GEOMETRIC INVARIANTS FOR SEIFERT FIBRED 3-MANIFOLDS

MINGQING OUYANG

ABSTRACT. In this paper, we obtain a formula for the η -invariant of the signature operator for some circle bundles over Riemannian 2-orbifolds. We then apply it to Seifert fibred 3-manifolds endowed with one of the six Seifert geometries. By using a relation between the Chern-Simons invariant and the η -invariant, we also derive some elementary formulae for the Chern-Simons invariant of these manifolds. As applications, we show that some families of these manifolds cannot be conformally immersed into the Euclidean space E^4 .

1. Introduction

In dimension 3, the work of Thurston [15], [16] indicates that there are essentially eight relevant homogeneous geometries needed for geometric structures on 3-manifolds. Of these, six are the so-called Seifert geometries.

The purpose of this paper is to study two kinds of geometric invariants, the Chern-Simons invariant and the η -invariant, for a 3-manifold endowed with one of these six Seifert geometries.

The Chern-Simons invariant was first defined in [3] for a closed Riemannian 3-manifold by integrating a certain 3-form over the manifold. It is only defined mod \mathbb{Z} .

The η -invariant of a selfadjoint elliptic operator was originally introduced by Atiyah, Patodi, and Singer in [1] for odd-dimensional Riemannian manifolds in terms of the spectrum of the operator. The η -invariant we are interested in here is that of the signature operator. Such an invariant has a topological interpretation which allows us to compute it without using analytic tools. As shown in [1], it measures the extent to which the Hirzebruch signature formula fails for a nonclosed 4k-dimensional Riemannian manifold whose metric is a product near its boundary. In dimension 3, it can be thought of as a real-valued generalization of the Chern-Simons invariant.

The remainder of this paper consists of three sections. In Section 2, we obtain a formula for the η -invariant of S^1 -bundles over Riemannian 2-orbifolds. We then, in Section 3, apply our formula to the geometric Seifert fibred 3-manifolds to get explicit expressions of the η -invariant under these geometries. Finally, in Section 4, we derive some elementary formulae for the Chern-Simons invariant of geometric Seifert fibred 3-manifolds. As applications, we show that some

Received by the editors September 17, 1993 and, in revised form, January 26, 1994 and March 10, 1994.

¹⁹⁹¹ Mathematics Subject Classification. Primary 57M50, 53C30; Secondary 58G25, 58C40.

families of these manifolds cannot be conformally immersed into the Euclidean space E^4 .

2. η -invariant for S^1 -bundles over Riemannian 2-orbifolds

In [10], Komuro obtained a formula for the η -invariant of some circle bundles over Riemann surfaces. In this section, we extend his formula to the case of S^1 -bundles over Riemannian 2-orbifolds by using the generalized Hirzebruch signature formula as developed by Kawasaki in [8] and [9]. We start with the following topological interpretation for the η -invariant due to Atiyah, Patodi, and Singer:

Theorem 2.0 [1]. Let N be a 4k-dimensional Riemannian manifold with $\partial N = M$. Assume that N has a product metric near the boundary. Then

$$\eta(M) = \int_N L_k(P) - \operatorname{Sign}(N)$$

where L_k is the kth Hirzebruch L-polynomial, P is the Pontrjagin form of N and Sign(N) is the signature of N.

Kawasaki in [8] generalized the above theorem to the case where M^{4k-1} bounds a 4k-dimensional Riemannian orbifold.

To state his result, we need some preliminaries from [8] and [9].

Let (X,\mathcal{U}) be a compact orbifold. Denote by ΣX the singular set of X. For every $x\in\Sigma X$, choose precisely one linear chart $(\tilde{U}_X,G_X,U_X,\pi_X)$ such that $\pi_X(0)=x$. For each $g\in G_X$, a local group of X, the centralizer $C_{G_X}(g)$ of g in G_X acts on $\tilde{U}_X^g=\{y\in \tilde{U}_X|g\cdot y=y\}$. Let $(1),(h_X^1),\cdots,(h_X^{\rho_X})$ be all the conjugacy classes in G_X . Suppose $y\in U_X\cap\Sigma X$. Then an overlap map ψ_{yX} between \tilde{U}_Y and \tilde{U}_X induces a homomorphism $\psi_{yX}^*:G_Y\longrightarrow G_X$. The following is a bijection

$$\{(y, (h_y^j))|y \in U_x \cap \Sigma X, \psi_{yx}^*(h_y^j) = h_x^i\} \longrightarrow \tilde{U}_x^{h_x^i}/C_{G_x}(h_x^i), (y, (h_y^j)) \longmapsto [\psi_{yx}(0)]$$

which defines an orbifold structure on

$$\tilde{\Sigma}X = \{(x, (h_x^j)) | x \in \Sigma X, j = 1, 2, \dots, \rho_x\}.$$

The multiplicity of $\tilde{\Sigma}X$ in X at $(x, (h_x^j))$ is the order of the trivially acting subgroup of $C_{G_x}(h_x^j)$ on $\tilde{U}_x^{h_x^j}$.

Let $\tilde{\Sigma}_1 X$, \cdots , $\tilde{\Sigma}_c X$ be the connected components of $\tilde{\Sigma} X$. The multiplicity is locally constant on $\tilde{\Sigma} X$. Thus we can assign a number $m_s = m(\tilde{\Sigma}_s X)$ to each $\tilde{\Sigma}_s X$, called the multiplicity of $\tilde{\Sigma}_s X$ in X.

On each orbifold chart \tilde{U}_x^h of $\tilde{\Sigma}X$, we have the normal bundle $\nu(\tilde{U}_x^h)$ in \tilde{U}_x and the tangent bundle $\tau(\tilde{U}_x^h)$. h acts on $\nu(\tilde{U}_x^h)$. We have the decomposition

$$\nu(\tilde{U}_x^h) = \bigoplus_{0 < \theta \le \pi} \nu_\theta^h$$

where ν_{θ}^h is the bundles of eigenspace for h with eigenvalues $e^{\pm i\theta}$. Introduce complex structures on the bundles ν_{θ}^h such that $h\cdot v=e^{i\theta}v$ if $v\in \nu_{\theta}^h$. (For

simplicity, we assume here that ν_{π}^{h} can be given a compatible complex structure so that $\theta = \pi$ need not play a special role). The collection of these $C_{G_x}(h)$ bundles form complex vector bundles over $\tilde{\Sigma}X$. Choose a $C_{G_x}(h)$ -invariant connection for each bundle. Write the total Chern class

$$c(\nu_{\theta}^h) = \prod_{i} (1 + x_i),$$

i.e., $c_n(\nu_{\theta}^h) = n$ th symmetric polynomial in x_j 's. Define

$$L_{\theta}(\nu_{\theta}^{h}) = \prod_{j} \coth(x_{j} + \frac{i\theta}{2}) = \prod_{j} \left(\frac{e^{i\theta}e^{2x_{j}} + 1}{e^{i\theta}e^{2x_{j}} - 1} \right).$$

The local characteristic form

$$L^{\tilde{\Sigma}}(\tilde{U}_x^h) = L(\tilde{U}_x^h) \cdot \prod_{0 < \theta \leq \pi} L_{\theta}(\nu_{\theta}^h)$$

defines an L-class in $\tilde{\Sigma}X$.

