FREE IDEALS OF ONE-RELATOR GRADED LIE ALGEBRAS

JOHN P. LABUTE

ABSTRACT. In this paper we show that a one-relator graded Lie algebra $\mathfrak{g}=L/(r)$, over a principal ideal domain K, has a homogeneous ideal \mathfrak{h} with $\mathfrak{g}/\mathfrak{h}$ a free K-module of finite rank if the relator r is not a proper multiple of another element in the free Lie algebra L. As an application, we deduce that the center of a one-relator Lie algebra over K is trivial if the rank of L is greater than two. As another application, we find a new class of one-relator pro-p-groups which are of cohomological dimension 2.

STATEMENT OF RESULTS

Let K be a principal ideal domain and let L be the free Lie algebra over K on the set X. Let r be a nonzero element of L and let $\mathfrak{g} = L/(r)$, where (r) is the ideal of L generated by r. We also assume that a grading of L is given in which the elements of X are homogeneous of degree ≥ 1 . The main result of this paper is the following:

Theorem 1. If r is homogeneous of degree d and $r \notin mL$ for every maximal ideal m of K, there exists a homogeneous ideal \mathfrak{h} of $\mathfrak{g} = L/(r)$ and homogeneous elements $g_1, \ldots, g_n \in \mathfrak{g}$ of degree < d such that \mathfrak{h} is a free Lie algebra and $\mathfrak{g}/\mathfrak{h}$ a free K-module with basis the images of g_1, \ldots, g_n in $\mathfrak{g}/\mathfrak{h}$. If Card(X) > 2, or $X = \{x_1, x_2\}$ and $r \neq ax_1 + bx_2$, $c[x_1, x_2]$, the rank of \mathfrak{h} is at least 2.

Theorem 1 is proved by the elimination method, using new results on the matrix of the adjoint representation of a free Lie algebra with respect to certain weighted Hall bases. These results are valid over any commutative ring K and yield Theorem 1 for certain types of relators even when K is not a PID.

Theorem 1 is actually the result of an attempt to answer a question a posed to us by Hyman Bass. This question, which was prompted by joint work of Bass and Lubotsky [2], was the following: "Let $\mathfrak g$ be a Lie algebra (over a field K) with d generators and one (homogeneous) relator. If d>2, is the center of $\mathfrak g$ trivial?" The analogous question for one-relator groups was answered in the affirative by Murasugi [6]. The following theorem answers this question in the affirmative when K is a field or when K is a PID and r is homogeneous.

Received by the editors June 13, 1993 and, in revised form, November 8, 1993 and December 13, 1993.

¹⁹⁹¹ Mathematics Subject Classification. Primary 17B01, 17B40, 17B65, 17B70; Secondary 20E18, 17B55.

Partially supported by Quebec FCAC Grant 88-EQ-2489.

Whether they remain true when K is a PID and r is non-homogeneous is an open question (even for $K = \mathbb{Z}$).

Theorem 2. Suppose that either K is a field or K is a PID and r is homogeneous. If the center of the Lie algebra $\mathfrak{g} = L/(r)$ is not trivial then $X = \{x_1, x_2\}$ and either $r = ax_1 + bx_2$ or $r = a[x_1, x_2]$.

Corollary. If K is a field and the center of g = L/(r) is nontrivial then g is isomorphic to K or $K \times K$.

The following result was pointed out to us by Warren Dicks. We thank him for allowing us to reproduce his argument here.

Theorem 3. If g = L/(r) is a one-relator Lie algebra over a field K, there exists a free subalgebra \mathfrak{h} of \mathfrak{g} of finite codimension.

To see this, let r_d be the highest degree form of r for the usual grading of L and apply Theorem 1 to get a free Lie subalgebra \mathfrak{h}' of $\mathfrak{g}' = L/(r_d)$ of finite codimension. Let \mathfrak{h}_0 be a lifting of \mathfrak{h}' to a free Lie subalgebra of L. By a result of Sirsov [8], the (graded) ideal of highest degree forms of elements of (r) is generated by r_d and so $\mathfrak{h}_0 \cap (r) = 0$. The image \mathfrak{h} of \mathfrak{h}_0 in g is therefore a free Lie subalgebra of \mathfrak{g} which is also easily seen to be of finite codimension.

In the last section of this paper we extend the elimination method to prop-groups. Using Theorem 1, we find a new class of one-relator pro-p-groups which are of cohomological dimension 2.

WEIGHTED HALL SETS

Let X be a set and let M(X) be the free magma on X. Every $u \in M(X)$, $u \notin X$ can be written uniquely as a product $\alpha(u)\beta(u)$ with $\alpha(u)$, $\beta(u) \in M(X)$. Let $\ell = \ell_X : M(X) \to \mathbb{N}$ be the unique mapping such that $\ell(x) = 1$ for all $x \in X$ and $\ell(uv) = \ell(u) + \ell(v)$ for all $u, v \in M(X)$; $\ell(u)$ is called the length of u. If $u_1, \ldots, u_n \in M(X)$ we define $p_n = u_n \cdots u_2 u_1$ inductively by $p_1 = u_1$ and $p_{i+1} = u_{i+1}p_i$ for i > 1. If $u_2 = \cdots = u_n = a$ and $u_1 = b$, we denote p_n by $a^{n-1}b$. Every $u \in M(X)$ can be uniquely written in the form $u = u_1u_2 \cdots u_nx$ with $u_i \in M(X)$, $x \in X$ and $n \ge 0$. We call this the canonical (right-normed) decompostion of u in M(X).

For each $x \in X$ let $n_x \in \mathbb{N}^* = \mathbb{N} - \{0\}$ and let ω be the unique mapping of M(X) into \mathbb{N}^* such that $\omega(x) = n_x$ if $x \in X$ and $\omega(uv) = \omega(u) + \omega(v)$ for $u, v \in M(X)$. We will call $\omega(u)$ the weight of u with respect to the weight system $(n_x)_{x \in X}$ and ω the associated weight function. The weight system is completely determined by ω and we will ususally let ω denote it. If X is ordered we say that the weight system is compatible with this ordering if $x < y \implies \omega(x) \le \omega(y)$.

A weighted Hall set, relative to a well-ordered set X and compatible weight system ω , is a subset H of M(X) together with a well-ordering < of H such that

- (1) X is an ordered subset of H;
- (2) For $u, v \in H$, $\omega(u) < \omega(v) \implies u < v$;
- (3) For all $u \in M(X)$ with $\ell(u) > 1$, $u \in H \iff \alpha(u), \beta(u) \in H$ and $\alpha(u) < \beta(u)$ with $\alpha(u) > \alpha(\beta(u))$ if $\ell(\beta(u)) > 1$.
- (4) If $u, v \in H$ with $\omega(u) = \omega(v)$ and $\ell(u), \ell(v) > 1$ then u < v iff $\beta(u) < \beta(v)$ or $\beta(u) = \beta(v)$ and $\alpha(u) < \alpha(v)$.

