ISOMORPHISMS OF ADJOINT CHEVALLEY GROUPS OVER INTEGRAL DOMAINS

YU CHEN

ABSTRACT. It is shown that every automorphism of an adjoint Chevalley group over an integral domain containing the rational number field is uniquely expressible as the product of a ring automorphism, a graph automorphism and an inner automorphism while every isomorphism between simple adjoint Chevalley groups can be expressed uniquely as the product of a ring isomorphism, a graph isomorphism and an inner automorphism. The isomorphisms between the elementary subgroups are also found having analogous expressions.

1. Introduction and main theorems

Let G and G' be simple Chevalley-Demazure group schemes of adjoint type. Suppose R and R' are commutative integral domains containing the rational number field \mathbb{Q} . The main purpose of this paper is to determine the isomorphisms between Chevalley groups G(R) and G'(R'), as well as the isomorphisms between their elementary subgroups E(R) and E'(R'). When G is semisimple, the automorphisms of G(R) and E(R) are also determined in this paper. When R is a field, the automorphisms of simple adjoint Chevalley groups over R have been determined by Steinberg [9] and Humphreys [8]. Our main results are as follows.

Theorem 1.1. Let R and R' be commutative integral domains containing \mathbb{Q} . Suppose G and G' are simple adjoint Chevalley-Demazure group schemes whose ranks are greater than 1. Then

- (i) every isomorphism between E(R) and E'(R') can be extended uniquely to an isomorphism between G(R) and G'(R');
- (ii) if α is an isomorphism from G(R) to G'(R'), the restriction of α to E(R) is an isomorphism from E(R) to E'(R').

Suppose G and G' are adjoint Chevalley-Demazure group schemes. Let Φ (resp. Φ') be a root system of G (resp. G') and let Δ (resp. Δ') be a fundamental root system of Φ (resp. Φ'). We refer to [7] for the properties of Chevalley-Demazure group schemes. In particular, for each root $a \in \Phi$ and for each commutative ring R with a unit, there is a canonical monomorphism (cf. [7, XXII])

$$u_{a,R}: R^+ \to G(R)$$
.

Received by the editors May 2, 1994 .

¹⁹⁹¹ Mathematics Subject Classification. Primary 20G35, 20E36.

Key words and phrases. Chevalley group, elementary subgroup, integral domain, isomorphism

Supported in part by Italian M.U.R.S.T. research grant .

We rewrite this monomorphism simply as u_a for whatever commutative ring with a unit. We denote by $U_a(R)$ the subgroup consisting of the elements $u_a(r)$ for all $r \in R$ and $a \in \Phi$. The elementary subgroup E(R) of G(R) is generated by $U_a(R)$ for all $a \in \Delta$ or $-\Delta$, where $-\Delta$ is the set of the negative fundamental roots of Φ .

Since both G and G' are of adjoint type, it follows from Demazure's fundamental theorem (see [7, XXIII,§5.1]) that every isomorphism of root systems between Φ and Φ' implies an isomorphism between G and G'. Hence, if $\gamma:\Phi\to\Phi'$ is an isomorphism of root systems such that $\gamma(\Delta)=\Delta'$, it gives rise canonically to an isomorphism $\tilde{\gamma}:G(R)\to G'(R)$ satisfying

$$\tilde{\gamma}(u_a(r)) = u_{\gamma(a)}(r) \text{ for } a \in \Delta \text{ or } -\Delta, r \in R.$$

We call this $\tilde{\gamma}$ a graph isomorphism related to γ . It is obvious that

$$\tilde{\gamma}(E(R)) = E'(R).$$

This identity allows us to define a graph isomorphism from E(R) to E'(R) related to γ to be an isomorphism $\hat{\gamma}: E(R) \to E'(R)$ which satisfies

$$\hat{\gamma}(u_a(r)) = u_{\gamma(a)}(r) \text{ for } a \in \Delta \text{ or } -\Delta, \ r \in R.$$

Suppose G is a simple Chevalley-Demazure group scheme. Let R and R' be commutative rings with units. Since G is a covariant group functor on the category of commutative rings with units, every isomorphism $\varphi: R \to R'$ gives rise to an isomorphism $\tilde{\varphi}: G(R) \to G(R')$ in a canonical way, which is called the *ring* isomorphism related to φ . In particular, we have

$$\tilde{\varphi}(u_a(r)) = u_a(\varphi(r)) \text{ for } a \in \Delta \text{ or } -\Delta, r \in R.$$

Thus

2

$$\tilde{\varphi}(E(R)) = E(R').$$

We shall also call an isomorphism $\hat{\varphi}: E(R) \to E(R')$ to be a ring isomorphism related to φ if it satisfies

$$\hat{\varphi}(u_a(r)) = u_a(\varphi(r)) \text{ for } a \in \Delta \text{ or } -\Delta, r \in R.$$

Theorem 1.2. Let R, R', G and G' be as in Theorem 1.1. If α is an isomorphism from G(R) to G'(R'), then there exist an element $g \in G'(R')$, an isomorphism of root system $\gamma : \Phi \to \Phi'$ with $\gamma(\Delta) = \Delta'$ and an isomorphism of rings $\varphi : R \to R'$ such that

$$\alpha = Int \, g \cdot \tilde{\gamma} \cdot \tilde{\varphi}.$$

Moreover, g, γ and α are uniquely determined by α .

Remark 1.3. The isomorphisms between E(R) and E'(R') have similar expressions where $\tilde{\gamma}$ and $\tilde{\varphi}$ are replaced by $\hat{\gamma}$ and $\hat{\varphi}$ respectively (see Theorem 3.9).

Theorem 1.4. Let R be a commutative integral domain which contains \mathbb{Q} and let G be an adjoint Chevalley-Demazure group scheme which has no simple component of type A_1 . Then

- (i) every automorphism of E(R) can be extended uniquely to an automorphism of G(R);
- (ii) the restriction of each automorphism of G(R) to E(R) is an automorphism of E(R).

In particular, $Aut G(R) \cong Aut E(R)$.