Theorem 2.1 (Kawasaki [8]). Let N be a 4k-dimensional Riemannian orbifold with $\partial N = M$ a (4k-1)-dimensional Riemannian manifold. Assume that N has a product metric near the boundary. Then

$$\eta(M) = \int_{N} L_{k}(P) - \operatorname{Sign}(N) + \sum_{s=1}^{c} \frac{1}{m_{s}} \langle L^{\hat{\Sigma}_{s}}, [\tilde{\Sigma}_{s}N] \rangle.$$

In Theorems 2.0 and 2.1, it is required that the metric on N is a product near the boundary. But this may not be the case in practice. We need a so-called "boundary correction term". The following formulation is due to Gilkey [4].

Let $C=M\times [0,1]$ and identify $M\times \{0\}$ with $M=\partial N$. Let g_0 be the product metric on C. Extend the metric g on N to a metric g_1 on $C\cup N$ such that g_1 is a product near $M\times \{1\}$ and agrees with g_0 near $M\times 1$. Let ∇_0 and ∇_1 be the Riemannian connections determined by g_0 and g_1 respectively. Denote ω_0 , ω_1 and Ω_0 , Ω_1 the corresponding connection forms and curvature forms of ∇_0 and ∇_1 respectively.

Let $\omega = \omega_1 - \omega_0$, $\omega_t = (1 - t)\omega_0 + t\omega_1$, and Ω_t the curvature form of ω_t . Define

$$TL_k = 2k \int_0^1 L_k(\omega, \Omega_t, \cdots, \Omega_t) dt.$$

Then

$$dTL_k = L_k(\Omega_1) - L_k(\Omega_0).$$

Since $L_k(\Omega_0) = 0$, we get

$$dTL_k = L_k(\Omega_1) = L_k(\Omega_1, \cdots, \Omega_1).$$

Thus

$$\int_C L_k(\Omega_1) = \int_C dT L_k = \int_{\partial C} T L_k = \int_{M \times \{0\}} T L_k = -\int_M T L_k.$$

It follows from Theorem 2.1 that

$$\begin{split} \eta(M) &= \int_{C \cup N} L_k(P) - \operatorname{Sign}(C \cup N) + \sum_{s=1}^c \frac{1}{m_s} \langle L^{\tilde{\Sigma}_s}, \, [\tilde{\Sigma}_s N] \rangle \\ &= \int_C L_k(\Omega_1) + \int_N L_k(P) - \operatorname{Sign}(N) + \sum_{s=1}^c \frac{1}{m_s} \langle L^{\tilde{\Sigma}_s}, \, [\tilde{\Sigma}_s N] \rangle \\ &= -\int_M T L_k + \int_N L_k(P) - \operatorname{Sign}(N) + \sum_{s=1}^c \frac{1}{m_s} \langle L^{\tilde{\Sigma}_s}, \, [\tilde{\Sigma}_s N] \rangle. \end{split}$$

Now, let $S(E) \longrightarrow F$ be a principal S^1 -bundle over an oriented, Riemannian 2-orbifold (F, \hat{g}) . Let $p: E \longrightarrow F$ be the associated \mathbb{C}^1 -bundle.

Choose a fiber metric \tilde{g} and a \tilde{g} -preserving connection $\tilde{\nabla}$. Then we obtain a Riemannian orbifold (E, g) by assuming that

$$g|_{\text{horizontal}} = p^* \hat{g}$$
 and $g|_{\text{vertical}} = \tilde{g}$.

We now determine the Riemannian connection of g on E.

For any $x \in F$, choose local orthonormal (horizontal) sections e_1 , e_2 near x, Then they determine a coordinate system u^1 , u^2 along the fiber with $e_{\alpha} = \partial/\partial u^{\alpha}$, $\alpha = 1, 2$.

Let x_3 , x_4 be a local orthonormal frame of F near x and e_3 , e_4 their horizontal lifts with respect to $\widetilde{\nabla}$.

Let \tilde{R} be the curvature tensor of the connection $\tilde{\nabla}$ and $\tilde{\Omega}_{\alpha}^{\beta}$ its components with respect to e_1 , e_2 . Then $\tilde{\Omega}_1^2 = \tilde{R}_{1234} x_3^{\star} \wedge x_4^{\star}$ where

$$\tilde{R}_{1234} = \tilde{g}(\tilde{R}(x_3, x_4)e_1, e_2).$$

We will denote $\tilde{R} = \tilde{R}_{1234}$ for brevity. For convenience, we use the polar coordinate system (r, θ) in the vertical space so that $u^1 = r \cos \theta$ and $u^2 = r \sin \theta$.

A straightforward calculation yields

Lemma 2.2. With respect to the basis $\{e_1 = \frac{1}{r} \frac{\partial}{\partial \theta}, e_2 = \frac{\partial}{\partial r}, e_3, e_4\}$, the connection form ω of ∇ is given by

$$\begin{split} \omega_2^1 &= \widetilde{d\theta} \;, \quad \omega_3^1 &= -\frac{1}{2} r \tilde{R} e_4^{\star} \;, \quad \omega_4^1 &= \frac{1}{2} r \tilde{R} e_3^{\star} \;, \\ \omega_3^2 &= \omega_4^2 = 0 \;, \quad \omega_4^3 &= -\frac{1}{2} r^2 \tilde{R} \widetilde{d\theta} + p^{\star} \hat{\omega}_4^3 \end{split}$$

where $\{r\widetilde{d\theta}, dr, e_3^*, e_4^*\}$ is the dual basis of $\{\frac{1}{r}\frac{\partial}{\partial\theta}, \frac{\partial}{\partial r}, e_3, e_4\}$ and $\hat{\omega}_4^3$ is the component of the connection form of \hat{g} with respect to x_3, x_4 .

From Lemma 2.2, we have the following

Lemma 2.3. If \tilde{R} is constant on F, then with respect to the same basis as in Lemma 2.2, the components of the curvature form Ω of ∇ are given by

$$\Omega_{1}^{2} = \tilde{R}e_{3}^{\star} \wedge e_{4}^{\star},$$

$$\Omega_{1}^{3} = -\frac{1}{2}\tilde{R}e_{4}^{\star} \wedge dr + \frac{1}{4}r^{2}\tilde{R}^{2}e_{3}^{\star} \wedge r\widetilde{d\theta},$$

$$\Omega_{1}^{4} = \frac{1}{2}\tilde{R}e_{3}^{\star} \wedge dr + \frac{1}{4}r^{2}\tilde{R}^{2}e_{4}^{\star} \wedge r\widetilde{d\theta},$$

$$\Omega_{2}^{3} = \frac{1}{2}\tilde{R}e_{4}^{\star} \wedge r\widetilde{d\theta},$$

$$\Omega_{2}^{4} = -\frac{1}{2}\tilde{R}e_{3}^{\star} \wedge r\widetilde{d\theta},$$

$$\Omega_{3}^{4} = p^{\star}\hat{\Omega}_{3}^{4} - \frac{3}{4}r^{2}\tilde{R}^{2}p^{\star}\omega_{F} + \tilde{R}dr \wedge r\widetilde{d\theta},$$

where $\hat{\Omega}_3^4$ is the curvature form of $\hat{\omega}_3^4$ and $\omega_F = x_3^* \wedge x_4^*$ is the volume form of (F, \hat{g}) . Equation (2) is valid in general.

Before presenting our main theorem, we need some facts about the local structure of a 2-orbifold and a complex line bundle over it.