If $\omega(x)=1$ for all x, we have $\ell=\omega$ and we recover the usual definition of a Hall set. A weighted Hall set H is said to be of finite type if for any $k\in\mathbb{N}^*$ there are only finitely many $u\in H$ of weight k. This is equivalent to requiring that, for any k, $\{x\in X|\omega(x)=k\}$ be a finite set; a weight function with this property is also said to be of finite type. If $u\in M(X)$ with canonical decomposition $u_1u_2\cdots u_nx$, we have $u\in H$ iff $u_1,\cdots,u_n\in H$, $u_1\geq u_2\geq \cdots \geq u_n< x$ and $u_{i-1}< u_i\cdots u_nx$ for $1\leq i\leq n$. If $1\leq i\leq n$ we will call its canonical decomposition in $1\leq i\leq n$ and $1\leq i\leq n$ if $1\leq$

Proposition 1. Given any well-ordered set X and a compatible weight system ω on X, there exists a weighted Hall set H relative to X, ω .

Proof. We construct, by induction on n, well-ordered subsets W_n of M(X) consisting of elements of weight n:

- (a) We let W_1 consist of those elements of X which are of weight 1.
- (b) Let $n \geq 2$ so that the well-ordered sets W_1 , ..., W_{n-1} are already constructed. Let $W'_{n-1} = W_1 \cup \cdots \cup W_{n-1}$ together with the well-ordering which induces the given orderings on W_1 , ..., W_{n-1} and such that u < v if $\omega(u) < \omega(v)$. Let W_n consist of those elements of X of weight n together with the products ab of weight n with a, $b \in W'_{n-1}$, a < b and $a > \alpha(b)$ if $\ell(b) > 1$. If ab, $a'b' \in W_n$, $x \in X \cap W_n$, let ab < x and let ab < a'b' if b < b' or if b = b' and a < a'. This defines a well-ordering of W_n .

The required well-ordered set H is the union of the W_i . \square

Proposition 2. Suppose that $u, v, uv \in H$. If $u_1, u_1v \in H$ and $u < u_1$ (resp. $v_1, uv_1 \in H$ and $v < v_1$) then $uv < u_1v$ (resp. $uv < uv_1$).

Proof. Simply note that $u < u_1$ implies that $\omega(u) \le \omega(u_1)$. If the inequality is strict, we have $\omega(uv) < \omega(u_1v)$, and so $uv < u_1v$. Otherwise, uv and u_1v have the same weight and $u < u_1$, which implies $uv < u_1v$. \square

Now let H be any weighted Hall set relative to the set X and a given weight system ω . Let x_1 be the smallest element of X; this element is also the smallest of H. Let $H_1 = H - \{x_1\}$ and let X_1 be the subset of H_1 consisting of those elements which cannot be written as a product of 2 elements of H_1 . We have

$$X_1 = \{x_1^j x | x \in X, x \neq x_1, j \geq 0\}.$$

Identify $M(X_1)$ with its canonical image in M(X) and let ω_1 be the restriction of ω to $M(X_1)$. Let ℓ_1 be the length function on $M(X_1)$.

Proposition 3. The set H_1 , with the induced ordering from H, is a weighted Hall set relative to X_1 , ω_1 . If H is of finite type then so is H_1 .

Proof. We need only prove the first assertion. Since (1), (2) and (4) follow immediately, it suffices to verify condition (3).

Let $u \in M(X_1)$ with $\ell_1(u) > 1$. Then $u = u_1 u_2$ with $u_1, u_2 \in M(X_1)$. If $u \in H_1$ then $u_1, u_2 \in H$ with $u_1 < u_2$ since $H_1 \subset H$. Since $x_1 \notin M(X_1)$ we obtain $u_1, u_2 \in H_1$. If $u_2 = u_2' u_2''$ with $u_2', u_2'' \in H_1$, we have $u_1 > u_2'$ since $H_1 \subset H$.

Conversely, suppose $u=u_1u_2$ with u_1 , $u_2\in H_1$, $u_1< u_2$. If $u_2=u_2'u_2''$ with u_2' , $u_2''\in H_1$ then $u_1>u_2'$ implies that $u\in H$ and so $u\in H_1$ since

 $u \neq x_1$. If $\ell_1(u_2) = 1$ and $\ell(u_2) > 1$, we have $u_2 = x_1v$ with $v \in H_1$. Since $u_1 \ge x_1$ we have $u \in H$ and so $u \in H_1$. \square

Let u be any element of H_1 and let $u_1u_2\cdots u_ky$ be its canonical decomposition in H_1 . Let $\gamma(u)\in H_1$ be the element $u_1u_2\cdots u_ky'$ with $y'=x_1y$; this product is the canonical decomposition of $\gamma(u)$ in H_1 . We will call γ the dominance function for H. We say that H has the dominance property if, for all $x\in X$ and $u\in H$ with $\omega(x)=\omega(u)>1$ and x< u, we have $x<\gamma(\beta(u))$ if $\ell(u)>1$. If $\omega=\ell$, then H has the dominance property since this condition holds vacuously. For the same reason, the weighted Hall set constructed in Proposition 1 has the dominance property.

Proposition 4. The Hall set H has the dominance property iff, for all $u, v \in H_1$,

$$u < v \implies \gamma(u) < \gamma(v)$$
.

Proof. (\Longrightarrow) Since the assertion is trivial if $u, v \in X_1$ or if $\omega(u) < \omega(v)$, we may assume that not both u, v lie in X_1 and that u, v have the same weight. We proceed by induction on $\omega(u)$.

If $u = u_1u_2$, $v = v_1v_2$ in H_1 then $\gamma(u) = u_1\gamma(u_2)$, $\gamma(v) = v_1\gamma(v_2)$. If $u_2 = v_2$, we are done. If $u_2 < v_2$ then by induction on the degree we have $\gamma(u_2) < \gamma(v_2)$ which gives the required result.

Now suppose $u = u_1u_2$ in H_1 and $v \in X_1$. If $v \notin X$ then $v = x_1w$ for some $w \in X_1$. Since $u_2 < w$ we have $\gamma(u_2) < \gamma(w) = v$ by induction on the degree. But then

$$\gamma(u) = u_1 \gamma(u_2) < x_1 v = \gamma(v).$$

We may therefore assume $v \in X$. Since

$$\omega(v) = \omega(u_1) + \omega(u_2) \ge \omega(x_1) + \omega(u_2) = \omega(\gamma(u_2)),$$

we have $v \ge \gamma(u_2)$. But $v \ne \gamma(u_2)$ as $v \in X$ and we again obtain the desired result.

Finally, suppose $u \in X_1$, $v = v_1v_2$ in H_1 . Since the case $u \notin X$ can be treated as above, we may assume that $u \in X$. Since H has the dominance property, we have $u < \gamma(v_2)$ and so $\gamma(u) = x_1u < v_1\gamma(v_2) = \gamma(v)$.