Let G be an adjoint Chevalley-Demazure group scheme and let $\{G_i\}_{i=1}^n$ be its simple components. Since $G = \prod_{i=1}^n G_i$ (cf. [7, XXIV,§5.5]), G is a covariant group functor on the category of which the objects are of form $\prod_{i=1}^n R$ for some commutative ring R with a unit. Hence, if $\varphi_i : R \to R$ is an automorphism for $1 \le i \le n$, then the automorphism $\prod_{i=1}^n \varphi_i \in Aut \prod_{i=1}^n R$ gives rise canonically to an automorphism of G(R), which is easily seen to be $\prod_{i=1}^n \tilde{\varphi}_i$ and is called the ring automorphism of G(R) related to $\prod_{i=1}^n \varphi_i$. The automorphism $\prod_{i=1}^n \hat{\varphi}_i \in Aut E(R)$ is also called the ring automorphism of E(R) related to $\prod_{i=1}^n \varphi_i$.

Theorem 1.5. Let R and G be as in Theorem 1.4, then every automorphism α of G(R) has an expression

(1.5.1)
$$\alpha = Int \, g \cdot \tilde{\gamma} \cdot \prod_{i=1}^{n} \tilde{\varphi}_{i}$$

where $g \in G(R)$, $\gamma : \Phi \to \Phi$ is an automorphism of root system which keeps the fundamental root system Δ invariant and $\varphi_i \in Aut R$ for all $1 \leq i \leq n$. Moreover, g, γ and φ_i $(1 \leq i \leq n)$ are uniquely determined by α .

Remark 1.6. The automorphisms of E(R) have similar expressions where $\tilde{\gamma}$ and $\prod_{i=1}^{n} \tilde{\varphi}_i$ are replaced by $\hat{\gamma}$ and $\prod_{i=1}^{n} \hat{\varphi}_i$ respectively (see Theorem 4.2).

2. Preliminaries

Let H be a group. If M and P are subgroups of H, we denote by $\mathcal{C}_P(M)$ and $\mathcal{N}_P(M)$ the centralizer and the normalizer of M in P respectively. The centre of H is denoted by $\mathcal{C}(H)$. A subgroup of H generated by subsets M_1, M_2, \ldots is written as $\langle M_1, M_2, \ldots \rangle$ and $[M_1, M_2]$ stands for the subgroup of H generated by the elements of the form $xyx^{-1}y^{-1}$ for all $x \in M_1, y \in M_2$. If H is an algebraic group, we denote by L(H) the Lie algebra of H. Suppose M is an abstract subgroup of H, we denote by \overline{M} the Zariski closure of M in H and by \overline{M}° the connected component of \overline{M} which contains the identity element of H. Throughout this paper we fix a universal domain K of \mathbb{Q} and R (resp. R') stands for a subring of K which contains \mathbb{Q} .

In this section we give some preliminary properties of algebraic groups and Chevalley groups over a ring which are needed in the development of our discussion.

Lemma 2.1. The Zariski closure of every infinite abstract simple subgroup of an algebraic group is connected.

Proof. Suppose H is an infinite abstract simple subgroup of an algebraic group. Let ι be the natural embedding of H into its Zariski closure \overline{H} and let π be the natural homomorphism from \overline{H} to its quotient group $\overline{H}/\overline{H}^{\circ}$. Consider a composition of homomorphisms

$$H@>\iota>> \overline{H}@>\pi>> \overline{H}/\overline{H}^{\circ}.$$

Since $\overline{H}/\overline{H}^{\circ}$ is a finite group, $|H|/|\ker \pi \iota| < \infty$. This yields, since H is infinite and simple,

$$H = \ker \pi \iota = H \cap \overline{H}^{\circ} \subseteq \overline{H}.$$

Taking Zariski closures of the above groups, we obtain immediately the connectedness of \overline{H} .

Let G be an adjoint Chevalley-Demazure group scheme with its root system Φ and fundamental root system Δ . We denote by U(R) (resp. $U^-(R)$) the subgroup of G(R) generated by $U_a(R)$ for all $a \in \Phi^+$ (resp. $-a \in \Phi^+$), where Φ^+ is the subset of positive roots of Φ . Let B (resp. B^-) be the normalizer of U(K) (resp. $U^-(K)$) in G(K), which is a Borel subgroup of G(K) and let T be the maximal torus of G(K) which is contained in both B and B^- . If G' is also an adjoint Chevalley-Demazure group scheme, we denote analogically by Φ' , Δ' , $U'_a(R)$ ($a \in \Phi'$), U'(R) (resp. $U'^-(R)$), T' and B' for related root systems and subgroups. Suppose $\gamma : \Phi \to \Phi'$ is an isomorphism of root systems such that $\gamma(\Delta) = \Delta'$, then γ gives rise to a homomorphism of algebraic groups $\bar{\gamma} : G(K) \to G'(K)$ defined by

$$\bar{\gamma}(u_a(k)) = u_{\gamma(a)}(k) \text{ for } a \in \Delta \text{ or } -\Delta, k \in K,$$

which is called the isogeny related to γ (cf. [6, exp.18]).

Lemma 2.2. Suppose ε is an isogeny from G(K) to G'(K), then there exist an element $g \in G'(K)$ and an isomorphism of root systems $\gamma : \Phi \to \Phi'$ with $\gamma(\Delta) = \Delta'$ such that

$$(2.2.1) \varepsilon = Int \, g \cdot \bar{\gamma}$$

where $\bar{\gamma}$ is the isogeny related to γ .

Proof. Since $\varepsilon(B)$ is a Borel subgroup of G'(K), there exists an element $g_1 \in G'(K)$ such that $Int g_1\varepsilon(B) = B'$. Moreover, $Int g_1\varepsilon(T)$ is a maximal torus of B' since T is contained in B. Hence there exists an element $g_2 \in B'$ such that

$$Int(g_2g_1)\varepsilon(T) = T'.$$

This, together with the fact that char K = 0 and

$$Int (g_2g_1)\varepsilon(B) = B',$$

gives rise to an isomorphism of root systems $\gamma: \Phi \to \Phi'$ with $\gamma(\Delta) = \Delta'$ such that (cf. [6, exp.18])

Int
$$(g_2g_1)\varepsilon(u_a(k)) = u_{\gamma(a)}(q_ak)$$
 for $a \in \Delta$ or $-\Delta$, $k \in K$,

where $q_a \in K^*$. Since the fundamental roots in Δ' are linearly independent, there exists an element $t \in T'$ such that

$$\gamma(a)(t) = q_a^{-1} \text{ for } a \in \Delta \text{ or } -\Delta.$$

Let $g = (tg_2g_1)^{-1}$, we then have for each root $a \in \Delta$ or $-\Delta$

Int
$$g\varepsilon(u_a(k)) = u_{\gamma(a)}(k)$$
 for $k \in K$,

from which follows (2.2.1) immediately.

