CYCLIC SULLIVAN-DE RHAM FORMS

CHRISTOPHER ALLDAY

ABSTRACT. For a simplicial set X the Sullivan-de Rham forms are defined to be the simplicial morphisms from X to a simplicial rational commutative graded differential algebra $(\operatorname{cgda})\nabla$. However ∇ is a cyclic cgda in a standard way. And so, when X is a cyclic set, one has a cgda of cyclic morphisms from X to ∇ . It is shown here that the homology of this cgda is naturally isomorphic to the rational cohomology of the orbit space of the geometric realization |X| with its standard circle action. In addition, a cyclic cgda ∇C is introduced; and it is shown that the homology of the cgda of cyclic morphisms from X to ∇C is naturally isomorphic to the rational equivariant (Borel construction) cohomology of |X|.

1. Introduction

Recall that a simplicial set, X, is a graded set, graded over that natural numbers, X_0 , X_1 , ..., such that, for each $n \ge 1$, there are boundary maps $d_i: X_n \longrightarrow X_{n-1}$, $0 \le i \le n$, and, for each $n \ge 0$, there are degeneracy maps $s_j: X_n \longrightarrow X_{n+1}$, $0 \le j \le n$; and there are various relations amongst the d_i 's and s_j 's. (See [M].) More generally, a simplicial object in a category \mathscr{C} , for example, a simplicial group, a simplicial algebra or a simplicial topological space, is defined just as for a simplicial set, except that each X_n is required to be an object of \mathscr{C} , and all d_i 's and s_j 's are required to be morphisms of \mathscr{C} . A cyclic set is a simplicial set with some additional structure: for each $n \ge 0$, X_n is acted on by the cyclic group of order n+1; and, if t_n denotes the generator of the cyclic group acting on X_n , then there are additional relations amongst the d_i 's and the t_n 's and amongst the s_j 's and the s_j

Alternatively, there is a simplicial category Δ , and a simplicial object in a category $\mathscr C$ can be viewed as a contravariant functor $\Delta \longrightarrow \mathscr C$ (or a covariant functor from the opposite category Δ^{op} to $\mathscr C$). Similarly there is a cyclic category ΔC , which has the same objects as Δ and some additional morphisms; and a cyclic object in $\mathscr C$ is a contravariant functor $\Delta C \longrightarrow \mathscr C$ (or a covariant functor $\Delta C^{op} \longrightarrow \mathscr C$). (Again see [L], §6.1.)

If X is a simplicial set, then the commutative graded differential algebra (cgda) of Sullivan-de Rham forms on X, $A^*(X)$, is defined to be the cgda of

Received by the editors September 14, 1994.

1991 Mathematics Subject Classification. Primary 57S10; Secondary 55N91, 55P62, 18G60.

all simplicial maps of X into a simplicial rational cgda ∇^* . (See, e.g., [S], [B, G], [H]. The precise definition will be reviewed below.) The homology of $A^*(X)$ is naturally isomorphic to the rational cohomology of X or its geometric realization |X|. Now ∇^* has an obvious structure as a cyclic cgda. Thus, if X is a cyclic set, then one can consider the cgda $A^*_{cy}(X)$ of all cyclic maps of X into ∇^* . One purpose of this paper is to show that the homology of $A^*_{cy}(X)$ is naturally isomorphic to the rational cohomology of |X|/G, where $G = S^1$, the circle group, acting on |X| in the usual way (to be reviewed in §2 below). In addition we define another cyclic rational cgda, which we denote ∇C^* , and we define $A^*_G(X)$ to be the cgda of all cyclic maps of X into ∇C^* . The other purpose of this paper is to show that the homology of $A^*_G(X)$ is naturally isomorphic to $H^*_G(|X|; \mathbb{Q})$, the rational equivariant (Borel construction) cohomology of |X|.

To define ∇^* precisely one begins with the free rational cgda, E_n , say, generated by indeterminates t_{n0} , ..., t_{nn} of degree zero and their differentials dt_{n0} , ..., dt_{nn} of degree one. Then $\nabla_n^* := E_n/J_n$ where J_n is the ideal generated by $1 - \sum_{j=0}^n t_{nj}$ and $\sum_{j=0}^n dt_{nj}$. The vector space of q-forms of simplicial dimension n is denoted ∇_n^q ; and the simplicial vector space of q-forms is denoted ∇_n^q . (See, e.g., [B, G] for details of the simplicial structure. In [B, G] ∇_n^q is denoted $\nabla(n, q)$.)

1.1. **Definitions.** The cyclic operator $t_n : \nabla_n^* \longrightarrow \nabla_n^*$ is induced by the cyclic permutation $(t_{n_0}, \dots, t_{n_n}) \mapsto (t_{n_1}, \dots, t_{n_n}, t_{n_0})$. (Cf. [L], 7.1.3.)

permutation $(t_{n0}, \ldots, t_{nn}) \mapsto (t_{n1}, \ldots, t_{nn}, t_{n0})$. (Cf. [L], 7.1.3.) If X is a cyclic set, then let $A_{cy}^*(X) = \operatorname{Mor}_{\Delta C^{op}}(X, \nabla^*)$ and $A_{cy}^q(X) = \operatorname{Mor}_{\Delta C^{op}}(X, \nabla^q)$. Call $A_{cy}^*(X)$, resp. $A_{cy}^q(X)$, the cgda, resp. vector space, of rational cyclic Sullivan-de Rham forms, resp. q-forms, on X.

Now, if X is a cyclic set, and |X| is its geometric realization, then $G = S^1$ acts on |X| in a standard way (see, e.g., [L], 7.1, to be reviewed in §2 below). One purpose of this paper is to prove the following theorem.