(\iff) Suppose $x \in X$, $u \in H$ with x < u, $\ell(u) > 1$ and $\omega(x) = \omega(u)$. Let u = ab. Then $x_1x < a\gamma(b)$ which implies $x < \gamma(b)$ since $x \neq \gamma(b)$. \square

Proposition 5. If H has the dominance property then so has H_1 .

Proof. Let γ_1 be the dominance function for H_1 , let x_2 be the smallest element of X_1 , let $H_2 = H_1 - \{x_2\}$ and let X_2 be the indecomposable elements of H_1 . Let $u \in X_1$, $v = v_1v_2$ in H_1 with u < v and $\omega(u) = \omega(v)$. Then $u \in H_2$ and

$$x_1 u = \gamma(u) < \gamma(v) = v_1 \gamma(v_2),$$

which yields $u \le \gamma(v_2)$. If we could show that $\gamma(v_2) < \gamma_1(v_2)$ then we would have

$$\gamma_1(u) = x_2 u < v_1 \gamma_1(v_2) = \gamma_1(v).$$

Hence we are reduced to showing that $\gamma(v_2) < \gamma_1(v_2)$. In H_2 we have the canonical decomposition

$$v_2 = w_1 w_2 \cdots w_t z$$

with $z = x_2^i x_1^j x$, $x \in X$, $x \neq x_1$ and $j \neq 0$ if $x = x_2$. Since

$$\gamma(v_2) = w_1 w_2 \cdots w_t x_2^i x_1^{j+1} x,
\gamma_1(v_2) = w_1 w_2 \cdots w_t x_2^{i+1} x_1^j x,$$

we are reduced to showing that

$$x_2^i x_1^{j+1} x < x_2^{i+1} x_1^j x.$$

This is true if $\omega(x_1) < \omega(x_2)$ since then the right-hand side has a larger weight than the left. If x_1 , x_2 have the same weight, we are reduced to showing that

$$x_1 x_1^j x < x_2 x_1^j x$$
.

But this is true since $x_1 < x_2$. \square

Corollary. If H has the dominance property, is of finite type and $u \in H$, the set $\{v \in H | v \ge u\}$ is a weighted Hall set having the dominance property.

Let L(X) be the free Lie algebra on X over a commutative ring K. We have a canonical mapping ψ of M(X) into L(X) such that $\psi(uv) = [\psi(u), \psi(v)]$. Let H be any weighted Hall set relative to X, ω .

Proposition 6. The mapping ψ is injective on H and the image of H is a basis of L(X) as a K-module.

Proof. Without loss of generality we may assume that X is finite. Let x_1 be the smallest element of X. By the elimination theorem (cf. [1, §2.9, Proposition 10]) we have $L(X) = Kx_1 \oplus L(X_1)$. Repeating this argument a finite number of times, we obtain the result. \square

We identify H with its image in L(X) and let A be the ajoint representation of A be the ajoint representation and A bending the ajoint representation and A because A and A be th

Theorem 4. Suppose that H has the dominance property and $u \in H_1$. Then

$$ad(x_1)(u) = \gamma(u) + w,$$

where w a linear combination of elements of H_1 which are smaller than $\gamma(u)$. Proof. Since the assertion is trivially true if $\ell_1(u)=1$ we may assume that $\ell_1(u)>1$. If $\ell_1(u)=2$ then $u=[u_1,u_2]$ with $u_1,u_2\in X_1$, $u_1< u_2$, and we have $\mathrm{ad}(x_1)(u)=[\gamma(u_1),u_2]+[u_1,\gamma(u_2)]$. If $\gamma(u_1)< u_2$ then $w=[\gamma(u_1),u_2]\in H_1$ and $w<[u_1,\gamma(u_2)]=\gamma(u)$ since $u_2<\gamma(u_2)$. If $\gamma(u_1)>u_2$ then $\mathrm{ad}(x_1)(u)=-[u_2,\gamma(u_1)]+\gamma(u)$ and $w=[u_2,\gamma(u_1)]\in H_1$, $w<\gamma(u)$ since $u_1< u_2$ implies that $\gamma(u_1)<\gamma(u_2)$.

Assume that, if $v \in H_1$ with $2 \le \ell_1(v) \le k$, we have shown that $\operatorname{ad}(x_1)(v) = \gamma(v) + w$, where $w \in H_1$ is a linear combination of terms $w' \in H_1$ with $\ell_1(w') > 1$ and

- (1) $w' < \gamma(v)$;
- (2) $\alpha(v) \leq \alpha(w') < \beta(w') < v$;
- (3) $\alpha(v) \geq \alpha(\alpha(w'))$ (resp. $\alpha(\beta(w'))$) if $\ell_1(\alpha(w')) > 1$ (resp. $\ell_1(\beta(w')) > 1$).

This holds if k=2. We want to show that this then holds for v=u with $\ell_1(u)=k+1$. We divide the proof into three cases.

Case 1: u = [x, v] in H_1 with $x \in X_1$, $\ell_1(v) > 1$. Then x < v = [a, b], $a, b \in H_1$, $x \ge a$, and by induction $ad(x_1)(v) = \gamma(v) + w$, where $w \in H_1$ is a linear combination of terms $w' = [a', b'] \in H_1$ with $\ell_1(w') > 1$ satisfying (1), (2), (3). But then

$$ad(x_1)(u) = [\gamma(x), v] + [x, \gamma(v)] + w_1$$

= $\gamma(u) + [\gamma(x), v] + w_1$,

where w_1 is a linear combination of terms [x, [a', b']] with [a', b'] as above. We have to show that $[\gamma(x), v]$, [x, [a', b']] are linear combinations of terms $w' \in H_1$ with $\ell_1(w') > 1$ and satisfying (1), (2), (3) with v replaced by u

Consider first the term $[\gamma(x), v]$. If $\gamma(x) < v$ then $[\gamma(x), v] \in H_1$ since $\gamma(x) > x \ge a$ and $[\gamma(x), v] < \gamma(u) = [x, \gamma(v)]$ since $v < \gamma(v)$. Since $x > a = \alpha(v)$, condition (3) is satisfied, and (2) follows from $x < \gamma(x)$, [x, v] > v. If $\gamma(x) > v$ then $[\gamma(x), v] = -[v, \gamma(x)]$ with $[v, \gamma(x)] \in H_1$ and $[v, \gamma(x)] < \gamma(u)$ since $\gamma(x) < \gamma(v)$. Again condition (3) is satisfied since x > a. To prove (2) we note first that $\omega([x, v]) \ge \omega(\gamma(x))$ since $\gamma(x) = [x_1, x]$ and $x_1 < x < v$. If $\omega([x, v]) > \omega(\gamma(x))$, we have $[x, v] > \gamma(x)$, and if the weights are equal we have $[x, v] > \gamma(x) = [x_1, x]$ since v > x.