Lemma 2.3. (i)
$$\overline{U(R)} = U(K); \overline{U^-(R)} = U^-(K);$$

- (ii) $\overline{T \cap E(R)} = T$;
- (iii) $\overline{B \cap E(R)} = B$.

Proof. (i) Suppose a is a positive root of Φ . Since $U_a(R)$ is an infinite group while $\overline{U_a(R)}/\overline{U_a(R)}^{\circ}$ is a finite group, $\overline{U_a(R)}^{\circ}$ must be infinite. In other words, $\dim \overline{U_a(R)}^{\circ} \geq 1$. On the other hand, since

$$(2.3.1) \overline{U_a(R)}^{\circ} \subseteq \overline{U_a(R)} \subseteq U_a(K),$$

we have

$$\dim \overline{U_a(R)}^{\circ} \leq \dim U_a(K) = 1.$$

Hence dim $\overline{U_a(R)}^{\circ} = 1$ and (2.3.1) implies that

$$(2.3.2) \overline{U_a(R)} = U_a(K).$$

Therefore

$$\overline{U(R)} = \overline{\langle U_a(R) \mid \forall a \in \Phi^+ \rangle} = \langle \overline{U_a(R)} \mid \forall a \in \Phi^+ \rangle = U(K).$$

By taking negative roots instead of positive roots and by following a similar argument as above, we obtain also the Zariski density of $U^{-}(R)$ in $U^{-}(K)$.

(ii) Let $\{a_1, a_2, \ldots, a_n\}$ be the fundamental roots of Φ and write T_i for the one dimensional torus $T \cap \langle U_{a_i}(K), U_{-a_i}(K) \rangle$ for all $1 \leq i \leq n$. Then

$$(2.3.3) T = \prod_{i=1}^{n} T_i.$$

Let $T_i(R)$ be the *R*-rational points of T_i for $1 \leq i \leq n$, then we have

$$T \cap E(R) \supseteq \prod_{i=1}^{n} T_i(R).$$

Note that $T_i(R)$ is Zariski dense in T_i by [1, Ch.V,Cor.18.3] since R contains rational field \mathbb{Q} . Hence we obtain from (2.3.3) that

$$T \supseteq \overline{T \cap E(R)} \supseteq \prod_{i=1}^{n} \overline{T_i(R)} = T.$$

This means that $T \cap E(R)$ is Zariski dense in T.

(iii) We have

$$B \supseteq B \cap E(R) \supseteq (T \cap E(R)) \cdot U(R).$$

This yields

$$B \supseteq \overline{B \cap E(R)} \supseteq \overline{(T \cap E(R)) \cdot U(R)} = T \cdot U = B.$$

Hence $B \cap E(R)$ is Zariski dense in B.

Recall that the semisimple complex Lie algebra $L(G(\mathbb{C}))$ has a \mathbb{Z} -form \mathfrak{g} with a Chevalley basis related to the root system Φ (cf. [10]). We denote by \mathfrak{g}_R the R-Lie algebra $\mathfrak{g} \otimes_{\mathbb{Z}} R$ and let $ad : \mathfrak{g}_K \to M_n(K)$ be the adjoint representation of \mathfrak{g}_K , where n is the dimension of the Lie algebra \mathfrak{g}_K over K and $M_n(K)$ is the algebra of $n \times n$ matrices over K.

Lemma 2.4. Suppose z is an element of \mathfrak{g}_K such that $ad(z) \in M_n(R)$, then z lies

Proof. Let $\{e_1, e_2, \ldots, e_n\}$ be a Chevalley basis of $L(G(\mathbb{C}))$ related to Φ . Then $ad(e_i \otimes 1) \in M_n(\mathbb{Z})$ for all $1 \leq i \leq n$. Suppose z has an expression $\sum_{i=1}^n e_i \otimes k_i$, where $k_i \in K$ for all $1 \le i \le n$. Then

(2.4.1)
$$ad(z) = \sum_{i=1}^{n} ad(e_i \otimes k_i).$$

On the other hand, we way assume $ad(z)=(z_{pq})\in M_n(R)$, where $z_{pq}\in R$ for all $1\leq p\leq n, 1\leq q\leq n$ and suppose $ad(e_i\otimes 1)=(e_{pq}^{(i)})\in M_n(\mathbb{Z})$, where $e_{pq}^{(i)}\in \mathbb{Z}$ for

all $1 \le i \le n, 1 \le p \le n$ and $1 \le q \le n$. Then the equation (2.4.1) implies the following n^2 equations:

$$z_{11} = k_1 e_{11}^{(1)} + k_2 e_{11}^{(2)} + \dots + k_n e_{11}^{(n)}$$

$$z_{12} = k_1 e_{12}^{(1)} + k_2 e_{12}^{(2)} + \dots + k_n e_{12}^{(n)}$$

$$\dots$$

$$z_{nn} = k_1 e_{nn}^{(1)} + k_2 e_{nn}^{(2)} + \dots + k_n e_{nn}^{(n)}$$

Since $ad(e_1 \otimes 1), ad(e_2 \otimes 1), \ldots, ad(e_n \otimes 1)$ are linearly independent, there are n linearly independent equations in the above system. Therefore the unique solution for k_1, k_2, \ldots, k_n in the above equations is given by Cramer's rule as the quotient of the determinant of a matrix in $M_n(R)$ factored by the determinant of a matrix in $M_n(\mathbb{Z})$. Consequently, k_i lies in R for all $1 \leq i \leq n$, which implies that z belongs to \mathfrak{g}_R .

Lemma 2.5. Let g be an element of G(K), then g lies in G(R) if $Int g(u_a(1))$ belongs to G(R) for all $a \in \Phi$.