Let F be an oriented, closed 2-orbifold. Then, by the classification theorem of 2-orbifolds (see [15], for example), the only possible orbifold charts have the form $\mathbf{R}^2/(\mathbf{Z}/\alpha)$ with \mathbf{Z}/α acting on \mathbf{R}^2 by multiplication by $e^{2\pi\beta i/\alpha}$ for some β prime to α . ΣF consists of a set of isolated points $\{x_1, \dots, x_n\}$ in F. Thus, F is determined by the data $(g; \alpha_1, \dots, \alpha_n)$ where g is the genus of F and the α_s 's are such that $G_{x_s} = \mathbf{Z}/\alpha_s$. We assume thereafter, without loss of generality, that $\alpha_s > 0$.

Let $E \longrightarrow F$ be a complex line bundle over F such that E is a 4-orbifold with orbifold chart $(\mathbf{R}^2 \times \mathbf{R}^2)/\mathbf{Z}/\alpha$ where \mathbf{Z}/α acts on the first coordinate by $e^{2\pi i\beta/\alpha}$ and on the second by $e^{2\pi i\gamma i/\alpha}$ for some β and γ prime to α . Thus $\Sigma E = \{(x_1, 0), \dots, (x_n, 0)\}$. We call

$$((\alpha_1; \beta_1, \gamma_1), \cdots, (\alpha_n; \beta_n, \gamma_n))$$

the orbifold data of E.

Theorem 2.4. Let $p: E \longrightarrow F$ be a complex line bundle over an oriented, closed Riemannian 2-orbifold (F, \hat{g}) . Suppose that the total space E has orbifold data $((\alpha_1; \beta_1, \gamma_1), \cdots, (\alpha_n; \beta_n, \gamma_n))$. Choose a fiber metric \tilde{g} in E and let $\tilde{\nabla}$ be a \tilde{g} -preserving connection in E. Then (E, g) becomes a Riemannian orbifold. Assume that \tilde{R} is constant on F. Then the η -invariant of the circle bundle of radius F is given by

$$\eta(S_r E) = \frac{2}{3}c_1 \left\{ \frac{\pi r^2}{\operatorname{Vol}(F)} \chi - \left(\frac{\pi r^2}{\operatorname{Vol}(F)} \right)^2 c_1^2 \right\} + \frac{1}{3}c_1 - \varepsilon + \sum_{j=1}^n 4s(\beta_j, \gamma_j; \alpha_j)$$

where c_1 is the (rational) Euler number of the bundle $E \longrightarrow F$. χ is the (rational) Euler characteristic of the base orbifold F. $s(\beta_j, \gamma_j; \alpha_j)$ is the following

generalized Dedekind sum as in [7]:

$$s(\beta, \gamma; \alpha) = \frac{1}{4\alpha} \sum_{k=1}^{\alpha-1} \cot\left(\frac{k\beta\pi}{\alpha}\right) \cot\left(\frac{k\gamma\pi}{\alpha}\right).$$

ε is defined by

$$\varepsilon = \begin{cases} 1 & \text{if } c_1 > 0, \\ 0 & \text{if } c_1 = 0, \\ -1 & \text{if } c_1 < 0. \end{cases}$$

Proof. Denote by $D_r(E)$ the disk-bundle of radius r of E. Let $g_0 = g \mid_{S_r(E)} \times dt^2$ be the product metric on $D_{r+1}(E) - D_r(E) = S_r(E) \times [0, 1]$. Let ∇_0 be the Riemannian connection determined by g_0 and ω_0 , Ω_0 the connection form and curvature form of ∇_0 respectively. Choose a metric g_1 on $D_{r+1}(E) - D_r(E)$ such that $g_1 = g$ on $D_{r+\frac{1}{4}}(E) - D_r(E)$ and $g_1 = g_0$ on $D_{r+1}(E) - D_{r+\frac{3}{4}}(E)$. Let ∇_1 be the Riemannian connection determined by the metric g_1 and ω_1 , Ω_1 the connection form and curvature form of ∇_1 respectively. Write $\omega = \omega_1 - \omega_0$ and $\omega_t = (1-t)\omega_0 + t\omega_1$. Then from Lemma 2.2, with respect to the basis $\{\frac{1}{r}, \frac{\partial}{\partial \theta}, \frac{\partial}{\partial r}, e_3, e_4\}$, the components of ω_t on $D_{r+\frac{1}{4}}(E) - D_r(E)$ are given by

$$(\omega_t)_2^1 = t\widetilde{d\theta}, \quad (\omega_t)_3^1 = -\frac{1}{2}r\tilde{R}e_4^*, \quad (\omega_t)_4^1 = \frac{1}{2}r\tilde{R}e_3^*,$$

$$(\omega_t)_3^2 = (\omega_t)_4^2 = 0, \quad (\omega_t)_4^3 = -\frac{1}{2}r^2\tilde{R}\widetilde{d\theta} + p^*\hat{\omega}_4^3.$$

It follows that $(\Omega_t)_1^2 = tp^*\tilde{\Omega}_1^2$. Also, $\omega_1^2 = -\widetilde{d\theta}$ and $\omega_s^q = 0$ others. From Lemma 2.3 we get

$$\begin{split} &(\Omega_1^2)^2 = (\Omega_2^3)^2 = (\Omega_2^4)^2 = 0\,,\\ &(\Omega_1^3)^2 + (\Omega_1^4)^2 = -\frac{1}{2}r^2\tilde{R}^3e_3^\star \wedge e_4^\star \wedge rdr \wedge \widetilde{d\theta}\,,\\ &(\Omega_3^4)^2 = -\frac{3}{2}r^2\tilde{R}^3e_3^\star \wedge e_4^\star \wedge rdr \wedge \widetilde{d\theta} + 2p^\star\hat{\Omega}_3^4 \wedge \tilde{R}dr \wedge r\widetilde{d\theta}. \end{split}$$

Thus,

$$\begin{split} L_1(g) &= \frac{1}{3} P_1(g) = \frac{1}{12\pi^2} \sum_{s < q} (\Omega_s^q)^2 \\ &= \frac{1}{6\pi^2} (\tilde{R} p^* \hat{\Omega}_3^4 \wedge r dr \wedge \widetilde{d\theta} - r^2 \tilde{R}^3 p^* \omega_F \wedge r dr \wedge \widetilde{d\theta}) \,, \\ TL_1 &= 2 \int_0^1 L_1(\omega_s, \Omega_t) dt \\ &= 2 \cdot \frac{1}{12\pi^2} \int_0^1 t p^* \tilde{\Omega}_1^2 \wedge (-\widetilde{d\theta}) dt \\ &= -\frac{1}{12\pi^2} p^* \tilde{\Omega}_1^2 \wedge \widetilde{d\theta} \,. \end{split}$$

Also, note that $\hat{\Omega}_3^4$ and $\tilde{\Omega}_1^2$ represent $2\pi\chi(F)$ and $2\pi c_1(E)$ respectively. Thus, since \tilde{R} is constant on F, we have

$$\tilde{R} = \frac{2\pi c_1}{\operatorname{Vol}(F)}.$$

Choose a partition of unity $\{f_{\alpha}\}_{{\alpha}\in\Lambda}$ subordinate to the open cover $\mathscr U$ of F. Then we get