1.2. **Theorem.** Given a cyclic set X there is a natural isomorphism of rational commutative graded algebras

$$H\left(A_{cy}^{*}\left(X\right)\right)\cong H^{*}\left(|X|/G\,;\ \mathbb{Q}\right).$$

In §5 below we define the cyclic rational cgda ∇C^* . Then, for a cyclic set X, we define $A^*_G(X) = \mathrm{Mor}_{\Delta C^{op}}(X, \nabla C^*)$. The second result of this paper is the following.

1.3. **Theorem.** Given a cyclic set X there is a natural isomorphism of rational commutative graded algebras

$$H(A_G^*(X)) \cong H_G^*(|X|; \mathbb{Q}).$$

Both proofs are basically cyclic versions of the proof in the simplicial case to be found in [B, G], §§14 and 3. They make essential use of some constructions to be found in [B, H, M] and [Sp]: and I would like to thank Jan Spaliński for his very timely visit to Hawaii and for his very helpful paper.

In $\S 2$ below we review some basic facts concerning cyclic sets. In $\S 3$ we prove the additive part of Theorem 1.2. And in $\S 4$ we deal with the multiplicative part. Theorem 1.3 is proven in $\S 5$.

2. Review of cyclic sets.

As far as possible we shall follow the notation used in [L]. However we shall frequently write $\Lambda[n]$ instead of $F\Delta[n]$, where F is the left adjoint of the forgetful functor $\Delta C^{op} \longrightarrow \Delta^{op}$ ([L], 7.1.5). And t_n will denote the cyclic operator without sign ([L], 6.1.2).

Now let X be a cyclic set. And let $|X| = \coprod_{n \ge 0} X_n \times \Delta_n / \sim$ be its geometric realization defined, just as in [M], §14, using only the simplicial structure. Let $[x, u] \in |X|$ be the equivalence class of $(x, u) \in X_n \times \Delta_n$, where x is non-degenerate and $u = (u_0, \ldots, u_n) \in \Delta_n$ is interior. The canonical circle action on |X| is given by

$$e^{2\pi i v}[x, u] = \left[t_{n+1}^{n+1-j} s_j x, \tau_{n+1}^{j+1}(w_0, \dots, w_{n+1})\right]$$

where $0 \le v < 1$, τ_{n+1} is the cocyclic operator, i.e. $\tau_{n+1}(w_0, \ldots, w_{n+1}) = (w_1, \ldots, w_{n+1}, w_0)$, and $(w_0, \ldots, w_{n+1}) = (u_0, \ldots, u_{j-1}, 1 - v - u^{j-1}, u^j - (1-v), u_{j+1}, \ldots, u_n)$, where $u^j = u_0 + \cdots + u_j$, $u^{-1} = 0$ and j is such that $u^{j-1} < 1 - v \le u^j$. (See [L], 7.1, and [M], proof of Theorem 14.3.)

2.1. **Definition.** For a cyclic set X let

$$X_0^f = \{x \in X_0; t_1 s_0 x = s_0 x\}.$$

And let X^f be the cyclic subset of X generated by X_0^f . (For any $y \in X_n^f$, $y = s_0^n x$ for some $x \in X_0^f$, and $t_n y = y$.)

Clearly $|X^f|=|X|^G$. (For a cyclic set X, the fixed point set is always discrete.)

2.2. Remark. It is well-known that $|X| \approx \coprod_{n \geq 0} X_n \times \Lambda_n / \sim \text{ where } \Lambda_n = |\Lambda[n]|$

and, now, the equivalence relation uses all cyclic operators (i.e. all operators from ΔC) ([D, H, K], Proposition 2.8). However, Δ_* is also a cocyclic space with τ_n as above. So one may form $|X|_{orb} := \coprod_{n \geq 0} X_n \times \Delta_n / \sim$ using all operators

from ΔC . It is easy to see that there is a canonical homeomorphism $|X|_{orb} \approx |X|/G$.

Given a cyclic set X, the group $\mathbb{Z}/(n+1)$ generated by t_n acts on X_n ; and so each $x \in X_n$ has an isotropy subgroup equal to a cyclic group K_r of order r for some r dividing n+1. The proofs of the following technical lemma and Corollary 2.4 will be given in the appendix.

2.3. **Lemma.** Let Y, Z be cyclic sets. Let $x \in Y_n$. Suppose that $t_n^q x$ is non-degenerate for all q $(0 \le q \le n)$, and that $x \notin Y_0^f$. Suppose that x has isotropy subgroup K_r . Finally suppose that $t_{n+k}^{m_1} s_{i_1} \dots s_{i_k} x = t_{n+k}^{m_2} s_{j_1} \dots s_{j_k} x$ in Y_{n+k} for some $k \ge 0$.

 Y_{n+k} for some $k \ge 0$. Then $t_{n+k}^{m_1} s_{i_1} \dots s_{i_k} z = t_{n+k}^{m_2} s_{j_1} \dots s_{j_k} z$ for any $z \in \mathbb{Z}_n$ if the isotropy subgroup of z contains K_r .

Recall that if r|n+1, then there is a cyclic action of K_r on $\Lambda[n]$. (See [Sp], 3.5. In the notation of [L], 7.1, the action of the generator of K_{n+1} on $\Lambda[n] = F\Delta[n]$ is the map $\Lambda[n] \longrightarrow \Lambda[n]$ corresponding to the point (t_n, l_n) : i.e. $(1, l_n) \mapsto (t_n, l_n)$.) Let $\dot{\Lambda}[n] = F\dot{\Delta}[n]$ be the usual cyclic subset of boundaries. The following corollaries follow from Lemma 2.3.