Proof. Let $\{e_a, h_b \mid \forall a \in \Phi, b \in \Delta\}$ be a Chevalley basis of the semisimple Lie algebra $L(G(\mathbb{C}))$, where $[e_b, e_{-b}] = h_b$ for $b \in \Delta$. Considering G(K) as a subgroup of $GL_n(\mathfrak{g}_K)$ through the adjoint representation of G(K) where $n = \dim \mathfrak{g}_K$, we obtain that $u_a(1) = \exp ad(e_a \otimes 1)$ for all $a \in \Phi$ (cf. [10]) and

$$(2.5.1) Int g(u_a(1)) = \exp ad(g(e_a \otimes 1))$$

where exp is the canonical exponential map which sends the nilpotent elements of $M_n(K)$ to the unipotent elements of $GL_n(K)$. Recall that the logarithm map log sends the unipotent subset of $M_n(R)$ to the nilpotent subset of $M_n(R)$ and the composite log-exp is the identity map on the nilpotent subset (cf. [3, Ch.II,6.1]). We have by (2.5.1)

$$\log(Int g(u_a(1))) = ad(g(e_a \otimes 1)) \in M_n(R) \text{ for } a \in \Phi.$$

Hence $g(e_a \otimes 1)$ belongs to \mathfrak{g}_R for all $a \in \Phi$ by Lemma 2.4. Moreover, we have

$$g(h_a \otimes 1) = [g(e_a \otimes 1), g(e_{-a} \otimes 1)] \in \mathfrak{g}_R \text{ for } a \in \Delta.$$

Hence
$$g \in GL_n(\mathfrak{g}_R) \cap G(K) = G(R)$$
.

Remark. Lemma 2.4 and Lemma 2.5 have been shown in [4] for the case when R is a Laurent polynomial ring over the complex number field.

Let a be a root in Φ , we denote by \mathfrak{g}_a the root subspace of \mathfrak{g}_K related to a and by \mathfrak{u} the subalgebra generated by \mathfrak{g}_a for all $a \in \Phi^+$. If \mathfrak{b} is a subalgebra of \mathfrak{g}_K , we denote by $\mathcal{C}_{\mathfrak{u}}(\mathfrak{b})$ the centralizer of \mathfrak{b} in \mathfrak{u} .

Lemma 2.6. Let a be a positive root and $I = \{c \in \Phi^+ | a + b \in \Phi^+ \Rightarrow c + b \in \Phi^+, \forall b \in \Phi^+\}$. Then

(2.6.1)
$$C_{U(K)}(C_{U(K)}(U_a(K))) = \prod_{c \in I} U_c(K).$$

Proof. It is easily seen that the Lie algebra L(U(K)) of U(K) is \mathfrak{u} , hence we have

$$L(\mathcal{C}_{U(K)}(U_a(K))) = \mathcal{C}_{\mathfrak{u}}(L(U_a(K))) = \mathcal{C}_{\mathfrak{u}}(\mathfrak{g}_a).$$

Note that $C_{U(K)}(U_a(K))$ is connected since it is a T-stable closed subgroup of U(K) (cf. [1, Ch.IV,14.4]). Then we have

$$\begin{split} L(\mathcal{C}_{U(K)}(\mathcal{C}_{U(K)}(U_a(K)))) &= \mathcal{C}_{\mathfrak{u}}(L(\mathcal{C}_{U(K)}(U_a(K)))) \\ &= \mathcal{C}_{\mathfrak{u}}(\mathcal{C}_{\mathfrak{u}}(\mathfrak{g}_a)) = \mathcal{C}_{\mathfrak{u}}(\sum_{\substack{b \in \Phi^+ \\ a+b \notin \Phi}} \mathfrak{g}_b) = \bigcap_{\substack{b \in \Phi^+ \\ a+b \notin \Phi}} \mathcal{C}_{\mathfrak{u}}(\mathfrak{g}_b) \\ &= \bigcap_{\substack{b \in \Phi^+ \\ a+b \notin \Phi}} \sum_{\substack{c \in \Phi^+ \\ b+c \notin \Phi}} \mathfrak{g}_c = \sum_{c \in I} \mathfrak{g}_c = L(\langle U_c(K) \, | \, \forall c \in I \rangle). \end{split}$$

Moreover, it is easily seen that

$$\langle U_c(K) | \forall c \in I \rangle = \prod_{c \in I} U_c(K).$$

Note that, since $C_{U(K)}(C_{U(K)}(U_a(K)))$ is a T-stable closed subgroup of U(K), it is also connected. Thus (2.6.1) follows from the above identities since the correspondence between the connected subgroups of U(K) and the Lie subalgebras of \mathfrak{u} is bijective.

Lemma 2.7. Let a be a positive root, then

(2.7.1)
$$\overline{\mathcal{C}_{U(R)}(U_a(\mathbb{Q}))} = \mathcal{C}_{U(K)}(U_a(K)).$$

Proof. It is obvious that $U_b(R) \subseteq \mathcal{C}_{U(R)}(U_a(\mathbb{Q}))$ for all $b \in \Phi^+$ with $a+b \notin \Phi$. Note that $U_a(\mathbb{Q})$ is a Zariski dense subgroup of $U_a(K)$ by (2.3.2). We then have

(2.7.2)
$$\langle U_b(R) | b \in \Phi^+, a + b \notin \Phi \rangle \subseteq \mathcal{C}_{U(R)}(U_a(\mathbb{Q}))$$
$$= \mathcal{C}_{U(R)}(U_a(K)) \subseteq \mathcal{C}_{U(K)}(U_a(K)).$$

Moreover, since $U_b(R)$ is Zariski dense in $U_b(K)$ for all $b \in \Phi^+$ by (2.3.2), we have

$$\overline{\langle U_b(R) | b \in \Phi^+, a + b \notin \Phi \rangle} = \overline{\langle U_b(R) | b \in \Phi^+, a + b \notin \Phi \rangle}$$
$$= \overline{\langle U_b(K) | b \in \Phi^+, a + b \notin \Phi \rangle} = C_{U(K)}(U_a(K)).$$

Therefore, taking Zariski closures of the subgroups in (2.7.2), we obtain immediately (2.7.1).

Proposition 2.8. Every normal subgroup of G(R) that contains $E(\mathbb{Q})$ must contain the elementary subgroup E(R).