$$\begin{split} \int_{D_{r}(E)} L_{1}(g) &= \sum_{\alpha \in \Lambda} \frac{1}{|G_{\alpha}|} \int_{\tilde{E}_{\alpha}} (f_{\alpha} \circ p) \frac{1}{6\pi^{2}} (\tilde{R}p^{*}\hat{\Omega}_{3}^{4} \wedge rdr \wedge d\tilde{\theta}) \\ &- r^{2}\tilde{R}^{3}p^{*}\omega_{F} \wedge rdr \wedge d\tilde{\theta}) \\ &= \sum_{\alpha \in \Lambda} \frac{1}{|G_{\alpha}|} \int_{\tilde{U}_{\alpha}} f_{\alpha} \frac{1}{6\pi^{2}} \left(\pi r^{2}\tilde{R}\hat{\Omega}_{3}^{4} - \frac{1}{2}\pi r^{4}\tilde{R}^{2}\tilde{\Omega}_{1}^{2} \right) \\ &= \int_{F} \frac{1}{6\pi^{2}} \left(\pi r^{2}\tilde{R}\hat{\Omega}_{3}^{4} - \frac{1}{2}\pi r^{4}\tilde{R}^{2}\tilde{\Omega}_{1}^{2} \right) \\ &= \frac{1}{6\pi^{2}} \left(\pi r^{2}\tilde{R}\hat{\Omega}_{3}^{4} - \frac{1}{2}\pi r^{4}\tilde{R}^{2}\tilde{\Omega}_{1}^{2} \right) [F] \\ &= \frac{2}{3}c_{1} \left(\frac{\pi r^{2}}{\operatorname{Vol}(F)} \chi - \left(\frac{\pi r^{2}}{\operatorname{Vol}(F)} \right)^{2} c_{1}^{2} \right), \end{split}$$

$$\int_{S_{r}(E)} TL_{1}(g) = -\sum_{\alpha \in \Lambda} \frac{1}{|G_{\alpha}|} \int_{\tilde{U}_{\alpha} \times S^{1}} (f_{\alpha} \circ p) \frac{1}{12\pi^{2}} (p^{*}\tilde{\Omega}_{1}^{2} \wedge d\tilde{\theta}) \\ &= -\sum_{\alpha \in \Lambda} \frac{2\pi}{|G_{\alpha}|} \int_{\tilde{U}_{\alpha}} f_{\alpha} \frac{1}{12\pi^{2}} \tilde{\Omega}_{1}^{2} = -\frac{1}{6\pi} \int_{F} \tilde{\Omega}_{1}^{2} \\ &= -\frac{1}{6\pi} 2\pi c_{1}(E)[F] = -\frac{1}{3}c_{1}. \end{split}$$

To determine $Sign(D_r(E))$, we examine the following diagram:

$$H^{2}(D_{r}(E), S_{r}(E)) \otimes H^{2}(D_{r}(E), S_{r}(E) \longrightarrow H^{4}(D_{r}(E), S_{r}(E))$$

$$\downarrow^{\cong} \qquad \qquad \downarrow^{\cong} \qquad \qquad \downarrow^{\cong}$$

$$H_{2}(D_{r}(E)) \otimes H_{2}(D_{r}(E)) \longrightarrow H_{0}(D_{r}(E))$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$\mathbf{Z}(a) \otimes \mathbf{Z}(a) \longrightarrow \mathbf{Z}(1)$$

where the vertical arrows are Poincaré-Lefschetz duality with \mathbf{Q} coefficients and the last row is an orbifold version of the Euler characteristic of E (see

[11], for instance). Thus, we get

$$\operatorname{Sign}(D_r(E)) = \varepsilon = \begin{cases} 1 & \text{if } c_1 > 0, \\ 0 & \text{if } c_1 = 0, \\ -1 & \text{if } c_1 < 0. \end{cases}$$

Next, we determine the term

$$\sum \frac{1}{m_s} \langle L^{\Sigma_s}, [\tilde{\Sigma}_s D_r(E)] \rangle.$$

By the orbifold data, we have

$$\tilde{\Sigma}D_r(E) = \{(x_i, (g_i^k))| j = 1, 2, \dots, n, k = 1, 2, \dots, \alpha_i - 1\}$$

and

$$m_j^k = \alpha_j$$
 for $k = 1, 2, \dots, \alpha_j - 2$.

Then,

$$u_{(x_j,(g_i^k))} = T_{(x_j,(g_i^k))} E = \mathbf{C}_1 \oplus \mathbf{C}_2$$

with g_j^k acting on C_1 and C_2 by multiplication by $e^{2\pi\beta_jki/\alpha_j}$ and $e^{2\pi\gamma_jki/\alpha_j}$ respectively. It follows that

$$\begin{split} \langle L^{\Sigma}, \, [\tilde{\Sigma}_{j}^{k} D_{r}(E)] \rangle &= \prod_{0 < \theta \leq \pi} L_{\theta}(\nu_{(x_{j}, (g_{j}^{k}))}^{g_{j}^{k}}) [(x_{j}, (g_{j}^{k}))] \\ &= \frac{e^{2\pi\beta_{j}ki/\alpha_{j}} + 1}{e^{2\pi\beta_{j}ki/\alpha_{j}} - 1} \cdot \frac{e^{2\pi\gamma_{j}ki/\alpha_{j}} + 1}{e^{2\pi\gamma_{j}ki/\alpha_{j}} - 1} \\ &= -\cot \frac{k\beta_{j}\pi}{\alpha_{j}} \cot \frac{k\gamma_{j}\pi}{\alpha_{j}}. \end{split}$$

Therefore,

$$\sum \frac{1}{m_s} \langle L^{\Sigma_s}, [\tilde{\Sigma}_s D_r(E)] \rangle = -\sum_{j=1}^n \frac{1}{\alpha_j} \sum_{k=1}^{\alpha_j - 1} \cot \frac{k \beta_j \pi}{\alpha_j} \cot \frac{k \gamma_j \pi}{\alpha_j}$$

$$= \sum_{j=1}^n \frac{1}{\alpha_j} (4\alpha_j s(\beta_j, \gamma_j; \alpha_j))$$

$$= 4 \sum_{j=1}^n s(\beta_j, \gamma_j; \alpha_j).$$

Finally, from formula (2.1) we get

$$\eta(S_r E) = \int_{D_r(E)} L_1 - \int_{S_r(E)} T L_1 - \operatorname{Sign}(D_r(E)) + \sum \frac{1}{m_s} \langle L^{\hat{\Sigma}_s}, [\tilde{\Sigma}_s D_r(E)] \rangle$$

$$= \frac{2}{3} c_1 \left\{ \frac{\pi r^2}{\operatorname{Vol}(F)} \chi - \left(\frac{\pi r^2}{\operatorname{Vol}(F)} \right)^2 c_1^2 \right\} + \frac{1}{3} c_1 - \varepsilon + 4 \sum_{j=1}^n s(\beta_j, \gamma_j; \alpha_j). \quad \Box$$

3. APPLICATION TO GEOMETRIC SEIFERT FIBRED 3-MANIFOLDS

This section is devoted to providing some explicit formulae for the η -invariant of geometric Seifert fibred 3-manifolds. We refer to [11] and [13] for basic material on Seifert fibred 3-manifolds and their relevant geometries.

A Seifert fibred 3-manifold can be viewed as an S^1 -fibration $M \longrightarrow F$ over a closed 2-orbifold F.

Associated to M is the Seifert invariant $(g; (\alpha_1, \beta_1), \dots, (\alpha_n, \beta_n))$.

The Euler number of the Seifert fibration is

$$e(M \longrightarrow F) = -\sum_{j=1}^{n} \frac{\beta_j}{\alpha_j}.$$

The Euler characteristic of the base orbifold F is

$$\chi = 2 - 2g - \sum_{i=1}^{n} \frac{\alpha_i - 1}{\alpha_i}.$$

The relevant geometry of a Seifert fibred 3-manifold is determined by e and χ as follows.

	$\chi > 0$	$\chi = 0$	χ < 0
e=0	$\mathbf{S}^2 \times \mathbf{E}^1$	\mathbf{E}^3	$\mathbf{H}^2 \times \mathbf{E}^1$
$e \neq 0$	\mathbf{S}^3	Nil	$\widetilde{\mathrm{PSL}}$

In what follows, we assume that the base space F is oriented.