2.4. Corollary. Let Y be a cyclic set and $X \subseteq Y$ a cyclic subset. Let $x \in Y_n - X_n$. Suppose that $t_n^k x$ is non-degenerate for $0 \le k \le n$, that $x \notin Y_0^f$ and that $d_i x \in X_{n-1}$ for $0 \le i \le n$. Suppose that x has isotropy subgroup K_r . Then the following diagram is a push-out.

$$\dot{\Lambda}[n]/K_r \xrightarrow{\overline{g}} X$$

$$\downarrow j$$

$$\Lambda[n]/K_r \xrightarrow{g} X \cup \langle x \rangle$$

where $X \cup \langle x \rangle$ is the cyclic subset of Y generated by X and x, the vertical maps are the inclusions, and g is induced by $(1, \iota_n) \mapsto x$.

2.5. **Corollary.** Let X be a cyclic set. Let X(n) be the n-skeleton of X, i.e. the cyclic subset generated by $\bigcup_{j=0}^{n} X_j$. Then X is the direct limit of the sequence $X(-1) := X^f \subseteq X(0) \subseteq X(1) \subseteq \cdots \subseteq X(n-1) \subseteq X(n) \ldots$, and each $X(n-1) \subseteq X(n)$, for $n \ge 0$, is a push-out

$$\coprod_{\alpha \in A_n} \dot{\Lambda}[n]/K_{\alpha} \longrightarrow X(n-1)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\coprod_{\alpha \in A_n} \Lambda[n]/K_{\alpha} \longrightarrow X(n)$$

where A_n is the set of orbits of simplicies $x \in X_n$ such that $t_n^k x$ is non-degenerate for $0 \le k \le n$, and K_α is the isotropy subgroup of the orbit α . $\left(A_0 = X_0 - X_0^f.\right)$

Since geometric realization is a left adjoint, and so commutes with colimits, one also gets the following.

2.6. Corollary. If X is a cyclic set, then |X| is a G-CW-complex (where $G = S^1$).

The next lemma is also useful.

2.7. **Lemma.** Let Z be an acyclic cyclic rational vector space. (I.e., Z is a cyclic rational vector space, and $Z \longrightarrow 0$ is a homotopy equivalence of simplicial abelian groups.) Then the dotted arrow exists in any commutative diagram of the form

$$\dot{\Lambda}[n]/K_r \longrightarrow Z$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad (r \text{ divides } n+1).$$

$$\Lambda[n]/K_r \longrightarrow 0$$

Proof. By [D, H, K], λ exists in the diagram

$$\dot{\Lambda}[n] \longrightarrow \dot{\Lambda}[n]/K_r \longrightarrow Z$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Lambda[n] \longrightarrow \Lambda[n]/K_r \longrightarrow 0$$

since the vertical map on the right is an acyclic fibration and the vertical map on the left is a cofibration.

Suppose that $\lambda(1, i_n) = \omega$. (Here, as above, $i_n \in \Delta[n]$ is the generator, and we are thinking of $\Lambda[n]$ as $F\Delta[n]$ as in [L], 7.1.) Now let $\theta = \frac{1}{r} \sum_{j=0}^{r-1} t_n^{js} \omega$, where

rs = n+1. Define $\mu: \Lambda[n] \longrightarrow Z$ by $\mu(1, \iota_n) = \theta$. A straightforward check shows that $d_i\theta = d_i\omega$ for $0 \le i \le n$. So μ also makes the above diagram commute. And μ factors through $\Lambda[n]/K_r$. \square

3. The additive part of Theorem 1.2.

Here we verify that a cyclic version of [B, G], §14 is valid. First, however, recall the Connes cochain complex $S_{\lambda}^*(X)$ of a cyclic set X with rational coefficients. A cyclic cochain $\varphi \in S_{\lambda}^n(X)$ is an ordinary cochain $\varphi : X_n \longrightarrow \mathbb{Q}$ such that $\varphi(t_n x) = (-1)^n \varphi(x)$ for all $x \in X_n$ ([L], 2.5.9). Then (see [J] or, e.g., [L], 7.2.3)

$$H(S_{\lambda}^*(X)) \cong H_G^*(|X|; \mathbb{Q}),$$

the equivariant (Borel construction) cohomology.

Recall, too, the map $\rho: A^*(X) \longrightarrow S^*(X)$ from the Sullivan-de Rham cgda of a simplicial set X to the rational cochain complex of X ([B, G], p. 7). For $\varphi \in A^n(X)$ and $x \in X_n$, $\rho(\varphi)(x) = \int \varphi(x)$, where the integration is over $\Delta'_n := \{(v_1, \ldots, v_n) \in \mathbb{R}^n : \sum_{i=1}^n v_i \leq 1 \text{ and } v_i \geq 0 \text{ for } 1 \leq i \leq n\}$.

3.1. **Lemma.** For any cyclic set X, the restriction of ρ to $A_{cy}^*(X)$ maps into $S_{\lambda}^*(X)$: i.e. one has

$$\rho: A_{cv}^*(X) \longrightarrow S_{\lambda}^*(X).$$

Proof. We must show that $(-1)^n \rho(\varphi)(x) = \rho(\varphi)(t_n x)$ for $\varphi \in A^n_{cy}(X)$ and $x \in X_n$. Let $\varphi(x) = f(t_{n1}, \ldots, t_{nn}) dt_{n1} \ldots dt_{nn}$. Then

$$\varphi(t_n x) = t_n \varphi(x) = f(t_{n2}, \ldots, t_{nn}, 1-t) dt_{n2} \ldots dt_{nn} d(1-t),$$

where $t = \sum_{i=1}^n t_{ni}$. So $\varphi(t_n x) = (-1)^n f(t_{n2}, \ldots, t_{nn}, 1-t) dt_{n1} \ldots dt_{nn}$. Now the change of variable $v_1 = t_{n2}, \ldots, v_{n-1} = t_{nn}, v_n = 1-t$ shows that $\int \varphi(t_n x) = (-1)^n \int \varphi(x)$. \square

3.2. Notation. For a cyclic set X let

$$\widetilde{A}_{cv}^*(X) = A_{cv}^*(X, X^f) = \ker[A_{cv}^*(X) \longrightarrow A_{cv}^*(X^f)]$$

and

$$\widetilde{S}_{1}^{*}(X) = S_{1}^{*}(X, X^{f}) = \ker[S_{1}^{*}(X) \longrightarrow S_{1}^{*}(X^{f})].$$

Note that ρ induces $\widetilde{\rho}: \widetilde{A}_{cy}^*(X) \longrightarrow \widetilde{S}_{\lambda}^*(X)$. And, by [J], $H\widetilde{S}_{\lambda}^*(X)$ is naturally isomorphic to $H_G^*(|X|, |X|^G; \mathbb{Q})$.