Proof. For each root $a \in \Phi$ and each element $q \in \mathbb{Q}^*$, let

$$h_a(q) = u_a(q)u_{-a}(-q^{-1})u_a(q)u_{-a}(1)u_a(-1)u_{-a}(1) \in T \cap E(\mathbb{Q}).$$

Then (cf. [7])

$$h_a(q)u_a(r)h_a(q)^{-1} = u_a(q^2r) \text{ for } q \in \mathbb{Q}^*, \ r \in R.$$

Suppose H is a normal subgroup of G(R) which contains $E(\mathbb{Q})$ and let $q \neq \pm 1$, then for all $r \in R$ and $a \in \Phi$ we have

$$u_a(r) = h_a(q)u_a((q^2 - 1)^{-1}r)h_a(q)^{-1}u_a((q^2 - 1)^{-1}r)^{-1} \in H.$$

This implies that H contains E(R).

Proposition 2.9. If α is an automorphism of G(R) which fixes each element of E(R), then α is the identity map on G(R).

Proof. Since E(R) is a normal subgroup of G(R) by [11], we have for all $g \in G(R)$

$$gxg^{-1} = \alpha(gxg^{-1}) = \alpha(g)x\alpha(g)^{-1}$$
 for $x \in E(R)$.

This yields

$$(\alpha(g)^{-1}g)x = x(\alpha(g)^{-1}g) \text{ for } x \in E(R), g \in G(R),$$

which means that, since E(R) is Zariski dense in G(K) (cf. [2]),

$$\alpha(g)^{-1}g \in \mathcal{C}_{G(R)}(E(R)) = \mathcal{C}(G(K)).$$

Note that $\mathcal{C}(G(K))$ is trivial since G is of adjoint type. Then we obtain

$$\alpha(g) = g \text{ for all } g \in G(R).$$

3. Isomorphisms of simple Chevalley groups

In this section we assume that G (resp. G') is a simple adjoint Chevalley-Demazure group scheme with its root system Φ (resp. Φ') and fundamental root system Δ (resp. Δ') whose rank is greater than 1. Let R and R' stand for subrings of K containing \mathbb{Q} . The elementary subgroup of G'(R') is denoted by E'(R').

Lemma 3.1. If there exists a nontrivial homomorphism from $E(\mathbb{Q})$ to G'(K), then

$$\dim G(K) = \dim G'(K).$$

Proof. See [5, Cor.2.4].

Lemma 3.2. Let H be a connected algebraic group, then

- (i) dim $G(K) \le \dim H$ if there exists a nontrivial homomorphism from $E(\mathbb{Q})$ to H;
- (ii) the image of a nontrivial homomorphism from $E(\mathbb{Q})$ to H is Zariski dense in H if $\dim G(K)$ is equal to $\dim H$.

Proof. (i) Let $\alpha: E(\mathbb{Q}) \to H$ be a nontrivial homomorphism. Since $E(\mathbb{Q})$ is a simple group, $\overline{\alpha(E(\mathbb{Q}))}$ is a connected and non-solvable subgroup of H by Lemma 2.1. Therefore, if \Re is the solvable radical of $\overline{\alpha(E(\mathbb{Q}))}$, the quotient group $\overline{\alpha(E(\mathbb{Q}))}/\Re$ is a semisimple algebraic group of positive dimension. Let $\{H_i\}_{i=1}^m$ be the family of the simple components of $\overline{\alpha(E(\mathbb{Q}))}/\Re$ and let H_i^{ad} be an adjoint simple algebraic group of the same type as H_i for all $1 \leq i \leq m$. Then there exists an isogeny $\varepsilon: \overline{\alpha(E(\mathbb{Q}))}/\Re \to \prod_{i=1}^m H_i^{ad}$. Let π be the natural homomorphism from $\overline{\alpha(E(\mathbb{Q}))}$ to $\overline{\alpha(E(\mathbb{Q}))}/\Re$ and let p_j be the canonical projection of $\prod_{i=1}^m H_i^{ad}$ to the j-th factor H_j^{ad} for $1 \leq j \leq m$. Note that, since p_j $(1 \leq j \leq m)$, ε and π are homomorphisms which preserve the Zariski density, so does their composite $p_j \varepsilon \pi$. In particular we have for all $1 \leq j \leq m$

$$\overline{p_{j}\varepsilon\pi\alpha(E(\mathbb{Q}))} = p_{j}\varepsilon\pi(\overline{\alpha(E(\mathbb{Q}))}) = H_{j}^{ad},$$

which means that the composite $p_j \varepsilon \pi \alpha$ is a homomorphism from $E(\mathbb{Q})$ to H_j^{ad} with a Zariski dense image. It follows from Lemma 3.1 that for all $1 \leq j \leq m$

$$\dim G(K) = \dim H_j^{ad} = \dim H_j.$$

Hence

(3.2.1)
$$\dim G(K) \le \overline{\alpha(E(\mathbb{Q}))} / \Re \le \overline{\alpha(E(\mathbb{Q}))} \le \dim H.$$

(ii) Suppose G(K) and H have the same dimension, then it follows from (3.2.1) that for a nontrivial homomorphism $\alpha: E(\mathbb{Q}) \to H$ we have

$$\dim \overline{\alpha(E(\mathbb{Q}))} = \dim H.$$

Since H is connected, this implies by Lemma 2.1 that $\overline{\alpha(E(\mathbb{Q}))} = H$ as required. \square

Corollary 3.3. If E(R) and E'(R') are isomorphic to each other, then

$$\dim G(K) = \dim G'(K).$$

Proof. This comes directly from Lemma 3.2(i).

Proposition 3.4. Suppose α is an isomorphism from E(R) (resp. G(R)) to E'(R')(resp. G'(R')), then there exist an element $g \in G'(R')$ and an isomorphism of root systems $\gamma: \Phi \to \Phi'$ with $\gamma(\Delta) = \Delta'$ such that

(3.4.1) Int
$$g\alpha(u_a(q)) = u_{\gamma(a)}(q)$$
 for $a \in \Delta$ or $-\Delta$, $q \in \mathbb{Q}$.