Now consider the terms [x, [a', b']]. If $x \ge a'$, we have $[x, [a', b']] \in H_1$ and $[x, [a', b']] < [x, \gamma(v)]\gamma(u) = \text{since } [a', b'] < \gamma(v)$. Since $\omega([x, v]) \ge \omega([a', b'])$, we may assume in proving (2) that [x, v] and [a', b'] have equal weight. But then [x, v] > [a', b'] since v > b'; this gives (2) and condition (3) follows from $x \ge a'$. Now suppose that x < a'. Then [x, a'], $[x, b'] \in H_1$ by (3) since $x \ge a$ and we have

$$[x, [a', b']] = [[x, a'], b'] + [a', [x, b']].$$

If [x,a'] < b' then $[[x,a'],b'] \in H_1$ since $[x,a'] > x \ge a$ and $a \ge \alpha(b')$ if $\ell_1(b') > 1$. Now (1) holds since $b' < \gamma(v)$ implies that $[[x,a'],b'] < [x,\gamma(v)] = \gamma(u)$ and (3) holds since $x \ge a$ and $a \ge \alpha(b')$ if $\ell_1(b') > 1$. To prove (2), we have to show [x,v] > b'; but this is trivially true since v > b'. If [x,a'] > b' then $[b',[x,a']] \in H_1$ and (3) follows as above. To prove (1), we have to show that $[b',[x,a']] < [x,[a,\gamma(b)]]$. Since b' > x, we have $\omega(b') \ge \omega(x)$ and so $\omega([x,a']) \le \omega([a,\gamma(b)])$. If we have strict inequality, we are done; so we may assume equality. But $b' < \gamma(b)$ since $[a',b'] < \gamma(v) = [a,\gamma(b)]$ and $a \le a'$. So $a' < b' < \gamma(b)$ which implies $[x,a'] < [a',\gamma(b)]$ and we are done. Finally, $[a',[x,b']] \in H_1$ and the same arguments as above yield (1),(2),(3).

Case 2: u = [v, x] in H_1 with $x \in X_1$, $\ell_1(v) > 1$. Then v = [a, b] in H_1 and $ad(x_1)(u) = \gamma(u) + [\gamma(v), x] + w_1$, where w_1 is a linear combination of terms [w', x] with w' = [a', b'] satisfying the same conditions as in Case 1. We have to show that [[a', b'], x], $[\gamma(v), x]$ are linear combinations of terms $w' \in H_1$ with $\ell_1(w') > 1$ and satisfying (1), (2), (3) with v = u.

Consider first the term $[\gamma(v), x]$. If $\gamma(v) < x$ then $[\gamma(v), x] \in H_1$ and is smaller than $\gamma(u) = [v, \gamma(x)]$ since $x < \gamma(x)$. Condition (2) holds since [v, x] > x, and (3) holds since v > a. If $\gamma(v) > x$ then $[\gamma(v), x] = -[x, \gamma(v)] = -[x, [a, \gamma(b)]]$ and $[x, [a, \gamma(b)]] \in H_1$ since x > a. Moreover, $[x, \gamma(v)] < [v, \gamma(x)] = \gamma(u)$ since v < x implies $\gamma(v) < \gamma(x)$, and v > a gives

(3). To prove (2) we have to show $[v, x] > \gamma(v)$. But $\omega([v, x]) \ge \omega(\gamma(v))$ and equality would imply $\omega(x) = \omega(x_1)$ which is impossible since x > v and $\omega(v) > \omega(a) \ge \omega(x_1)$.

Now consider the terms [[a', b'], x]. If [a', b'] < x, we have $[[a', b'], x] \in H_1$ and $[[a', b'], x] < [v, \gamma(x)] = \gamma(u)$, which gives (1), and (2) follows from [v, x] > x. Since v > b' > a' we have (3). If [a', b'] > x, we have [[a', b'], x] = -[x, [a', b']]. Since x > v > b' > a', we have $[x, [a', b']] \in H_1$, and $[x, v'] < [v, \gamma(x)] = \gamma(u)$ since $[a', b'] < \gamma(v) < \gamma(x)$. This gives (1) and (3). Condition (2) follows from $\omega([v, x]) > \omega([a', b'])$.

Case 3: $u = [u_1, u_2]$ in H_2 with $\ell_1(u_1), \ell_1(u_2) > 1$. Then $u_1 = [a, b], u_2 = [c, d]$ in H_1 and

$$ad(x_1)(u) = \gamma(u) + [\gamma(u_1), u_2] + w_1 + w_2,$$

where w_1 (resp. w_2) is a linear combination of terms $[[a',b'],u_2] \in H_1$ (resp. $[u_1,[c',d']] \in H_1$) with $w' = [a',b'] \in H_1$, (resp. $w' = [c',d'] \in H_1$) satisfying $\ell_1(w') > 1$ and (1), (2), (3) with $v = u_1$ (resp. $v = u_2$). We have to show that the terms $[\gamma(u_1),u_2]$, $[[a',b'],u_2]$, $[u_1,[a',b']]$ are linear cominations of terms $w' \in H_1$ with $\ell_1(w') > 1$ and satisfying (1), (2), (3) with v = u.

Consider first the term $w = [\gamma(u_1), u_2]$. If $\gamma(u_1) < u_2$ then $w \in H_1$ as $\gamma(u_1) > u_1 > c$. Since $w = [[a, \gamma(b)], [c, d]]$ and $u_1 > a, c$ condition (3) holds. Also $w < [u_1, \gamma(u_2)] = \gamma(u)$, which gives (1), and $[u_1, u_2] > u_2$ gives (2). If $\gamma(u_1) > u_2$ then $w = -[u_2, [a, \gamma(b)]]$. Now $u_2 > a$ since $\omega(u_2) > \omega(a)$ and so $z = [u_2, [a, \gamma(b)]] \in H_1$. Now $z < \gamma(u)$ since $z = [u_2, \gamma(u_1)]$ and $\gamma(u_1) < \gamma(u_2)$. Finally, $u_1 \ge a, c$ yields (3), and $\omega([u_1, u_2]) > \omega([a, \gamma(b)]), u_1 < u_2$, gives (2).

Now consider the term $w_1' = [[a', b'], u_2]$. If $[a', b'] < u_2$ then $w_1' \in H_1$ since $[a', b'] > u_1 \ge c$. Since $u_2 < \gamma(u_2)$, $w_1' < \gamma(u) = [u_1, \gamma(u_2)]$, which gives (1). We have (2) since $u_1 < [a', b']$, $[u_1, u_2] > u_2$, and (3) holds since $u_1 > a'$, c. If $[a', b'] > u_2$ then $w_2' = -[u_2, [a', b']]$ and $[u_2, [a', b']] \in H_1$ since $u_2 > u_1 > a'$. Since $[a', b'] < \gamma(u_1) < \gamma(u_2)$, we have (1). Condition (2) holds since $\omega([u_1, u_2]) > \omega([a', b'], u_1 < u_2, u_2)$ and (3) holds as above.