If Y is a cyclic set and $X \subseteq Y$ is a cyclic subset, then Y is the direct limit of the sequence

$$X \subseteq X \cup Y^f \subseteq X \cup Y(0) \subseteq \cdots \subseteq X \cup Y(n-1) \subseteq X \cup Y(n) \subseteq \cdots$$

where Y(n) is the cyclic *n*-skeleton of Y (as in Corollary 2.5). Thus the next lemma follows easily from Corollary 2.5 and Lemma 2.7.

3.3. **Lemma.** Let Y be a cyclic set and $X \subseteq Y$ a cyclic subset. Then the restriction homomorphism $A_{cv}^*(Y) \longrightarrow A_{cv}^*(X)$ is surjective.

Indeed, since the extension to Y^f can be arbitrary, the restriction homomorphism $\widetilde{A}_{cy}^*(Y) \longrightarrow \widetilde{A}_{cy}^*(X)$ is surjective also.

The next lemma is an easy variant of the corresponding simplicial result (see, e.g., [B, G], p. 82).

3.4. **Lemma.** Let $X: J \longrightarrow cyclic$ sets be a functor from a small category $J = \{j\}$ to the category of cyclic sets. Suppose that the map $\varinjlim X(j)^f \longrightarrow (\varinjlim X(j))^f$ is surjective. Then $\widetilde{A}^*_{cy}(\varinjlim X(j)) \cong \varinjlim \widetilde{A}^*_{cy}(X(j))$. (Here $\varinjlim is$ colimit and $\liminf is$ limit.) Similarly $\widetilde{S}^*_1(\limsup X(j)) \cong \liminf \widetilde{S}^*_1(X(j))$.

It is also easy to verify the following.

3.5. Lemma. Let

$$Z \longrightarrow X$$

$$\downarrow g \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Y \longrightarrow W$$

be a push-out of cyclic sets.

Let \overline{W} be the push-out obtained by replacing X, Y and Z by X^f , Y^f and Z^f respectively. Let $h: \overline{W} \longrightarrow W^f$ be the standard map.

If g is injective, then h is surjective. If, in addition, $Z^f = Y^f = \emptyset$, then h is bijective.

3.6. Lemma. For any $n \ge 0$ and r dividing n + 1, the map

$$\widetilde{\rho}: \widetilde{A}_{cv}^*(\Lambda[n]/K_r) \longrightarrow \widetilde{S}_{\lambda}^*(\Lambda[n]/K_r)$$

induces an isomorphism in homology.

Proof. It is easy to see that $(\Lambda[n]/K_r)^f = \emptyset$. So we are concerned with $\rho: A_{cv}^*(\Lambda[n]/K_r) \longrightarrow S_1^*(\Lambda[n]/K_r)$.

Now with the notation and results of [Sp] we have the following (where rs = n + 1).

$$A_{cy}^{*}(\Lambda[n]/K_{r}) = \operatorname{Mor}_{\Delta C^{op}}(\Psi_{r}\Delta[s-1], \nabla^{*})$$

$$= \operatorname{Mor}_{\Delta^{op}}(\Delta[s-1], \Phi_{r}(\nabla^{*}))$$

$$\cong \Phi_{r}(\nabla^{*})_{s-1} = (\nabla_{n}^{*})^{K_{r}}.$$

Since $H(\nabla_n^*) = \mathbb{Q}$, $H(\nabla_n^*)^{K_r} = \mathbb{Q}$ by averaging. On the other hand,

$$H\left(S_{\lambda}^{*}\left(\Lambda[n]/K_{r}\right)\right) \cong H_{G}^{*}\left(\left|\Lambda[n]/K_{r}\right|; \mathbb{Q}\right)$$

$$\cong H_{G}^{*}\left(\left|\Lambda[n]\right|/K_{r}; \mathbb{Q}\right)$$

$$\cong H_{G}^{*}\left(\left|\Lambda[n]\right|; \mathbb{Q}\right) \text{ since } K_{r} \text{ is finite}$$

$$\cong \mathbb{Q}. \quad \square$$

We are now in a position to prove the following, which essentially gives the additive part of Theorem 1.2. (See proof of 4.8.)

3.7. **Proposition.** Let X be a cyclic set. Then $\widetilde{\rho}: \widetilde{A}_{cy}^*(X) \longrightarrow \widetilde{S}_{\lambda}^*(X)$ induces an isomorphism $\widetilde{\rho}^*: H\left(A_{cy}^*\left(X,X^f\right)\right) \longrightarrow H\left(S_{\lambda}^*\left(X,X^f\right)\right)$.

Proof. We can now mimic the proof in [B, G], 14.5.

Step 1 holds for the standard cyclic sets $\Lambda[n]/K_r$ by Lemma 3.6. Step 2 holds by Step 1 and Lemma 3.4. Step 3 follows from Step 2, induction, Corollary 2.5, Lemma 3.4 and, in order to get the required version of [B, G], Lemma 14.1, Lemma 3.3. Finally Step 4 follows from Step 3, Lemma 3.4 and Lemma 3.3, which permits the required version of [B, G], Lemma 14.4. \square

4. The multiplicative part of Theorem 1.2.

Unfortunately, although the methods of [B, G], §14, seem to work best for the additive part, acyclic model arguments seem to be needed for the multiplicative part. We shall follow as closely as possible the notation of [B, G], §2.