In particular

(3.4.2)
$$Int \ g\alpha(E(\mathbb{Q})) = E'(\mathbb{Q}).$$

Proof. Since E(R) (resp. G(R)) and E'(R') (resp. G'(R')) are isomorphic to each other, G(K) and G'(K) have the same dimension by Corollary 3.3. Hence the restriction of α to $E(\mathbb{Q})$, which is a nontrivial homomorphism from $E(\mathbb{Q})$ to G'(K), has a Zariski dense image by Lemma 3.2. It follows from the Borel-Tits theorem [2, Th.A] that there exist a homomorphism of fields $\varphi: \mathbb{Q} \to K$ and an isogeny ε from $\varphi G(K)$, the group obtained from the base change through φ , to G'(K) such that

$$\alpha(x) = \varepsilon \varphi^{\circ}(x) \text{ for } x \in E(\mathbb{Q})$$

where φ° is the canonical homomorphism from G(K) to $\varphi G(K)$ induced by φ (see [2] for the notation). Note that there is no other possibility for φ but of the natural embedding, which implies that φ° is the identity map. This yields

(3.4.3)
$$\alpha(x) = \varepsilon(x) \text{ for } x \in E(\mathbb{Q}).$$

It follows from Lemma 2.2 that there exist an isomorphism of root systems $\gamma:\Phi\to$ Φ' with $\gamma(\Delta) = \Delta'$ and an element $g \in G'$ such that

$$(3.4.4) \varepsilon = Int \, g^{-1} \cdot \bar{\gamma}$$

where $\bar{\gamma}$ is the isogeny from G(K) to G'(K) related to γ . Hence the identity (3.4.1) comes from the definition of $\bar{\gamma}$ and the fact that

Int
$$g\alpha(u_a(q)) = Int g\varepsilon(u_a(q)) = \bar{\gamma}(u_a(q))$$
 for $a \in \Delta$ or $-\Delta$, $q \in \mathbb{Q}$.

We claim that g lies in G'(R'). This is because, for each root $a' \in \Phi'$, we have by (3.4.3) and (3.4.4)

$$Int g^{-1}(u_{a'}(1)) = Int g^{-1} \bar{\gamma}(\bar{\gamma}^{-1}(u_{a'}(1))) = \varepsilon(\bar{\gamma}^{-1}(u_{a'}(1)))$$
$$= \alpha(\bar{\gamma}^{-1}(u_{a'}(1))) = \alpha(u_{\gamma^{-1}(a')}(1)) \in G'(R'),$$

which implies by Lemma 2.5 that g^{-1} , hence also g, lies in G'(R').

Lemma 3.5. Suppose $\gamma: \Phi \to \Phi'$ is an isomorphism of root systems with $\gamma(\Delta) = \Delta'$. If $\alpha: E(R) \to E'(R')$ is an isomorphism such that

$$\alpha(u_a(q)) = u_{\gamma(a)}(q) \text{ for } a \in \Delta \text{ or } -\Delta, q \in \mathbb{Q},$$

then $\alpha(U(R)) = U'(R')$.

Proof. It follows from the definition of $\bar{\gamma}$ that $\bar{\gamma}(B) = B'$ and

(3.5.1)
$$\alpha(g) = \bar{\gamma}(g) \text{ for } g \in E(\mathbb{Q}).$$

Therefore

$$\alpha(B \cap E(\mathbb{Q})) = \bar{\gamma}(B \cap E(\mathbb{Q})) = B' \cap E(\mathbb{Q}).$$

Hence

$$\alpha(B \cap E(R)) \supseteq \alpha(B \cap E(\mathbb{Q})) = B' \cap E(\mathbb{Q}).$$

By taking the Zariski closures of the above groups, we obtain from Lemma 2.3(iii)

$$\overline{\alpha(B \cap E(R))} \supseteq \overline{B' \cap E'(\mathbb{Q})} = B'.$$

However, since $\overline{\alpha(B \cap E(R))}$ is a solvable group, we have

$$\overline{\alpha(B \cap E(R))} = B'.$$

In particular, we obtain that

(3.5.2)
$$\alpha(U(R)) \subseteq \alpha(B \cap E(R)) \subseteq B' \cap E'(R').$$

Let a be a positive root in Φ , we can choose an element $t \in T \cap E(\mathbb{Q})$ such that $a(t) \neq 1$ since $T \cap E(\mathbb{Q})$ is Zariski dense in T by Lemma 2.3(ii). Note that a(t) lies in \mathbb{Q} , we have

$$(3.5.3) u_a(r) = tu_a((a(t)-1)^{-1}r)t^{-1}u_a((a(t)-1)^{-1}r)^{-1} for r \in R.$$

This implies that

$$u_a(R) \subseteq [T \cap E(\mathbb{Q}), U(R)] \text{ for } a \in \Phi^+.$$

Thus U(R) is contained in $[T \cap E(\mathbb{Q}), U(R)]$. Hence we obtain by (3.5.1) and (3.5.2)

$$\begin{split} \alpha(U(R)) &\subseteq [\alpha(T \cap E(\mathbb{Q})), \ \alpha(U(R))] = [\tilde{\gamma}(T \cap E(\mathbb{Q})), \ \alpha(U(R))] \\ &= [T' \cap E'(\mathbb{Q}), \ \alpha(U(R))] \subseteq [T', \ B'] \cap E'(R') \\ &= U' \cap E'(R') = U'(R'). \end{split}$$

Replacing α by α^{-1} and following a similar argument as above, we obtain on the other hand that $\alpha(U(R)) \supseteq U'(R')$. Hence $\alpha(U(R))$ is equal to U'(R') as required.

Lemma 3.6. Let α and γ be as in Lemma 3.5, then

(3.6.1)
$$\alpha(U_a(R)) = U_{\gamma(a)}(R') \text{ for } a \in \Phi.$$

Proof. We first show (3.6.1) for the case where a is a positive root. Using Lemma 2.6 and Lemma 2.7, we have

$$C_{U(R)}(C_{U(R)}(U_a(\mathbb{Q}))) = U(R) \cap C_{U(K)}(C_{U(R)}(U_a(\mathbb{Q})))$$

= $U(R) \cap C_{U(K)}(C_{U(K)}(U_a(K))) = U(R) \cap \prod_{c \in I} U_c(K),$

where I is as in Lemma 2.6. Moreover, since γ is an isomorphism of root systems, we also have by Lemma 2.6 that

$$\mathcal{C}_{U'(R')}(\mathcal{C}_{U'(R')}(U_{\gamma(a)}(\mathbb{Q}))) = U'(R') \cap \prod_{c \in I} U_{\gamma(c)}(K).$$