Finally, consider the term $w_2' = [u_1, [c', d']]$. If $u_1 \ge c'$, we have $w_2' \in H_1$, and (1) holds since $[c', d'] < \gamma(u_2)$. Condition (2) holds since $\omega([u_1, u_2]) > \omega([c', d'])$, and (3) holds since $u_1 \ge a$, c'. If $u_1 < c'$ we have

$$w'_2 = [[u_1, c'], d'] + [c', [u_1, d']]$$

with $[u_1, c']$, $[u_1, d'] \in H_1$ since $u_1 \ge c$ and $c \ge \alpha(c')$ (resp. $\alpha(d')$) if $\ell_1(c') > 1$ (resp. $\ell_2(d') > 1$). We have $[c', [u_1, d'] \in H_1$, and (1) holds since $u_1 < c'$ implies that $[u_1, d'] < [c', d'] < \gamma(u_2)$. Condition (3) holds since $u_1 \ge c$, and (2) holds since $u_2 > d'$ implies that $[u_1, u_2] > [u_1, d']$. Now consider the term $w = [[u_1, c'], d']$. If $[u_1, c'] < d'$ then $w \in H_1$, and (1) holds since $d' < \gamma(u_2)$. Condition (2) holds since $u > u_2 > d'$ and (3) follows from $u_1 \ge c$. If $[u_1, c'] > d'$ then $z = -w = [d', [u_1, c']] \in H_1$, and (1) follows from the above as $[u_1, c'] < [u_1, d']$. We have (2) since $u_1 < c' < d'$, $[u_1, c'] < [u_1, d'] < [u_1, u_2] = u$; we use that $d' < u_2$. Condition (3) follows from $u_1 \ge c$. \square

Proof of Theorem 1

Choose an ordering of X which is compatible with the given weight system ω on X and let H be a weighted Hall set with respect to X, ω which has the dominance property. We can write r=cs+t, where $c\in K-\{0\}$, $s\in H$ and t is a linear combination of elements of H which are strictly less than s. Assume that c is a unit of K; this is true in the case that K is a field. At this point we should like to point out that, under this assumption our proof is valid over any commutative ring K. Without loss of generality, we can assume c=1. If r is a linear combination of elements of X then $\mathfrak g$ is free; so we may assume that r is not linear form. If $X=\{x_1,x_2\}$ and $r=[x_1,x_2]$ then again the theorem holds trivially. We may therefore assume that r is not linear and that either $\mathrm{Card}(X)>2$ or $X=\{x_1,x_2\}$ and $r\neq c[x_1,x_2]$. We may also assume, without loss of generality, that X is a finite set. Let $h_1 < h_2 < \ldots$ be the elements of H and, for $i\geq 1$, let $H_i=\{h\in H_{i-1}|h>h_i\}$, where $H_0=H$. Let X_i be the set of indecomposable elements of H_i ; for $i\geq 1$ we have (setting $X_0=X$)

$$X_i = \{ ad(h_i)^j(x) | j \ge 0, x \in X_{i-1}, x \ne h_i \}.$$

If ω_i is the restriction of ω to $M(X_i)$ then H_i is, relative to X_i and ω_i , a weighted Hall set of finite type which has the dominance property. Let γ_i be the dominance function for H_i and let $\delta_i = \operatorname{ad}(h_i)$. Then, for all $u \in H_i$, $\delta_i(u) = \gamma_i(u) + w$ where w is a linear comination of elements of H_i which are strictly less than $\gamma_i(u)$.

Since $r \in L(X_1)$, we have $s \in H_1$ and we have the canonical decompositions in H_1

$$s = \operatorname{ad}(u_1)\operatorname{ad}(u_2)\cdots\operatorname{ad}(u_m)(x)$$
,

$$s_i = \gamma_1^i(s) = \operatorname{ad}(u_1)\operatorname{ad}(u_2)\cdots\operatorname{ad}(u_m)(\delta_1^i(x)),$$

and $\delta_1^i(r) = s_i + w_i$ where w_i is a linear combination of elements of H_1 which are strictly less than s_i . If \mathfrak{r} is the ideal of L generated by r then $\mathfrak{r} \subset L(X_1)$ and \mathfrak{r} is the ideal of $L(X_1)$ generated by the elements $r_i = \delta_1^i(r)$.

If m=0, i.e. if $\ell_1(s)=1$, then the images of the elements r_i in the free K-module $L(X_2)/[L(X_2), L(X_2)]$ are part of a basis and so the r_i are part of a basis of $L(X_1)$ (cf. [4, Proposition 2]). It follows that $\mathfrak{h}=L(X_1)/\mathfrak{r}$ is a free Lie algebra over K and $\mathfrak{g}/\mathfrak{h}\cong Kh_1$ with $\omega(h_1)< d$ since r is not linear. Under our hypotheses on r, $x>h_3$, so the rank of \mathfrak{h} is ≥ 2 .

Suppose that m>0 and let $h\in H_1$ be the smallest element of X_1 that appears in any of the elements $\delta_1^i(r)$. Then $h_2\leq h\leq u_m$. If $h>h_2$ then all the elements r_i are in $L(X_2)$, the elements u_i are in H_2 , $x\in X_2$, and $r_{ij}=\delta_2^j(r_i)=s_{ij}+w_{ij}$ where $s_{ij}=\gamma_2^j(s_i)\in H_2$ with canonical decomposition in H_2

$$s_{ij} = \operatorname{ad}(u_1)\operatorname{ad}(u_2)\cdots\operatorname{ad}(u_m)(\delta_2^j\delta_1^i(x))$$

and w_{ij} is a linear combination of elements of H_2 which are strictly smaller than s_{ij} . The same thing happens if $h=h_2< u_m$. Indeed, in this case, $u_1,\ldots,u_m\in L_2$ and $w_{ij}\in H_2$ since a nonzero scalar multiple of h_2 cannot appear as a term in the decomposition of w_{ij} as a linear combination of elements of H_1 because $\omega(h_2)<\omega(w_{ij})=\omega(s_{ij})$ since $\ell_2(s_{ij})>1$. If

 $h = h_2 = u_m = \cdots = u_{m-k+1} < u_{m-k}$ then $s, s_{ij} \in H_2$ with canonical decompostions in H_2

$$s = \operatorname{ad}(u_1)\operatorname{ad}(u_2)\cdots\operatorname{ad}(u_{m-k})(\delta_2^k(x)),$$

$$s_{ij} = \operatorname{ad}(u_1)\operatorname{ad}(u_2)\cdots\operatorname{ad}(u_{m-k})(\delta_2^{j+k}\delta_1^i(x)),$$

and, as above, w_{ij} is a linear combination of elements of H_2 if $m \neq k$. If m = k, we have

$$\omega(w_{ij}) = \omega(s_{ij}) > \omega(h_2)$$

and so $w_{ij} \in H_2$.

Proceeding inductively, assume that $r \in L(X_n)$ and that for $i = (i_1, ..., i_n) \in \mathbb{N}^n$, $n \ge 1$,

$$r_i = \delta_n^{i_n} \cdots \delta_2^{i_2} \delta_1^{i_1}(r) = s_i + w_i$$
,

where $s_i \in H_n$ with canonical decomposition in H_n

$$s_i = \operatorname{ad}(u_1)\operatorname{ad}(u_2)\cdots\operatorname{ad}(u_{m-k})(y_i)$$

with

$$y_i = \delta_n^{i_n + k_n} \cdots \delta_2^{i_2 + k_2} \delta_1^{i_1}(x)$$
 $(k_i \ge 0, \text{ uniquely determined by } s),$

and w_i a linear combination of elements of H_n which are strictly less than s_i .