4.1. **Definitions.** Let K be a contravariant functor from the category of cyclic sets to the category of R-modules, where R is a commutative ring with identity.

For a cyclic set X let $\widehat{K}(X) = \prod_{n>0} \prod_{x \in X_n} \{K(\Lambda[n]), x\}$, where $\widehat{\prod}$ indicates the

submodule of the product consisting of elements $\{m_x, x\}$ where (for $x \in X_n$) $m_{l_n x} = \gamma_n^* m_x$, $\gamma_n : \Lambda[n] \longrightarrow \Lambda[n]$ is the cyclic map induced by $\gamma_n(1, \iota_n) = (t_n, \iota_n)$, and $\gamma_n^* = K(\gamma_n)$.

Define $\Phi: K \longrightarrow \widehat{K}$ by $\Phi(X)(u) = \{K(\widetilde{x})(u), x\}$, for a cyclic set X and $u \in K(X)$, where $\widetilde{x}: \Lambda[n] \longrightarrow X$ is the standard map corresponding to $x \in X_n$ (i.e. $\widetilde{x}(1, \iota_n) = x$). It follows that $\Phi(X)$ maps K(X) to $\widehat{K}(X)$ since $\widehat{t_n x} = \widetilde{x} \gamma_n$.

The functor K is said to be corepresentable (with respect to the models $\Lambda[n]$) if there is a natural transformation $\Psi: \widehat{K} \longrightarrow K$ such that $\Psi\Phi = 1$.

4.2. **Lemma.** The functor S_{λ}^* is corepresentable (w.r.t. the models $\Lambda[n]$).

Proof. Given a cyclic set X, $\{m_x, x\} \in \widehat{S}_i^n(X)$ and $y \in X_n$, let

$$\Psi(X)(\{m_x\,,\,x\})(y)=m_y(1\,,\,\iota_n).$$

Since $m_{t_n y} = \gamma_n^* m_y$, it follows that $\Psi(X)(\{m_X, x\})$ is a cyclic cochain. And it is immediate that $\Psi\Phi = 1$. \square

4.3. **Lemma.** The functors A_{cy}^* , S_{λ}^* , $A_{cy}^* \otimes A_{cy}^*$ and $S_{\lambda}^* \otimes S_{\lambda}^*$ are acyclic with respect to the models $\Lambda[n]$ in the sense of [B, G], p. 9.

Proof. This follows exactly as in [B, G] since $A_{cy}^*(\Lambda[n]) \cong A^*(\Delta[n])$ and $S_{\lambda}^*(\Lambda[n]) \cong S^*(\Delta[n])$. \square

Suppose that K^* is a functor (such as those of Lemma 4.3) which is acyclic with respect to the models $\Lambda[n]$ in the sense of [B,G], p. 9. So, for fixed n and any p, we have a homotopy $h: K^p(\Lambda[n]) \longrightarrow K^{p-1}(\Lambda[n])$ such that $hD+Dh=1-\eta\epsilon$, where D is the differential in $K^*(\Lambda[n])$, and $\eta:\mathbb{Q} \longrightarrow K^\circ(\Lambda[n])$ and $\epsilon: K^*(\Lambda[n]) \longrightarrow \mathbb{Q}$ are the unit and augmentation (so that $\epsilon \eta = 1$). In order to apply the obvious cyclic analogues of [B,G], Lemma 2.3 and Proposition 2.4, it is necessary that $h\gamma_n^* = \gamma_n^*h$. But this is easily done by starting with any h and averaging to obtain $h:=\frac{1}{n+1}\sum_{j=0}^n (\gamma_n^*)^j h(\gamma_n^*)^{-j}$. One must also average ϵ

by putting $\widetilde{\epsilon} = \frac{1}{n+1} \sum_{j=0}^{n} \epsilon (\gamma_n^*)^{-j}$. One then has $\widetilde{h}D + D\widetilde{h} = 1 - \eta\widetilde{\epsilon}$, provided that the image of η is in the fixed part of $K^{\circ}(\Lambda[n])$: and that is the case for all functors considered here.

Thus one has available the cyclic analogues of [B, G], Lemma 2.3 and Proposition 2.4. Hence one has the following.

4.4. Corollary. There is a natural chain map

$$\mu_{\lambda}: S_{\lambda}^* \otimes S_{\lambda}^* \longrightarrow S_{\lambda}^*$$
.

which is homotopy associative, homotopy commutative, has a homotopy unit and is unique up to natural chain homotopy.

By naturality μ_{λ} induces $\widetilde{\mu}_{\lambda}:\widetilde{S}_{\lambda}^{*}\otimes S_{\lambda}^{*}\longrightarrow\widetilde{S}_{\lambda}^{*}$ and $\widetilde{\mu}_{\lambda}:\widetilde{S}_{\lambda}^{*}\otimes\widetilde{S}_{\lambda}^{*}\longrightarrow\widetilde{S}_{\lambda}^{*}$. Let $\mu_{A}:A_{cy}^{*}\otimes A_{cy}^{*}\longrightarrow A_{cy}^{*}$ be the usual multiplication of forms; and let $\widetilde{\mu}_{A}$ and $\widetilde{\mu}_{A}$ be the corresponding restrictions. Then [B, G], Lemma 2.3 and Proposition 2.4 also give the following.