Hence, applying Lemma 3.5, we obtain that

(3.6.2)
$$\alpha(U_a(R)) \subseteq \alpha(\mathcal{C}_{U(R)}(\mathcal{C}_{U(R)}(U_a(\mathbb{Q}))))$$
$$= \mathcal{C}_{U'(R')}(\mathcal{C}_{U'(R')}(\alpha(U_a(\mathbb{Q})))) = U'(R') \cap \prod_{c \in I} U_{\gamma(c)}(K).$$

Suppose $I = \{c_1, c_2, \dots, c_m\}$ where $c_1 = a$. If m = 1, then

$$\alpha(U_a(R)) \subseteq U'(R') \cap U_{\gamma(a)}(K) = U_{\gamma(a)}(R'),$$

from which follows (3.6.1) since α is an isomorphism. Suppose $m \geq 2$. Then $(\ker c_m)^{\circ} - \ker a$ is an open subset of $(\ker c_m)^{\circ}$. Note that, since $(\ker c_m)^{\circ}$ splits over \mathbb{Q} (cf. [1, Ch.III, Cor.8.7]), $(\ker c_m)^{\circ} \cap E(\mathbb{Q})$ is Zariski dense in $(\ker c_m)^{\circ}$ by [2, Cor.6.8]. Therefore

$$\{(\ker c_m)^{\circ} - \ker a\} \cap E(\mathbb{Q}) = \{(\ker c_m)^{\circ} \cap E(\mathbb{Q})\} \cap \{(\ker c_m)^{\circ} - \ker a\} \neq \emptyset.$$

Let $t \in \{(\ker c_m)^{\circ} - \ker a\} \cap E(\mathbb{Q})$. Then the coincidence of the restrictions of α and $\bar{\gamma}$ to $E(\mathbb{Q})$ implies that $\alpha(t)$ lies in T' since $\bar{\gamma}(T) = T'$ (see §2 for the notation). Moreover, for any root $b \in \Phi$, t lies in $\ker b$ if and only if $\alpha(t)$ lies in $\ker \gamma(b)$ because

$$u_{\gamma(b)}(b(t)) = \alpha(u_b(b(t))) = \alpha(tu_b(1)t^{-1})$$

= \alpha(t)u_{\gamma(b)}(1)\alpha(t)^{-1} = u_{\gamma(b)}(\gamma(b)(\alpha(t))).

Therefore, $\alpha(t)$ lies in $\{\ker \gamma(c_m) - \ker \gamma(a)\} \cap E'(\mathbb{Q})$. This yields that

$$[\alpha(t), \prod_{i=1}^{m} U_{\gamma(c_i)}(K)] \subseteq \prod_{i=1}^{m-1} U_{\gamma(c_i)}(K).$$

Note that $U_a(R) = [t, U_a(R)]$ by (3.5.3). We then have by (3.6.2)

$$\alpha(U_a(R)) = [\alpha(t), \alpha(U_a(R))]$$

$$\subseteq [\alpha(t), U'(R') \cap \prod_{i=1}^m U_{\gamma(c_i)}(K)] \subseteq U'(R') \cap \prod_{i=1}^{m-1} U_{\gamma(c_i)}(K).$$

This results in (3.6.1) if m = 2. When $m \ge 3$, (3.6.1) follows from the repetitions of analogous arguments as above.

We show now that (3.6.1) holds also for all -a, where $a \in \Phi^+$. Let $w_a = u_a(1)u_{-a}(-1)u_a(1)$ for $a \in \Phi^+$. Then we have $Int \, w_a(U_a(R)) = U_{-a}(R)$. Note that for all $a \in \Phi^+$

$$\alpha(w_a) = \tilde{\gamma}(w_a) = w_{\gamma(a)}.$$

This yields

$$\alpha(U_{-a}(R)) = \operatorname{Int} w_{\gamma(a)}(\alpha(U_a(R))) = \operatorname{Int} w_{\gamma(a)}(U_{\gamma(a)}(R')) = U_{-\gamma(a)}(R').$$

Hence (3.6.1) holds for all $a \in \Phi$.

Let α and γ be as in Lemma 3.5. Thanks to Lemma 3.6, we can assign a map $\varphi_a:R\to R'$ to each root $a\in\Phi$ satisfying

$$\alpha(u_a(r)) = u_{\gamma(a)}(\varphi_a(r)) \text{ for } r \in \Phi.$$

It is easily seen that φ_a is an isomorphism between the additive groups R^+ and R'^+ .

Lemma 3.7. For each root a in Φ , φ_a is an isomorphism of rings and

$$(3.7.1) \varphi_a = \varphi_b for b \in \Phi.$$

Proof. We first consider the case where a is a fundamental root. Since G is not of type A_1 , there exists a positive root b such that $a + b \in \Phi$. We have by the commutator formula [7, Exp.XXII,§5]

$$u_a(r)u_b(s)u_a(r)^{-1}u_b(s)^{-1} = u_{a+b}(n_{a,b}rs) \prod_{\substack{c \in \Phi^+ \\ h(c) > h(a+b)}} u_c(r_c) \ for \ r, s \in R,$$

where $n_{a,b}$ is an integer determined uniquely by a and b while $r_c \in R$, and h is the height function of Φ . Applying α on both sides, we obtain that

$$u_{\gamma(a)}(\varphi_a(r))u_{\gamma(b)}(\varphi_b(s))u_{\gamma(a)}(\varphi_a(r))^{-1}u_{\gamma(b)}(\varphi_b(s))^{-1} = u_{\gamma(a+b)}(n_{a,b}\varphi_{a+b}(rs))u_{\gamma(a)}(\varphi_b(s))^{-1} = u_{\gamma(a+b)}(n_{a,b}\varphi_{a+b}(rs))u_{\gamma(a)}(\varphi_b(s))u_{\gamma(a)}(\varphi_$$

where u is a product of elements of the form $u_{\gamma(c)}(p)$ for some positive root c such that h(c) > h(a+b) and for some $p \in R'$. On the other hand, it follows from the commutator formula that

$$u_{\gamma(a)}(\varphi_a(r))u_{\gamma(b)}(\varphi_b(s))u_{\gamma(a)}(\varphi_a(r))^{-1}u_{\gamma(b)}(\varphi_b(s))^{-1} = u_{\gamma(a+b)}(n_{a,b}\varphi_a(r)\varphi_b(s))u_1$$

where u_1 is also a product of elements of the form $u_{\gamma(c)}(p)$ for some $c \in \Phi^+$ with h(c) > h(a+b) and $p \in R'$. Note that, if $h' : \Phi' \to \mathbb{Z}$ is the height function of Φ' , then $h'(\gamma(c)) > h'(\gamma(a+b))$ for all the factors $u_{\gamma(c)}(p)$ of u (resp. u_1). Thus, comparing these two identities, we have