If k=m the elements $s_i \in X_n$ are distinct and so the images of the elements r_i in the free K-module $L(X_n)/[L(X_n), L(X_n)]$ are part of a basis. Hence the r_i are part of a basis of the free Lie algebra $L(X_n)$. Since they also generate r_i as an ideal of $L(X_n)$ we obtain that $h_i = L(X_n)/r_i$ is a free Lie algebra with

$$\mathfrak{g}/\mathfrak{h}\cong Kh_1\oplus\cdots\oplus Kh_n$$
.

Since $h_n = u_1$, we have $\omega(h_n) < d$ and so the components of $\mathfrak{g}/\mathfrak{h}$ are zero in degrees $\geq d$. The rank of \mathfrak{h} is infinite since, in this case, $s_i \notin X_1$ and so the the r_i together with the elements $\delta_1^j(h_2) > h_n$ are part of a basis of $L(X_n)$.

Remark. In the case m = k it is possible to continue the elimination if $r \in L(X_{n+1})$. This happens iff either r is not a linear form in $L(X_n)$ or r is a linear form in $L(X_n)$ which does not have a scalar multiple of h_{n+1} as a term. In this case, we get

$$r_{i,i_{n+1}} = \delta_{n+1}^{i_{n+1}}(r_i) = s_{i,i_{n+1}} + w_{i,i_{n+1}}$$

with $s_{i,i_{n+1}} \in X_{n+1}$,

$$s_{i,i_{n+1}} = \delta_{n+1}^{i_{n+1}} \delta_n^{i_n+k_n} \cdots \delta_2^{i_2+k_2} \delta_1^{i_1}(x),$$

and $w_{i,i_{n+1}}$ a linear combination of elements of H_{n+1} which are stricly less than $s_{i,i_{n+1}}$. We make use of the fact that $L(X_{n+1})$ is an ideal of L(X).

If k < m let h be the smallest element of X_n that appears in any of the r_i . Then $h_{n+1} \le h \le u_{m-k}$. If $h > h_{n+1}$ then u_i , $w_i \in H_{n+1}$, $y_i \in X_{n+1}$ and

$$\delta_{n+1}^{i_{n+1}}(r_i) = s_{i,i_{n+1}} + w_{i,i_{n+1}}$$

with $s_{i,i_{n+1}} \in H_n$ with canonical decomposition in H_{n+1}

$$s_{i,i_{n+1}} = \operatorname{ad}(u_1)\operatorname{ad}(u_2)\cdots\operatorname{ad}(u_{m-k})\delta_{n+1}^{i_{n+1}}(y_i)$$

and $w_{i,i_{n+1}}$ a linear combination of elements of H_{n+1} which are strictly less than $s_{i,i_{n+1}}$. The same is true if $h = h_{n+1} < u_{m-k}$. Indeed, a nonzero scalar

multiple of h_{n+1} cannot appear as a term in the decomposition of w_i as a linear combination of elements of H_n ; otherwise, $\omega(h_{n+1}) = \omega(s_i)$ contradicting $\ell_n(s_i) \geq 2$. If $h = h_{n+1} = u_{m-k} = \cdots u_{m-k-\ell+1} < u_{m-k-\ell}$ then again $s_{i,i_{n+1}} \in H_{n+1}$ with canonical decomposition in H_{n+1}

$$s_{i,i_{n+1}} = \operatorname{ad}(u_1)\operatorname{ad}(u_2)\cdots\operatorname{ad}(u_{m-k-\ell})\delta_{n+1}^{i_{n+1}+\ell}(y_i)$$

and $w_{i,i_{n+1}} \in L(X_{n+1})$ since

$$\omega(w_{i,i_{n+1}}) = \omega(s_{i,i_{n+1}}) > \omega(h_{n+1}).$$

If n is smallest with $s \in X_n$, it follows that the above procedure gives a free subalgebra \mathfrak{h} of \mathfrak{g} in n steps. Since $L(X_n)$ is an ideal of L, we obtain that \mathfrak{h} is an ideal of \mathfrak{g} . The free subalgebra \mathfrak{h} is of infinite rank if n > 1 or n = 1 and $\operatorname{Card}(X) > 2$. If n = 1 we have \mathfrak{h} of finite rank ≥ 2 if $\operatorname{Card}(X) = 2$. Finally, we may take g_i to be the image of h_i in \mathfrak{g} since

$$\mathfrak{g}/\mathfrak{h} \cong Kh_1 \oplus Kh_2 \oplus \cdots \oplus Kh_n$$

and $\omega(h_i) < d$ for $1 \le i \le n$.

Remarks. The natural number n and the Lie element s could have been chosen more optimally as follows: Let n be smallest with $r \in L(X_n)$, $r \notin [L(X_n), L(X_n)]$ and such that the largest linear term of r in $L(X_n)$ is a unit multiple of $s \in X_n$. The terms of r which are in $[L(X_n), L(X_n)]$ cause no problems since $L(X_n)$ is an ideal of L(X) and so they can be ignored. Also note that, if n is largest with $r \in L(X_n)$, then r is a linear form in $L(X_n)$.

We now consider the general case. Let n be largest with $r \in L(X_n)$. Then r is a homogeneous linear form in $L(X_n)$ whose image in $L(X_n) \otimes (K/m)$ is nonzero for any maximal ideal of K. It follows that the homogeneous components of $\mathfrak h$ and $\mathfrak h/[\mathfrak h, \mathfrak h]$ are locally free of constant finite rank and hence that $\mathfrak h$ and $\mathfrak h/[\mathfrak h, \mathfrak h]$ are free K-modules. Since $\mathfrak h \otimes (K/m)$ is a free Lie algebra over K/m for each maximal ideal $\mathfrak m$ of K by [9, Satz 5] or [4, Proposition 2], it follows that $\mathfrak h$ is free over K by [4, Proposition 2] and the following Lemma:

Lemma. Let \mathfrak{g} be a graded Lie algebra over a principal ideal domain K such that each homogeneous component is a finitely generated free K-module and such that $\mathfrak{g}/[\mathfrak{g},\mathfrak{g}]$ is also K free. If the homology group $H_2(\mathfrak{g},K/\mathfrak{m})=0$ for each maximal ideal \mathfrak{m} of K then $H_2(\mathfrak{g},K)=0$.