4.5. **Proposition.** There are natural chain homotopies $\rho\mu_A \simeq \mu_\lambda(\rho\otimes\rho)$, $\widetilde{\rho}\widetilde{\mu}_A \simeq \widetilde{\mu}_\lambda(\widetilde{\rho}\otimes\rho)$ and $\widetilde{\rho}\widetilde{\mu}_A \simeq \widetilde{\mu}_\lambda(\widetilde{\rho}\otimes\widetilde{\rho})$. Furthermore, if $\mu: S^*\otimes S^*\longrightarrow S^*$ is the standard cup product (as in [M], §30) and if $i: S^*_\lambda \longrightarrow S^*$ is the inclusion, then there is a natural chain homotopy $i\mu_\lambda \simeq \mu(i\otimes i)$.

Proof. The first natural chain homotopy follows from [B, G], Lemma 2.3 and Proposition 2.4. (See also [B, G], Proposition 3.3.) The second and third follow from the first by naturality. The last follows since S^* is corepresentable with respect to the models $\Lambda[n]$ if in the definition of \widehat{S}^* one uses the product \prod instead of the limit \prod . (And one is viewing S^* as a functor on cyclic sets not simplicial sets.) \square

4.6. **Corollary.** For any cyclic set X, ρ induces \mathbb{Q} -algebra homomorphisms $\rho^*: H(A_{cy}^*(X)) \longrightarrow H(S_{\lambda}^*(X))$ and $\widetilde{\rho}^*: H(\widetilde{A}_{cy}^*(X)) \longrightarrow H(\widetilde{S}_{\lambda}^*(X))$, the second being an isomorphism.

Remark. The functors $\widetilde{S}^*_{\lambda}$, A^*_{cy} and \widetilde{A}^*_{cy} cannot be corepresentable (w.r.t. the models $\Lambda[n]$). Otherwise one would get chain equivalences which are clearly impossible. The fact that A^*_{cy} is not corepresentable w.r.t. $\Lambda[n]$ whereas A^*

is corepresentable w.r.t. $\Delta[n]$ ([B, G], Proposition 2.5) corresponds to the facts that $\mathbb{Q} \longrightarrow \nabla^0 \longrightarrow \nabla^1 \longrightarrow \cdots$ is an injective resolution of \mathbb{Q} in the category of simplicial rational vector spaces but not in the category of cyclic rational vector spaces. The former fact gives a quick proof that, for any simplicial set $(X, H(A^*(X)) \cong H^*(X; \mathbb{Q}).$ (See, e.g., [L], 6.2.)

We now restate and prove Theorem 1.2.

4.8. **Theorem.** For cyclic sets X there is a natural isomorphism of \mathbb{Q} -algebras $H\left(A_{cv}^{*}\left(X\right)\right) \xrightarrow{\sim} H^{*}(|X|/G; \mathbb{Q}).$

(Here, as usual, $G = S^1$.)

Proof. From [J] one has natural isomorphisms $H(S_{\lambda}^{*}(X)) \cong H_{G}^{*}(|X|; \mathbb{Q})$ and $H\left(\widetilde{S}_{\lambda}^{*}\left(X\right)\right)\cong H_{G}^{*}\left(\left|X\right|,\left|X\right|^{G};\mathbb{Q}\right)$. In addition there is a natural isomorphism $H_G^*(|X|, |X|^G; \mathbb{Q}) \longrightarrow H^*(|X|/G, |X|^G; \mathbb{Q})$. (See, e.g., [A, P], Proposition (3.10.9), and Corollary 2.6 above.)

Thus, for $n \geq 2$, one has the sequence of isomorphisms $H^n\left(A_{cv}^*(X)\right) \longrightarrow$ $H^n(\widetilde{A}_{cy}^*(X)) \longrightarrow H^n(\widetilde{S}_{\lambda}^*(X)) \longrightarrow H_G^n(|X|, |X|^G; \mathbb{Q}) \longrightarrow H^n(|X|/G, |X|^G; \mathbb{Q})$ $\longrightarrow H^n(|X|/G; \mathbb{Q})$, using the fact that $|X|^G$ is discrete.

The cases where n = 0 or 1 are straightforward. The multiplicativity also follows easily thanks to Proposition 4.5. \Box

5. Proof of Theorem 1.3.

In this section we define ∇C^* and A_G^* , and prove Theorem 1.3.

- 5.1. **Definitions.** (1) Let R_n be the rational cgda $\mathbb{Q}[u_n] \otimes \Lambda(v_n)$, where $\deg(v_n)$ = 1, $deg(u_n) = 2$ and $dv_n = u_n$.
- (2) Let R be the simplicial cgda which is R_n in simplicial dimension n, and in which the simplicial operators are defined by requiring that $u_n = s_0^n u_0$ and $v_n = s_0^n v_0$, the *n*-fold degeneracies.
- (3) The cyclic rational cgda ∇C^* is defined as follows. Let $\nabla C_n^* = R_n \otimes \nabla_n^*$. The simplicial operators are the tensors of those on R_n with those on ∇_n^* . (E.g., for $\varphi \in \nabla_n^*$ and $0 \le i \le n$, $d_i(u_n \otimes \varphi) = u_{n-1} \otimes d_i \varphi$.) The cyclic group operators are given as before on ∇^* (Definitions 1.1) and by requiring that $t_n u_n = u_n$ and $t_n v_n = v_n - dt_{n0}$, for all $n \ge 0$.

It is easy to check that ∇C^* is a cyclic rational cgda. (E.g., $s_0 t_n v_n = v_{n+1}$ $dt_{n+1} - dt_{n+1} = t_{n+1}^2 v_{n+1} = t_{n+1}^2 s_n v_n$.) (4) If X is a cyclic set, then let

$$A_G^*(X) = \operatorname{Mor}_{\Delta C^{op}}(X, \nabla C^*).$$

It is also easy to check the following.