Let $M = M(g; (\alpha_1, \beta_1), \dots, (\alpha_n, \beta_n)) \longrightarrow F$ be a geometric Seifert fibred 3-manifold and $E \longrightarrow F$ be the associated C^1 -bundle. Then the set of singular points of the orbifold E is given by $\Sigma = \{(x_1, 0), \dots, (x_n, 0)\}$. The local group $G_{x_j} = \mathbb{Z}/\alpha_j$ acts on the first and the second coordinate by multiplication by $e^{2\pi\beta_j i/\alpha_j}$ and $e^{2\pi i/\alpha_j}$ respectively.

Thus, in the expression of $\eta(M)$ in Theorem 2.4,

$$s(\beta_j, \gamma_j; \alpha_j) = s(\beta_j, 1; \alpha_j) = s(\beta_j, \alpha_j).$$

Choose a fiber metric \tilde{g} on E such that the induced metric on M is the one from the corresponding Seifert geometry. Let $\tilde{\nabla}$ be a \tilde{g} -preserving connection on E.

Lemma 3.1. If M is locally symmetric, then under the above assumption, \tilde{R} is constant on F.

Proof. Choose the same local basis $\{e_1 = \frac{\partial}{r\partial\theta}, e_2 = \frac{\partial}{\partial r}, e_3, e_4\}$ as in Section 2. For every $x \in M$, denote I_x the local reflection about x. Since $M = S_r(E)$ is locally symmetric, I_x is an isometry. Hence $dI_x = -Id$ commutes with ∇R . Thus

$$-\nabla_{e_{\alpha}}R(e_3, e_4)e_1 = dI_x(\nabla_{e_{\alpha}}R(e_3, e_4)e_1)$$

= $\nabla_{-e_{\alpha}}R(-e_3, -e_4)(-e_1) = \nabla_{e_{\alpha}}R(e_3, e_4)e_1$ for $\alpha = 3, 4$.

Therefore,

$$\nabla_{e_{\alpha}} R(e_3, e_4) e_1 = 0$$
 for $\alpha = 3, 4$.

From Lemma 2.2, we have $\omega_3^2 = \omega_4^2 = 0$. Thus,

$$\nabla_{e_{\alpha}}e_2=0$$
 for $\alpha=3, 4$.

It follows that

$$\begin{split} e_{\alpha}(R_{1234}) &= e_{\alpha}(g(R(e_3\,,\,e_4)e_1\,,\,e_2)) \\ &= g(\nabla_{e_{\alpha}}R(e_3\,,\,e_4)e_1\,,\,e_2) + g(R(e_3\,,\,e_4)e_1\,,\,\nabla_{e_{\alpha}}e_2) \\ &= 0 \quad \text{ for } \alpha = 3\,,\,4. \end{split}$$

Also, from formula (2) in Section 2, we have

$$\tilde{R}\circ\pi=\tilde{R}_{1234}\circ\pi=R_{1234}.$$

Thus we get $x_{\alpha}(\tilde{R}) = e_{\alpha}(R) = 0$ for $\alpha = 3, 4$. Hence, \tilde{R} is constant on F. \square

Now, we are in position to apply Theorem 2.4 to the geometric Seifert fibred 3-manifolds.

(a) M is modeled on $S^2 \times E^1$, E^3 - or $H^2 \times E^1$ -geometry.

Any Seifert manifold $M(g; (\alpha_1, \beta_1), \dots, (\alpha_n, \beta_n))$ with one of these geometries is locally symmetric and $c_1 = e = 0$. Thus we have by Theorem 2.4,

$$\eta(M) = 4\sum_{j=1}^n s(\beta_j, \alpha_j).$$

(b) M is modeled on S^3 -geometry.

Clearly, every Seifert manifold with this geometry is locally symmetric.

(1) $n \ge 3$. F has an S²-geometry. We have

$$2\pi\chi \cdot 2\pi r = \operatorname{Vol}(M) = \frac{\operatorname{Vol}(S^3(2))}{|\pi_1(M)|} = \frac{16\pi^2}{4|\frac{e}{\chi^2}|} = 4\pi^2 \frac{\chi^2}{|e|}.$$

Hence, $r = |\chi/e|$. Thus Theorem 2.4 yields

$$\eta(M) = \frac{1}{6} \frac{\chi^2}{e} + \frac{1}{3} e - \operatorname{sgn}(e) + 4 \sum_{j=1}^n s(\beta_j, \alpha_j).$$

(2)
$$n \le 2$$
. We have $M((\alpha_1, \beta_1), (\alpha_2, \beta_2)) = L(p, q)$ where

$$\epsilon p = \alpha_1 \beta_2 + \alpha_2 \beta_1$$
, $\epsilon q = \alpha_1 \beta_2' + \alpha_2' \beta_1$, $1 = \alpha_2 \beta_2' - \alpha_2' \beta_2$,

and $\epsilon = \pm 1$.

In order to use Theorem 2.4, we need a "geometric fibration" $M \longrightarrow F$ such that F possesses a geometry from S^2 as a 2-orbifold. This is equivalent to requiring that $\alpha_1 = \alpha_2$.

Lemma 3.2. Any lens space L(p,q) possesses exactly two geometric Seifert fibrations

$$L(p, q) = M((\alpha, \gamma_1), (\alpha, \gamma_2))$$

where

$$\alpha = \frac{p}{\gcd(p, q - 1)}, \quad \gamma_1 + \gamma_2 = \gcd(p, q - 1), \quad and$$
$$\gamma_2 \frac{q - 1}{\gcd(p, q - 1)} \equiv -1 \pmod{\alpha}$$

or

$$L(p, q) = M((\alpha', \gamma_1'), (\alpha', \gamma_2'))$$

where

$$\alpha' = \frac{p}{\gcd(p, q+1)}, \quad \gamma_1' + \gamma_2' = -\gcd(p, q+1), \quad and$$
$$\gamma_2' \frac{q+1}{\gcd(p, q+1)} \equiv -1 \pmod{\alpha'}.$$

Proof. We will show it in one case. The other case is similar. Suppose that α , γ_1 , γ_2 satisfies

$$p = \alpha \gamma_2 + \alpha \gamma_1$$
, $q = \alpha \beta_2' + \alpha_2' \gamma_1$, $1 = \alpha \beta_2' - \alpha_2' \gamma_2$.

Then we have

$$1 = \alpha \beta_2' - \frac{q-1}{\gamma_1 + \gamma_2} \gamma_2 = \frac{p}{\gamma_1 + \gamma_2} \beta_2' - \frac{q-1}{\gamma_1 + \gamma_2} \gamma_2.$$

It follows that

$$\gamma_1 + \gamma_2 = \gcd(p, q - 1), \quad \gamma_2 \frac{q - 1}{\gcd(p, q - 1)} \equiv -1 \pmod{\alpha}, \quad \text{and}$$

$$\alpha = \frac{p}{\gcd(p, q - 1)}.$$

The converse is straightforward.

For the geometric fibration $L(p, q) = M((\alpha, \gamma_1), (\alpha, \gamma_2))$, we have

$$e = -\frac{\gamma_1 + \gamma_2}{\alpha} = -\frac{(\gcd(p, q-1))^2}{p}$$
 and $\chi = 2 - 2\frac{\alpha - 1}{\alpha} = 2\frac{\gcd(p, q-1)}{p}$.

