag, Berlin and New York, 1987.
- P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236.
- 8. H. G. Feichtinger, C. C. Graham, and E. H. Lakien, Nonfactorization in commutative, weakly self-adjoint Banach algebras, Pacific J. Math. 80 (1979), 117-125.
- B. E. Forrest, Amenability and derivations of the Fourier algebra, Proc. Amer. Math. Soc. 104 (1988), 437-442.
- 10. _____, Amenability and bounded approximate identities in ideals of A(G), Illinois J. Math. 34 (1990), 1-25.
- 11. _____, Amenability and ideals in A(G), J. Austral. Math. Soc. (Ser. A) 53 (1992), 143-155.
- 12. J. E. Gilbert, On projections of $L_{\infty}(G)$ onto translation-invariant subspaces, Proc. London Math. Soc. 19 (1969), 69–88.
- 13. A. M. Gleason, A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171-172.
- C. Herz, Synthése spectrale pour les sous-groupes par rapport aux algèbres Ap, C. R. Acad. Sci. Paris Sér. I Math. 271 (1970), 316-318.
- The theory of p-spaces with application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69–82.
- 16. ____, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973), 91-123.
- 17. E. Hewitt and K. A. Ross, *Abstract harmonic analysis*, vol. II, Springer-Verlag, Berlin and New York, 1970.
- 18. B. Host, Le théorème des idempotents dans B(G), Bull. Soc. Math. France 114 (1986), 215-223.
- 19. B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
- J. P. Kahane and W. Zelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339-343.
- 21. A. T. Lau and V. Losert, Weak * closed complemented invariant subspaces of $L_{\infty}(G)$ and amenable locally compact groups, Pacific J. Math. 123 (1986), 149-159.
- 22. T. W. Palmer, Classes of nonabelian, noncompact, locally compact groups, Rocky Mountain J. Math. 8 (1978), 683-741.

- 23. A. L. T. Paterson, Amenability, Amer. Math. Soc., Providence, RI, 1988.
- 24. J. P. Pier, Amenable locally compact groups, Wiley, New York, 1984.
- 25. N. V. Rao, Closed ideals of finite codimension of regular self-adjoint Banach algebras, J. Funct. Anal. 82 (1989), 237-258.
- 26. C. R. Warner and R. Whitley, *Ideals of finite codimension in* C[0, 1] and $L^1(\mathbb{R})$, Proc. Amer. Math. Soc. 76 (1979), 263-267.

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada $N2L\ 3G1$

E-mail address: beforrest@poppy.uwaterloo.ca