5.2. **Lemma.** For each degree q, the cyclic rational vector space ∇C^q is acyclic in the sense of Lemma 2.7.

Hence (cf. Lemma 3.3) one has the next corollary.

5.3. Corollary. If Y is a cyclic set and $X \subseteq Y$ is a cyclic subset, then the restriction homomorphism $A_G^*(Y) \longrightarrow A_G^*(X)$ is surjective.

Since $\nabla C^{\circ} = \mathbb{Q} \otimes \nabla^{\circ} \cong \nabla^{\circ}$, one has that $A_G^{\circ} = A_{cy}^{\circ}$. Thus one has $\eta : \mathbb{Q} \longrightarrow$ $A_G^{\circ}(\Lambda[n])$ as before. (See Lemma 4.3 and the comments below it.)

5.4. **Lemma.** The functors A_G^* and $A_G^* \otimes A_G^*$ are acyclic with respect to the models $\Lambda[n]$.

Proof. One has that $A_G^*(\Lambda[n]) = \nabla C_n^* = R_n \otimes \nabla_n$. One begins by defining h on R_n by h(1) = 0, $h(u_n^j) = v_n u_n^{j-1}$ for $j \ge 1$ and $h(v_n u_n^i) = 0$. And h is defined on ∇_n in the usual way ([B, G], Proposition 1.3). One defines ϵ on R_n by $\epsilon(v_n) = 0$, $\epsilon(u_n) = 0$. Then h is defined on $R_n \otimes \nabla_n$ in the standard way (i.e., $h(x \otimes y) = \frac{1}{2} \{h(x) \otimes (y + \eta \epsilon(y)) + (-1)^m (x + \eta \epsilon(x)) \otimes h(y) \}$, where $\deg(x) = m$). Then one averages as in the comments below Lemma 4.3. \square

Everything is now in place to apply the cyclic analogues of [B, G], Lemma 2.3 and Proposition 2.4, which give the following.

- 5.5. **Proposition.** There is a natural chain map $\rho_G: A_G^* \longrightarrow S_{\lambda}^*$ such that
 - (1) $\rho_G \eta = \eta : \mathbb{Q} \longrightarrow S_{\lambda}^{\circ}$;
 - (2) in degree 0, $\rho_G = \rho : A_G^{\circ} = A_{cv}^{\circ} \longrightarrow S_{\lambda}^{\circ}$ (see Lemma 3.1);
 - (3) there is a natural chain homotopy $\rho_G i_{\nabla^*} \simeq \rho : A_{cy}^* \longrightarrow S_{\lambda}^*$, where $i_{\nabla^*} : A_{cy}^* \longrightarrow A_G^*$ is induced by the obvious inclusion $i_{\nabla} : \nabla^* \longrightarrow \nabla C^*$ of cyclic cgdas; and
 - (4) there is a natural chain homotopy

$$\rho_G \mu_G \simeq \mu_{\lambda}(\rho_G \otimes \rho_G) : A_G^* \otimes A_G^* \longrightarrow S_{\lambda}^*,$$

where μ_G is the multiplication on A_G^* and μ_{λ} is a multiplication on S_{λ}^* given by Corollary 4.4.

Finally we are ready to restate and prove Theorem 1.3.

5.6. **Theorem.** For cyclic sets X, ρ_G of Proposition 5.5 induces a natural isomorphism of rational commutative graded algebras

$$\rho_G^*: H(A_G^*(X)) \xrightarrow{\sim} H_G^*(|X|; \mathbb{Q}).$$

Proof. As in the proof of Proposition 3.7, we mimic the proof in [B, G], 14.5. The multiplicative part of the theorem follows from Proposition 5.5(4).

Step 1 of [B, G] follows for the cyclic sets $\Lambda[n]/K_r$, because, arguing as in Lemma 3.6, one has that

$$A_G^*(\Lambda[n]/K_r) \cong (\nabla C_n^*)^{K_r}$$
;

and, as before, the homology of the latter is \mathbb{Q} concentrated in degree 0. There is, however, the crucial question of what happens on the trivial cyclic set $\Delta[0]$. We shall postpone this to last.

The remaining steps of [B, G], 14.5 follow just as in the proof of Proposition 3.7, but using Corollary 5.3 instead of Lemma 3.3.

So, returning to $\Delta[0]$, one has that

$$A_G^*(\Delta[0]) \cong (\nabla C^*)_0^f = \mathbb{Q}[u_0] ,$$

the polynomial ring. And $S^*_{\lambda}(\Delta[0]) = \mathbb{Q}[w]$, the polynomial ring on $w \in S^2_{\lambda}(\Delta[0])$ defined by $w(s^2_0(0)) = 1$. The map $\rho_G : A^*_G([0]) \longrightarrow S^*_{\lambda}(\Delta[0])$ is uniquely determined. In order to show that it is an isomorphism, because of the multiplicative structure, it is enough to show that $\rho_G(u_0) \neq 0$. Calculating (i.e., going through the details of [B, G], Lemma 2.3 and Proposition 2.4, and not forgetting to average the homotopies) one finds that $\rho_G(u_0) = -\frac{1}{2}w$. \square

6. APPENDIX

Proof of Lemma 2.3. The case where k = 0 is clear; and so we proceed by induction, assuming that k > 0 and that the result is proven up to k - 1. Without loss of generality we can write the relation in the form

$$s_{i_1} \dots s_{i_k} x = t_{n+k}^m s_{j_1} \dots s_{j_k} x$$

where $i_1 > \cdots > i_k$.