Thus, from Theorem 2.4, we get

$$\eta(L(p, q)) = \eta(M((\alpha, \gamma_1), (\alpha, \gamma_2)))
= \frac{1}{6} \frac{\chi^2}{e} + \frac{1}{3} e + \operatorname{sgn}(p) + 4 \sum_{j=1}^{2} s(\gamma_j, \alpha)
= -\frac{2}{3p} - \frac{1}{3} \frac{(\gcd(p, q-1))^2}{p} + \operatorname{sgn}(p) + 4 \sum_{j=1}^{2} s(\gamma_j, \alpha).$$

where

$$\alpha = \frac{p}{\gcd(p, q-1)}, \quad \gamma_1 + \gamma_2 = \gcd(p, q-1), \quad \text{and}$$

$$\gamma_2 \frac{q-1}{\gcd(p, q-1)} \equiv -1 \pmod{\alpha}.$$

Similar computation yields

$$\begin{split} \eta(L(p\,,\,q)) &= \eta(M((\alpha'\,,\,\gamma_1')\,,\,(\alpha'\,,\,\gamma_2'))) \\ &= \frac{2}{3p} + \frac{1}{3} \frac{(\gcd(p\,,\,q+1))^2}{p} - \operatorname{sgn}(p\,) + 4 \sum_{j=1}^2 s(\gamma_j'\,,\,\alpha'). \end{split}$$

where

$$\alpha' = \frac{p}{\gcd(p\,,\,q+1)}\,,\quad \gamma_1' + \gamma_2' = -\gcd(p\,,\,q+1)\,,\quad \text{and}$$

$$\gamma_2' \frac{q+1}{\gcd(p\,,\,q+1)} \equiv -1 \pmod{\alpha'}.$$

On the other hand, as computed by Atiyah-Patodi-Singer in [2]

$$\eta(L(p, q)) = -4s(q, p).$$

Thus, by equating the above three formulae, we get the following interesting identities about the Dedekind sums:

$$s(q, p) = -\sum_{j=1}^{2} s(\gamma_j, \alpha) + \frac{1}{6p} + \frac{1}{12} \frac{(\gcd(p, q-1))^2}{p} - \frac{1}{4} \operatorname{sgn}(p)$$
$$= -\sum_{j=1}^{2} s(\gamma_j', \alpha') - \frac{1}{6p} - \frac{1}{12} \frac{(\gcd(p, q+1))^2}{p} + \frac{1}{4} \operatorname{sgn}(p)$$

where

$$\alpha = \frac{p}{\gcd(p, q-1)}, \quad \gamma_1 + \gamma_2 = \gcd(p, q-1), \quad \text{and}$$
$$\gamma_2 \frac{q-1}{\gcd(p, q-1)} \equiv -1 \pmod{\alpha}$$

and

$$\begin{split} \alpha' &= \frac{p}{\gcd(p\,,\, q+1)}\,, \quad \gamma_1' + \gamma_2' = -\gcd(p\,,\, q+1)\,, \ \text{ and } \\ \gamma_2' \frac{q+1}{\gcd(p\,,\, q+1)} &\equiv -1 \pmod{\alpha'}. \end{split}$$

In particular, let q = 1 and p > 0 in the first equality or q = -1 and p < 0 in the second equation, we get

(3.1)
$$s(1, p) = \frac{1}{12p}(p - \operatorname{sgn}(p))(p - 2\operatorname{sgn}(p)).$$

Thus, we have

$$\sum_{k=1}^{|p|-1} \left(\cot \left(\frac{\pi k}{p} \right) \right)^2 = \frac{1}{3} (p - \operatorname{sgn}(p)) (p - 2\operatorname{sgn}(p)).$$

(c) M is modeled on \widetilde{PSL} -geometry. Equip \mathbf{H}^2 with the standard hyperbolic metric. Then we have a natural metric on $T(\mathbf{H}^2)$. The identification

between $PSL(2, \mathbf{R})$ and the unit tangent bundle $T^1(\mathbf{H}^2)$ gives rise to a (left-invariant) metric on $PSL(2, \mathbf{R})$ which induces a metric on \widetilde{PSL} .

For a Seifert manifold $M \longrightarrow F$ with this geometry and the given metric on \widetilde{PSL} , we have $\tilde{R} = -1$ on F. Thus, Theorem 2.4 implies.

From a homomorphism $\pi_1(M) \longrightarrow \text{Isom}(\widetilde{PSL})$ giving a geometric structure on M, we get $r = |\chi/e|$ (see [11]). It follows from Theorem 2.4 that

(3.2)
$$\eta(M) = -\frac{1}{2}\frac{\chi^2}{e} + \frac{1}{3}e - \operatorname{sgn}(e) + 4\sum_{j=1}^n s(\beta_j, \alpha_j).$$

From the above discussion, we have the following

Corollary 3.3. Under the above five geometries, if we fix the metric in each universal cover as above, then the η -invariant depends only on the topology.

Finally, under the Nil-geometry, the volume of the base orbifold is indeterminate, so the Seifert invariant alone is not sufficient to express $\eta(M)$.

We conclude this section with the following

Corollary 3.4. Equip $PSL(2, \mathbf{R})$ with the above metric. Let $\Gamma \subseteq PSL(2, \mathbf{R})$ be a co-compact Fuchsian group of signature $\{g; \alpha_1, \dots, \alpha_n\}$. Then

$$\eta(PSL(2, \mathbf{R})/\Gamma) = \frac{1}{6}(2g + 4 + 7n) - \sum_{j=1}^{n} \left(\frac{1}{3}\alpha_j + \frac{5}{6\alpha_j}\right).$$

Proof. As shown in [11],

$$PSL(2, \mathbf{R})/\Gamma = M(g; (1, 2g-2), (\alpha_1, \alpha_1 - 1), \dots, (\alpha_n, \alpha_n - 1)).$$

Thus,

$$\chi = e = 2 - 2g - \sum_{j=1}^{n} \frac{\alpha_j - 1}{\alpha_j}.$$

Also, from (3.1), we get

$$s(\alpha_j - 1; \alpha_j) = -s(1, \alpha_j) = -\frac{1}{12\alpha_i}(\alpha_j - 1)(\alpha_j - 2).$$

It follows from (3.2) that

$$\begin{split} \eta(PSL(2\,,\,\mathbf{R})/\Gamma) &= -\frac{1}{2}\chi + \frac{1}{3}\chi + 1 + 4\sum_{j=1}^n s(\alpha_j - 1\,,\,\alpha_j) \\ &= -\frac{1}{6}\chi + 1 + 4\sum_{j=1}^n \left(-\frac{1}{12\alpha_j}(\alpha_j - 1)(\alpha_j - 2) \right) \\ &= \frac{1}{6}(2g + 4 + 7n) - \sum_{j=1}^n \left(\frac{1}{3}\alpha_j + \frac{5}{6\alpha_j} \right). \quad \Box \end{split}$$

Remark 1. A similar formula for the the η -invariant of $PSL(2, \mathbb{R})/\Gamma$ associated to the Dirac operator was obtained in [14].

4. CHERN-SIMONS INVARIANT AND CONFORMAL IMMERSIONS

Let M be a closed, oriented Riemannian 3-manifold. Chern and Simons defined a mod 1 invariant of M in [3], now commonly denoted by CS(M), and showed that $CS(M) \equiv 0 \pmod{1}$ if M conformally immerses into E^4 .