Proof. We choose a presentation $\mathfrak{g} = L/\mathfrak{r}$ together with a grading of the free Lie algebra L such that L/[L, L] is isomorphic to $\mathfrak{g}/[\mathfrak{g}, \mathfrak{g}]$ as graded modules. Using the Hochschild-Serre spectral sequence for the extension $\mathfrak{g} = L/\mathfrak{r}$:

$$H_2(L, K) \to H_2(\mathfrak{g}, K) \to H_0(\mathfrak{g}, H_1(\mathfrak{r}, K)) \to H_1(L, K) \to H_1(\mathfrak{g}, K) \to 0$$
, cf. [3, p. 351], and the fact that $H_2(L, K) = 0$, $H_1(\mathfrak{g}, K) = \mathfrak{g}/[\mathfrak{g}, \mathfrak{g}]$ and

$$H_0(\mathfrak{g}, H_1(\mathfrak{r}, K)) = \mathfrak{r}/[\mathfrak{r}, L],$$

we obtain that $H_2(\mathfrak{g}, K)$ is isomorphic to $\mathfrak{r}/[\mathfrak{r}, L]$. Since $H_2(\mathfrak{g}, K/\mathfrak{m})$ is isomorphic to $(L/[\mathfrak{r}, L]) \otimes (K/\mathfrak{m})$ we obtain that $(\mathfrak{r}/[\mathfrak{r}, L]) \otimes (K/\mathfrak{m}) = 0$ for all maximal ideals \mathfrak{m} of K and hence that $\mathfrak{r}/[\mathfrak{r}, L] = 0$ since each homogeneous component of $\mathfrak{r}/[\mathfrak{r}, L]$ is a finitely generated K-module. \square

The following is a corollary of the proof.

Corollary. Let K be an arbitrary commutative ring and let r be a homogeneous element of L(X). Suppose that for some n we have $r \in L(X_n)$, $r \notin [L(X_n), L(X_n)]$ and that the largest linear term of r in $L(X_n)$ has a coefficient which is a unit of K. Then the elements

$$ad(h_n)^{i_n} \cdots ad(h_2)^{i_2} ad(h_1)^{i_1}(r) \quad (i_1, \ldots i_n \ge 0)$$

are part of a basis of $L(X_n)$. In particular, Theorem 1 holds in this case.

Proof of Theorem 2

We may assume that $X = \{x_1, \ldots, x_n\}$. Let

$$r = r_1 + r_2 + \cdots + r_d$$

be the decomposition of r into its homogeneous components r_i of degree i for the natural grading of L.

Lemma. If K is a field and the center of g = L/(r) is nonzero then so is the center of $L/(r_d)$.

Proof. Let π be an indeterminate over K and let L' (resp. L'') be $L \otimes_K K[\pi]$ (resp. $L \otimes_K K(\pi)$). Similarly define \mathfrak{g}' , \mathfrak{g}'' . If ψ is the automorphism of L'' defined by $\psi(x_i) = x_i/\pi$, let $s = \pi^d \psi(r)$. Then

$$s = r_d + \pi r_{d-1} + \dots + \pi^{d-1} r_1$$

with $s, t \in L'$ and

$$\mathfrak{g}''\cong (L'/(s))\otimes_{K[\pi]}K(\pi).$$

By [4, Theorem 3], L'/(s) is a free $k[\pi]$ module. Now suppose that the center of \mathfrak{g} is nonzero. Then the center of $\mathfrak{g}_{\pi} = L'/(s)$ is nonzero and hence so is the center of $\mathfrak{g}_{\pi}/\pi\mathfrak{g}_{\pi} \cong L/(r_d)$. \square

Suppose K is a field and that the center of g is not trivial. Then, by the above Lemma, the center of $L/(r_d)$ is not zero. If d=1 we must have Card(X) = 2. Suppose that either Card(X) > 2 or Card(X) = 2, d > 2 and let z be a nonzero homogeneous element of the center of $L/(r_d)$. We first show that the degree of this element must be $\geq d$. Let x_1 , x_2 be the first two elements of X. Since $[x_1, z] \in \mathfrak{r}$ the degree of z is $\geq d-1$. If the degree of z is d-1 then $[x_i, z] = a_i r$ with $a_i \in K$, $a_i \neq 0$. Hence $[a_2 x_1, z] = [a_1 x_2, z]$ which gives $[z, a_2x_1 - a_1x_2] = 0$. This implies that $z = ax_1 + bx_2$ and $r = c[x_1, x_2]$. But then, by hypothesis, we must have Card(X) > 2. If x_3 is the third element of X_3 the above argument yields $r = d[x_1, x_3]$ which is a contradiction. Hence the degree of z is at least d which implies, by Theorem 1, that $z \in \mathfrak{h}$ and hence that z = 0 since the rank of h is at least 2. This contradiction means that we must have Card(X) = 2 and d = 1 or d = 2. If d = 1 we are done so we may assume d=2. If $r_1=0$ we are again done, so we may assume $r = ax_1 + bx_2 + c[x_1, x_2]$ with $c \neq 0$ and one of a, b nonzero. After a linear change of variables we have $r = x_1 + [x_1, x_2]$. But, in this case, the center of g is zero; so this case does not arise.

We now consider the case where K is a principal ideal domain and r is homogeneous. Without loss of generality, we may assume that d > 2 or Card(X) > 2. Suppose first that r is not a proper multiple of another element of L.

Then, by [4, Corollary to Theorem 2], $\mathfrak{g} = L/(r)$ is a free K-module. If K' is the quotient field of K, the center of \mathfrak{g} is zero iff the center of $\mathfrak{g} \otimes_K K'$ is zero which gives Theorem 2.

If r is a proper multiple of another element of L, we can write r=cs with c a nonunit of K and s an element of L which is not a proper multiple. Let s=(s). Then (r)=cs and g=L/cs. Since L/s is a free K-module by [4, Corollary to Theorem 2], we obtain that s is a free Lie-algebra over K, cf. [9, Satz 5]. Hence s/cs is a free Lie algebra over K/Kc. Since this Lie algebra is of infinite rank, its center is zero, and since the center of L/s is zero by the first part we see that the center of g must also be zero. \Box

APPLICATION TO PRO-p-GROUPS

Let X be a well-ordered set together with a locally finite weight function ω which is compatible with the ordering of X. We may therefore assume $X = \{x_1, x_2,\}$ with $x_i < x_j$ if i < j. Let F = F(X) be the free pro-p-group on the set X, cf. [7, §1.5]. Let H be a weighted Hall set with respect to X, ω having the dominance property and let the sets $X_n \subset M(X)$ ($n \ge 0$) be defined as in the proof of Theorem 1. Using the embedding of M(X) into F obtained by means of the operation $[x, y] = x^{-1}y^{-1}xy = x^{-1}y^x$ on F, we identify X_n with its image in F. We also define ad(x)(y) = [x, y]. The following result is the elimination theorem for pro-p-groups:

Proposition 7. Let $f: F(X) \to F(T)$ be the homomorhism of pro-p-groups defined by f(x) = x for $x \in T$ and f(x) = 1 for $x \in X - T$. Then $\ker(f)$ is a free pro-p-group with basis the set X_T consisting of elements

$$x_{i,j} = \operatorname{ad}(x_{j_1})\operatorname{ad}(x_{j_2})\cdots\operatorname{ad}(x_{j_k})(x_i)$$

with $x_{j_1}, x_{j_2}, \ldots, x_{j_k} \in T \ (k \ge 0)$ and $x_i \in X - T$.