Now in ΔC^{op} one has that (for $0 \le m \le n + k$)

$$t_{n+k}^m s_j = \begin{cases} s_{j+m} t_{n+k-1}^m & \text{if } j+m < n+k \,, \\ s_{j+m-(n+k+1)} t_{n+k-1}^{m-1} & \text{if } j+m > n+k \,, \\ t_{n+k} s_{n+k-1} t_{n+k-1}^{m-1} & \text{if } j+m = n+k \,. \end{cases}$$

Case 1. $j_1 + m \neq n + k$. So we have a relation of the form

$$s_{i_1} \dots s_{i_k} x = s_{j'} t_{n+k-1}^{m'} s_{j_2} \dots s_{j_k} x.$$

If $j' > i_1$, applying $d_{j'+1}$ gives $s_{i_1} \dots s_{i_k} d_{j'+1-k} x = t_{n+k-1}^{m'} s_{j_2} \dots s_{j_k} x$. Whence $x = d_{j_k} \dots d_{j_2} t_{n+k-1}^{-m'} s_{i_1} \dots s_{i_k} d_{j'+1-k} x$. Now writing the operator on the right in standard form (TSD), where T is a cyclic group operator, S is a sequence of degeneracies and D is a sequence of boundaries) shows that some $t_n^s x$ is degenerate—a contradiction.

If $j' \leq i_1$, first suppose that no index $i_t = j'$ or j' - 1. Then applying $d_{j'}$ gives a contradiction as before. If some $i_t = j'$, then applying $d_{j'}$, the inductive assumption and $s_{j'}$ gives the result. If no $i_t = j'$ but some $i_t = j' - 1$, then applying $d_{j'}$, the inductive assumption and $s_{j'}$ gives $s_{i_1} \dots s_{j'} \dots s_{i_k} z = t_{n+k}^m s_{j_1} \dots s_{j_k} z$ and $s_{i_1} \dots s_{j'} \dots s_{i_k} x = s_{i_1} \dots s_{j'-1} \dots s_{i_k} x$. Applying d_{i_1} , the inductive assumption and s_{i_1} to the latter gives the result.

Case 2. $j_1 + m = n + k$. First suppose that $k \ge 2$. If $j_1 \le j_2$, then $s_{j_1}s_{j_2} = s_{j_2+1}s_{j_1}$, and we are back in Case 1. If $j_1 > j_2$, then $s_{j_1}s_{j_2} = s_{j_2}s_{j_1-1}$, and again we are back in Case 1.

Thus we are left with the case where k=1 and $j_1+m=n+1$. The relation is $s_{i_1}x=t_{n+1}^ms_{j_1}x=t_{n+1}s_nt_n^{m-1}x$. Applying d_0 gives a contradiction of the non-degeneracy unless $i_1=0$.

So now we are left with $s_0x=t_{n+1}s_nt_n^{m-1}x$. Applying d_0 gives $x=t_n^{m-1}x$; and so $s_0x=t_{n+1}s_nx$. Now applying d_1 gives a contradiction of the non-degeneracy unless n=0. But, if n=0, we have $s_0x=t_1s_0x$, and hence $x\in Y_0^f$ —a contradiction. \square

Proof of Corollary 2.4. Suppose that

$$\dot{\Lambda}[n]/K_r \xrightarrow{\overline{g}} X$$

$$\downarrow \downarrow f$$

$$\Lambda[n]/K_r \xrightarrow{h} Z$$

is a commutative diagram of cyclic sets. Define $\varphi: X \cup \langle x \rangle \longrightarrow Z$ by $\varphi|X = f$ and $\varphi(x) = h([1, \iota_n])$. We must check that φ is extendable as a map of cyclic sets. (Clearly φ is unique.)

Let TSD be a cyclic operator, where T is a cyclic group operator, S is a sequence of degeneracies and D is a sequence of boundaries. If D is non-trivial, then $TSDx \in X$; and so $\varphi(TSDx) = f(TSDx) = TSf(Dx) = TSf\overline{g}(D([1, l_n])) = TShiD([1, l_n]) = TSDh([1, l_n]) = TSD\varphi(x)$.

If D is trivial, and TSx = T'S'D'x, then D' is trivial since TS has a left inverse and $x \notin X$. So TSx = T'S'x. Hence, by Lemma 2.3, $TS\varphi(x) = T'S'\varphi(x)$. Thus φ extends as a map of cyclic sets. \square

REFERENCES

- [A, P] C. Allday and V. Puppe, Cohomological methods in transformation groups, Cambridge Studies in Advanced Mathematics 32, Cambridge Univ. Press, Cambridge, 1993.
- [B, H, M] M. Bökstedt, W.-C. Hsiang and I. Madsen, The cyclotomic trace and algebraic K-theory of spaces, Invent. Math. 111 (1993), 465-539.
- [B, G] A. K. Bousfield and V. K. A. M. Gugenheim, On PL de Rham Theory and rational homotopy type, Mem. Amer. Math. Soc. 179 (1976).
- [D, H, K] W. G. Dwyer, M. J. Hopkins and D. M. Kan, The homotopy theory of cyclic sets, Trans. Amer. Math. Soc. 291 (1985), 281-289.
- [H] S. Halperin, Lectures on minimal models, Mém. Soc. Math, France (N.S.), No. 9-10 (1983).
- [J] J. D. S. Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987), 403-423.
- [L] J.-L. Loday, Cyclic homology, Grundlehren. Math. Wiss. 301, Springer-Verlag, Berlin, Heidelberg, 1992.
- [M] J. P. May, Simplicial objects in algebraic topology, Van Nostrand Math. Studies, no. 11, Van Nostrand, Princeton, NJ, 1967.
- [Sp] J. Spaliński, Strong homotopy theory of cyclic sets, J. Pure Appl. Algebra 99 (1995), 35-52
- [S] D. Sullivan, Infinitesimal computations in topology, Publ. Math. I.H.E.S. 47 (1977), 269-332.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAWAII, HONOLULU, HAWAII 96822 E-mail address: allday@uhunix.uhcc.hawaii.edu or chris@math.hawaii.edu