A surprising relation between CS(M) and $\eta(M)$ is demonstrated by the following

Theorem 4.1 (Atiyah-Patodi-Singer [2]). Let M be a closed, oriented Riemannian 3-manifold. Then

$$CS(M) \equiv \frac{3}{2}\eta(M) + \frac{1}{2}\sigma(H_1(M; \mathbf{Z})) \pmod{1}$$

where $\sigma(H_1(M; \mathbf{Z})) = \#$ of 2-primary summands in $H_1(M; \mathbf{Z})$.

In this section, we derive some elementary formulae for the Chern-Simons invariant of the geometric Seifert fibred 3-manifolds and show that some families of them cannot be conformally immersed into \mathbf{E}^4 . We begin with the following

Lemma 4.2. Let p, q be a pair of coprime positive integers. Choose r, s such that ps + qr = 1, q + r is even and s is odd if p is even. Then

$$6s(q, p) \equiv \frac{q+r}{2p} \pmod{1}.$$

Proof. Case 1. p is odd. We have

$$6ps(q, p) = \frac{q + r_0}{2} + \frac{1}{2}pI(p, q) \in \mathbb{Z}$$

where r_0 is such that $qr_0 \equiv 1 \pmod{p}$, $-1 < r_0/p \le 0$, and $I(p, q) \in \mathbb{Z}$ (see [7], for instance). Since p is odd, $q + r_0$ and I(p, q) have the same parity. It follows that

$$6s(q, p) \equiv \frac{q + r_0 + \delta p}{2p} \pmod{1}$$

with

$$\delta = \begin{cases} 0 & \text{if } q + r_0 \text{ is even,} \\ 1 & \text{if } q + r_0 \text{ is odd.} \end{cases}$$

Therefore we have

$$6s(q, p) \equiv \frac{q+r}{2p} \pmod{1}$$

with $qr \equiv 1 \pmod{p}$ and q + r even.

Case 2. p is even. Then q is odd. From the Dedekind reciprocity law and Case 1, we get

$$6s(q, p) = -6s(p, q) + \frac{p^2 + q^2 + 1 - 3pq}{2pq}$$

$$\equiv \frac{-p - t}{2q} + \frac{p^2 + q^2 + 1 - 3pq}{2pq} \pmod{1}, \quad pt \equiv 1 \pmod{q}, t \text{ even}$$

$$\equiv \frac{q^2 + 1 - ps}{2pq} \pmod{1}, \quad ps \equiv 1 \pmod{q}, s \text{ odd}$$

$$\equiv \frac{q + r}{2p} \pmod{1}, \quad ps + qr = 1, s \text{ odd.} \quad \Box$$

Lemma 4.3. Let

$$M = M(g; (\alpha_1, \beta_1), \cdots, (\alpha_n, \beta_n))$$

be a Seifert fibred 3-manifold and 1 the number of even α_i 's. Then

$$\sigma(H_1(M; \mathbf{Z})) = \begin{cases} l-1 & \text{if } l \geq 1 \\ 1 & \text{if } l = 0 \text{ and } \sum \beta_j \text{ is even,} \\ 0 & \text{if } l = 0 \text{ and } \sum \beta_j \text{ is odd.} \end{cases}$$

Proof. Arrange the Seifert invariant such that

$$M = M(g; (1, a), (\alpha_1, \beta_1), \dots, (\alpha_l, \beta_l), (\alpha_{l+1}, \beta'_{l+1}), \dots, (\alpha_n, \beta'_n))$$

where α_j is even for $j \le l$, α_j is odd for j > l, β'_j is even for j > l, and a is the number of odd β_j 's for j > l. Then we have

$$H_{1}(M; \mathbf{Z}) = \mathbf{Z}^{2g} \oplus \operatorname{Cok}(\begin{pmatrix} 1 & 1 & \cdots & 1 & 1 & \cdots & 1 & 0 \\ 1 & 0 & \cdots & 0 & 0 & \cdots & 0 & a \\ & \alpha_{1} & & & & & & \beta_{1} \\ & & \ddots & & & & & \vdots \\ & & & \alpha_{l} & & & & & \beta_{l} \\ & & & & & \alpha_{l+1} & & & \beta_{l+1} \\ & & & & \ddots & & \vdots \\ & & & & & \alpha_{n} & \beta_{n} \end{pmatrix}).$$

Therefore

refere
$$\sigma(H_1(M; \mathbf{Z})) = \sigma(\operatorname{Cok}(\begin{pmatrix} 1 & 1 & \cdots & 1 & 1 & \cdots & 1 & 0 \\ 1 & 0 & \cdots & 0 & 0 & \cdots & 0 & a \\ \alpha_1 & & & & & \beta_1 \\ & & \ddots & & & & \vdots \\ & & & \alpha_l & & & \beta_l \\ & & & & \alpha_{l+1} & & & \beta_{l+1} \\ & & & & \ddots & & \vdots \\ & & & & & \alpha_n & \beta_n \end{pmatrix}))$$

$$= \sigma(\operatorname{Cok}(\begin{pmatrix} 1 & 1 & \cdots & 1 & 1 & \cdots & 1 & 0 \\ 1 & 0 & \cdots & 0 & 0 & \cdots & 0 & a \\ 0 & & & & & 1 \\ & & \ddots & & & & \vdots \\ & & & & 1 & 0 \end{pmatrix})).$$
follows that

It follows that

$$\sigma(H_1(M; \mathbf{Z})) = \begin{cases} l - 1 & \text{if } l \ge 1 \text{ ,} \\ 1 & \text{if } l = 0 \text{ and } a \text{ is even,} \\ 0 & \text{if } l = 0 \text{ and } a \text{ is odd,} \end{cases}$$

$$= \begin{cases} l - 1 & \text{if } l \ge 1 \text{ ,} \\ 1 & \text{if } l = 0 \text{ and } \sum \beta_j \text{ is even,} \\ 0 & \text{if } l = 0 \text{ and } \sum \beta_j \text{ is odd.} \quad \Box \end{cases}$$

By virtue of the formulae for $\eta(M)$ in Section 3, Theorem 4.1, Lemma 4.2 and Lemma 4.3, we derive the following elementary formulae for the Chern-Simons invariant of the geometric Seifert fibred 3-manifolds.

Without loss of generality, we assume in what follows that our Seifert invariant is in a normal form $((1, b), (\alpha_1, \beta_1), \dots, (\alpha_n, \beta_n))$. For every pair of (α_j, β_j) , choose r_j , s_j such that $\alpha_j s_j + \beta_j r_j = 1$, $\beta_j + r_j$ is even and s_j is odd if α_i is even.