Proof. For the natural right action of F on $N = \ker(f)$ we have

$$x_{ij}^{x_{\ell}} = x_{ij} x_{i,j'}^{-1}$$

with $j'=(\ell,x_{j_1},\ldots,x_{j_k})$ if $j=(x_{j_1},\ldots,x_{j_k})$. This also defines a right action of F(T) on $F(X_T)$). Let h_0 be the homomorphism of $F(X_T)$ into N induced by the identity map on X_T and let S be the semidirect product of $F(X_T)$ by F(T). Since h_0 is compatible with the actions of F(T) on $F(X_T)$ and N it extends to a map h of S into F(X). If g is the homomorphism of F(X) into S with g(x)=(1,x) for $x\in X-T$ and g(x)=(x,1) for $x\in T$ then hg=1 and gh=1. \square

Corollary. If f is the homomorphism of F(X) into $F(x_1)$ defined by $f(x_1) = x_1$ and f(x) = 1 for $x \in X$, $x \neq x_1$, then $\ker(f) = F(X_1)$.

If F_n is the closed subgroup of F generated by X_n then F_n is a normal subgroup of F and is a free pro-p-group with basis X_n . The weight function ω defines a filtration of F and induces one on F_n (cf. [5]) so that, if $gr(F_n)$ is the associated Lie algebra, we have $gr(F_n) = L(X_n)$ over \mathbb{Z}_p .

Theorem 5. Let $r \in F$ and suppose that $r \in F_n$, $r \notin F_n^p[F_n, F_n]$. Let G_i be the image of F_i in G. Then G_n is a normal free pro-p-subgroup of G

and $\Gamma_i = G_{i-1}/G_i \cong \mathbb{Z}_p$ for $0 < i \le n$. Moreover, R/[R, R] is a free $\mathbb{Z}_p[[G]]$ -module of rank 1, where $\mathbb{Z}_p[[G]]$ is the completed \mathbb{Z}_p -algebra of G. In particular, G is of cohomological dimension ≤ 2 .

Proof. For i > 0 let g_i be the image of h_i in Γ_{i-1} , where h_i is the smallest element of X_{i-1} . Then g_i is a generator of Γ_i . Let $\gamma_i = 1 - g_i$ in $\mathbb{Z}_p[[G]]$. For $i = (i_1, \ldots, i_n) \in \mathbb{N}^n$ let

$$r_i = \operatorname{ad}(h_n)^{i_n} \cdots \operatorname{ad}(h_2)^{i_2} \operatorname{ad}(h_1)^{i_1}(r)$$

and let ρ (resp. ρ_i) be the image of r (resp. r_i) in R/[R, R]. The elements r_i generate R as a closed normal subgroup of F_n and

$$\rho_i = \rho \cdot (\gamma_1^{i_1} \gamma_2^{i_2} \cdots \gamma_n^{i_n})$$

for the natural right action of $\mathbb{Z}_p[[G]]$ on R/[R,R]. We now show that the images of the ρ_i in the free commutative pro-p-group $F_n/[F_n,F_n]$ are part of a basis. To see this let $\overline{\rho_i}$ (resp. $\overline{\rho}$) be the initial forms of the images of ρ_i (resp. ρ) in $F_n/F_n^p[F_n,F_n]$, with respect to the filtration defined by ω . It suffices to show that the $\overline{\rho_i}$ can be completed to a homogeneous basis of $gr(F_n/F_n^p[F_n,F_n]$. But this follows from the Corollary to Theorem 1 with $K = \mathbb{F}_p$ and $r = \overline{\rho}$; note that in $L(X) \otimes_{\mathbb{Z}_p} \mathbb{Z}/p\mathbb{Z}$

$$\overline{\rho_i} = \operatorname{ad}(h_n)^{i_n} \cdots \operatorname{ad}(h_1)^{i_1}(\overline{\rho}).$$

If S is the set of the elements r_i , we obtain that S is part of a basis Y of the free pro-p-group F_n . This yields $G_n = F(T)$ with T = Y - S. If $I = \mathbb{N}^n$ then, by the elimination theorem, the mapping which sends the element $u = (u_i)_{i \in I} \in Z_p[[G_n]]^I$ to the element $\sum \rho_i \cdot u_i \in R/[R, R]$ is an isomorphism of $\mathbb{Z}_p[[G_n]]$ -modules. But every element of $\mathbb{Z}_p[[G]]$ can be uniquely written in the form

$$\sum \gamma_1^{i_1} \gamma_2^{i_2} \cdots \gamma_n^{i_n} u_{i_1 i_2 \dots i_n}$$

with $u_{i_1i_2...i_n} \in \mathbb{Z}_p[[G_n]]$. This implies that R/[R, R] is a free $\mathbb{Z}_p[[G]]$ -module. By [4, Proposition 1], we obtain that G is of cohomological dimension ≤ 2 . \square

As an example, cd(G) = 2 if r is the relator

$$[x_1, [x_1, x_2]]^p ad([x_1, x_2])^m ([x_1, [x_1, x_2]]).$$

This follows from the fact the hypothesis of Theorem 5 is satisfied with n=3. The best one could do for this relator, using the results of [4], was to prove that cd(G) = 2 for $p > \frac{2}{3}m + 1$.

REFERENCES

- 1. N. Bourbaki, Groupes et algèbres de Lie, Chapitre 2, Hermann, Paris, 1972.
- H. Bass and A. Lubotsky, Linear-central filtrations on groups, The Mathematical Legacy of Wilhelm Magnus: Groups, Geometry and Special Functions (W. Abikoff, J.S. Birman and K. Kuiken, eds.), Contemporary Math., vol. 169, Amer. Math. Soc., Providence, RI, 1994, pp. 45-98.
- H. Cartan and S. Eilenberg, Homological algebra, Princeton University Press, Princeton, NJ, 1956.
- J.P. Labute, Algèbres de Lie et pro-p-groupes définis par une seule relation, Invent. Math 4 (1967), 142-158.

- 5. M. Lazard, Groupes analytiques p-adiques, I.H.E.S. Publ. Math. 26 (1965), 389-603.
- 6. K. Murasugi, The center of a group with a single defining relation, Math. Ann. 155 (1964), 246-251.
- 7. J-P. Serre, Cohomologie Galoisienne, Springer-Verlag, Berlin-Heidelberg-New York, 1965.
- 8. A. I. Širšov, Some algorithmic problems for Lie algebras, Sibirsk. Math. Ž. 3 (1962), 292-296. (Russian)
- 9. E. Witt, Die Unterringe der freien Lieschen Ringe, Math. Z. 64 (1956), 195-216.

805 SHERBROOKE STREET WEST, MONTREAL, QUEBEC H3A 2K6, CANADA E-mail address: labute@math.mcgill.ca