(a) M is modeled on E^3 , $S^2 \times E^1$, or $H^2 \times E^1$ -geometry. We have

$$CS(M) \equiv 6 \sum_{j=1}^{n} s(\beta_{j}, \alpha_{j}) + \frac{1}{2} \sigma(H_{1}(M; \mathbf{Z})) \pmod{1}$$

$$\equiv \begin{cases} \sum_{j=1}^{n} r_{j} / (2\alpha_{j}) + (l-1) / 2 \pmod{1} & \text{if } l \geq 1, \\ \sum_{j=1}^{n} r_{j} / (2\alpha_{j}) + 1 / 2 \pmod{1} & \text{if } l = 0 \text{ and } b + \sum \beta_{j} \text{ is even,} \\ \sum_{j=1}^{n} r_{j} / (2\alpha_{j}) \pmod{1} & \text{if } l = 0 \text{ and } b + \sum \beta_{j} \text{ is odd.} \end{cases}$$

- (b) M is modeled on S^3 -geometry.
- (i) $n \ge 3$. We have

$$CS(M) \equiv \frac{1}{4} \frac{\chi^2}{e} + \frac{1}{2} e + \frac{1}{2} + 6 \sum_{j=1}^{n} s(\beta_j, \alpha_j) + \frac{1}{2} \sigma(H_1(M; \mathbf{Z})) \pmod{1}.$$

Thus,

$$CS(M) \equiv \frac{1}{4} \frac{\chi^2}{e} + \sum_{j=1}^n \frac{r_j}{2\alpha_j} + \frac{1}{2}l \pmod{1} \quad \text{if } l \ge 1 ,$$

$$\equiv \frac{\chi^2}{4e} + \sum_{j=1}^n \frac{r_j}{2\alpha_j} \pmod{1} \quad \text{if } l = 0 \text{ and } b + \sum \beta_j \text{ is even} ,$$

$$\equiv \frac{\chi^2}{4e} + \frac{1}{2} + \sum_{j=1}^n \frac{r_j}{2\alpha_j} \pmod{1} \quad \text{if } l = 0 \text{ and } b + \sum \beta_j \text{ is odd.}$$

(ii) $n \le 2$. We have $M((\alpha_1, \beta_1), (\alpha_2, \beta_2)) = L(p, q)$ and

(4.1)
$$CS(L(p,q)) \equiv -6s(q,p) + \frac{1}{2}\delta(L(p,q)) \pmod{1}$$
$$\equiv -\frac{q+r}{2p} \pmod{1}$$

where ps + qr = 1 with q + r even and s even if p is even.

(c) M is modeled on PSL-geometry.

$$CS(M) \equiv -\frac{3}{4}\frac{\chi^2}{e} + \frac{1}{2}e + \frac{1}{2} + 6\sum_{j=1}^n s(\beta_j, \alpha_j) + \frac{1}{2}\sigma(H_1(M; \mathbf{Z})) \pmod{1}.$$

Thus,

$$CS(M) \equiv -\frac{3}{4} \frac{\chi^2}{e} + \sum_{j=1}^{n} \frac{r_j}{2\alpha_j} + \frac{1}{2}l \pmod{1} \quad \text{if } l \ge 1 ,$$

$$(4.2) \qquad \equiv -\frac{3\chi^2}{4e} + \sum_{j=1}^{n} \frac{r_j}{2\alpha_j} \pmod{1} \quad \text{if } l = 0 \text{ and } b + \sum \beta_j \text{ is even },$$

$$\equiv -\frac{3\chi^2}{4e} + \frac{1}{2} + \sum_{j=1}^{n} \frac{r_j}{2\alpha_j} \pmod{1} \quad \text{if } l = 0 \text{ and } b + \sum \beta_j \text{ is odd.}$$

As Hirsch showed in [6], all compact 3-manifolds immerse in \mathbb{R}^4 . We will show that some families of the geometric Seifert fibred 3-manifolds cannot be conformally immersed into \mathbb{E}^4 .

Corollary 4.4. Let F_g be the surface of genus g > 1 with a hyperbolic geometry. If g is even, then $T^1(F_g) = M(g, (1, 2g - 2))$ with the induced metric from H^2 doesn't conformally immerse into E^4 .

Proof. We have $e = \chi = 2 - 2g$. It follows from (4.2) that

$$CS(T^1(F_g)) \equiv \frac{g}{2} - \frac{1}{2} \pmod{1} \neq 0 \text{ if } g \text{ is even.} \quad \Box$$

Corollary 4.5. Equip SO(3) with a bi-invariant metric. Let Γ be a finite subgroup of SO(3). Then $SO(3)/\Gamma$ doesn't conformally immerse into \mathbb{E}^4 .

Proof. By the conformal invariance of the Chern-Simons invariant, we can assume that SO(3) possesses the standard metric from $S^3(1)$.

From (5) we have

$$CS(SO(3)) = CS(L(2, 1)) \equiv -\frac{1}{2} \pmod{1}.$$

Thus, SO(3) cannot be conformally immersed into \mathbb{E}^4 . Hence $SO(3)/\Gamma$ cannot be conformally immersed into \mathbb{E}^4 . \square

Remark. Heitsch and Lawson in [5] showed that a similar result holds in general for $SO(2k+1)/\Gamma$ where Γ is a discrete subgroup of SO(2k+1) and SO(2k+1) is equipped with a bi-invariant metric.

Corollary 4.6. L(p, q) with the standard metric cannot be conformally immersed into \mathbf{E}^4 except possibly when $q^2 + 1 \equiv 0 \pmod{p}$ and p is odd.

Proof. If p = 2k is even, then

$$L(p, q) = S^3/(\mathbb{Z}/2k) = SO(3)/(\mathbb{Z}/k).$$

Thus, Corollary 4.5 implies that L(p, q) cannot be conformally immersed into \mathbb{E}^4 ;

If p is odd, then from (4.1) we get

$$CS(L(p,q)) \equiv -\frac{q+r}{2p} \pmod{1}$$

with $qr \equiv 1 \pmod{p}$ and q+r even. Thus, $CS(L(p,q)) \equiv 0 \pmod{1}$ implies $q+r \equiv 0 \pmod{p}$. Hence $q^2+1 \equiv 0 \pmod{p}$. \square

ACKNOWLEDGMENTS

This paper presents part of my Ph.D. thesis. I am much indebted to my advisor Professor Walter D. Neumann for his guidance. I also thank Professors Michael Davis and Ernst Ruh for some helpful conversations. Finally, I would like to thank the referee for his (her) kind corrections and suggestions.

REFERENCES

- 1. M. Atiyah, V. Patodi, and I. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43-69.
- 2. _____, Spectral asymmetry and Riemannian geometry. II, Math. Proc. Cambridge Philos. Soc. 78 (1975), 402-433.
- 3. S. Chern and J. Simons, Characteristic forms and geometric invariants, Ann. of Math. (2) 99 (1974), 48-69.
- 4. P. Gilkey, The boundary integrand in the formula for the signature and Euler characteristic of a Riemannian manifold with boundary, Adv. Math. 15 (1975), 344-360.
- 5. J. Heitsch and H. Lawson, Transgressions, Chern-Simons invariants and the classical groups, J. Differential Geom. 9 (1974), 423-434.

- 6. M. Hirsch, Immersion of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276.
- 7. F. Hirzebruch and D. Zagier, The Atiyah-Singer theorem and elementary number theory, Publish or Perish, 1974.
- 8. T. Kawasaki, The signature theorem for V-manifolds, Topology 17 (1978), 75-83.
- 9. _____The index of elliptic operators over V-manifolds, Nagoya Math. J. 84 (1981), 135-157.
- M. Komuro, On the Atiyah-Padoti-Singer η-invariant for S¹-bundles over Riemann surfaces,
 J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1984), 525-548.
- 11. W. Neumann and M. Jankins, Seifert manifolds, Lecture notes, Brandeis Univ., 1981.
- 12. I. Satake, The Gauss-Bonnet theorem for V-manifolds, J. Math. Soc. Japan 9 (1957), 464-493.
- 13. P. Scott, The geometries of 3-manifolds, Bull. London. Math. Soc. 15 (1983), 401-487.
- 14. J. Seade and B. Steer, A note on the eta function for quotients of $PSL_2(\mathbf{R})$ by co-compact Fuchsian groups, Topology 26 (1987), 79-91.
- 15. W. Thurston, The geometry and topology of 3-manifolds, Lecture notes, Princeton Univ., 1978.
- 16. W. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381.

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210

Current address: Department of Mathematics, University of Michigan, Ann Arbor, Michigan
48109

E-mail address: ouyang@math.ohio-state.edu