(3.7.2)
$$\varphi_{a+b}(rs) = \varphi_a(r)\varphi_b(s) \text{ for } r, s \in R.$$

Taking r and s to be 1 alternately, we obtain that $\varphi_{a+b} = \varphi_a = \varphi_b$. Note that for each fundamental root $c \in \Delta$ there exists a sequence of fundamental roots

$$a = a_1, a_2, \dots, a_m = c$$

such that $a_i + a_{i+1} \in \Phi$ for all $1 \le i \le m-1$. Hence we have, by following similar arguments as above, that

$$\varphi_a = \varphi_{a_2} = \dots = \varphi_{a_m} = \varphi_c.$$

Thus we may simply write φ in stead of φ_a for all $a \in \Delta$. It follows from (3.7.2) that $\varphi(rs) = \varphi(r)\varphi(s)$ for all $a \in \Delta$, which means that φ is a homomorphism of rings and therefore is an isomorphism of rings.

We show now that

$$(3.7.3) \varphi_a = \varphi for a \in \Phi^+.$$

We use induction on the height of the roots. Suppose a is not a fundamental root and $\varphi_c = \varphi$ for all $c \in \Phi^+$ such that h(c) < h(a). Since a can be written as the sum of two positive roots, say b and c, with h(b) < h(a) and h(c) < h(a), we have

$$(3.7.4) u_b(r)u_c(s)u_b(r)^{-1}u_c(s)^{-1} = u_a(n_{b,c}rs)v \text{ for } r, s \in R,$$

where $n_{b,c}$ is an integer which depends only on b and c, while v is a product of elements of the form $u_d(p)$ for some $p \in R$ and $d \in \Phi^+$ such that h(d) > h(a), or equivalently $h'(\gamma(d)) > h'(\gamma(a))$. Applying α on both sides of (3.7.4) and using the induction hypothesis, we obtain

$$u_{\gamma(b)}(\varphi(r))u_{\gamma(c)}(\varphi(s))u_{\gamma(b)}(\varphi(r))^{-1}u_{\gamma(c)}(\varphi(s))^{-1} = u_{\gamma(a)}(n_{b,c}\varphi_a(rs))v_1$$

where v_1 is a product of elements that involves only those positive roots of which the height is greater than $h'(\gamma(a))$. On the other hand, we have by the commutator formula that

$$u_{\gamma(b)}(\varphi(r))u_{\gamma(c)}(\varphi(s))u_{\gamma(b)}(\varphi(r))^{-1}u_{\gamma(c)}(\varphi(s))^{-1} = u_{\gamma(a)}(n_{b,c}\varphi(r)\varphi(s))v_2$$

where v_2 is also a product of elements involving only the positive roots of which the height is greater than $h'(\gamma(a))$. Comparing these two identities, we obtain immediately that

$$\varphi_a(rs) = \varphi(r)\varphi(s) \text{ for } r, s \in R.$$

This yields (3.7.3) when s is the identity element.

Finally we show that $\varphi_a = \varphi$ for all negative root a, from which follows (3.7.1). Suppose a is a negative root, then for all $r \in R$

$$u_a(r) = w_{-a}u_{-a}(-r)w_{-a}^{-1}.$$

Applying α on both sides of the identity, we have

$$u_{\gamma(a)}(\varphi_a(r)) = w_{-\gamma(a)}u_{\gamma(a)}(-\varphi(r))w_{-\gamma(a)}^{-1} = u_{\gamma(a)}(\varphi(r))$$

which implies that $\varphi_a = \varphi$. This completes our proof.

Corollary 3.8. Let α and γ be as in Lemma 3.5, then there exists an isomorphism of rings $\varphi: R \to R'$ such that $\alpha = \hat{\varphi}$.

Proof. This is a consequence of Lemma 3.6, Lemma 3.7 and the definition of $\hat{\varphi}$. \square

Theorem 3.9. If $\alpha: E(R) \to E'(R')$ is an isomorphism, then there exist an element $g \in G'(R')$, an isomorphism of root systems $\gamma: \Phi \to \Phi'$ with $\gamma(\Delta) = \Delta'$ and an isomorphism of rings $\varphi: R \to R'$ such that

(3.9.1)
$$\alpha = Int \, g \cdot \hat{\gamma} \cdot \hat{\varphi}.$$

Moreover, g, γ and φ are uniquely determined by α .

Proof. It follows from Proposition 3.4 that there exist an element $g \in G'(R')$ and an isomorphism of root systems $\gamma : \Phi \to \Phi'$ such that

Int
$$g^{-1} \alpha(u_a(q)) = u_{\gamma(a)}(q) = \hat{\gamma}(u_a(q))$$
 for $a \in \Delta$ or $-\Delta$, $q \in \mathbb{Q}$.

Since E'(R') is a normal subgroup of G'(R') (cf. [11]), $Int g^{-1}\alpha$ is an isomorphism from E(R) to E'(R'). Hence $\hat{\gamma}^{-1} \cdot Int g^{-1} \cdot \alpha$ is also an isomorphism from E(R) to E'(R'). Therefore by Corollary 3.8 there exists an isomorphism of rings $\varphi: R \to R'$ such that

$$\hat{\gamma}^{-1} \cdot Int \, q^{-1} \cdot \alpha = \hat{\varphi}$$

from which follows (3.9.1). Suppose there exist an element $g_1 \in G'(R')$, an isomorphism of root systems $\gamma_1 : \Phi \to \Phi'$ with $\gamma_1(\Delta) = \Delta'$ and an isomorphism of rings $\varphi_1 : R \to R'$ such that

$$\alpha = Int \, g \cdot \hat{\gamma} \cdot \hat{\varphi} = Int \, g_1 \cdot \hat{\gamma}_1 \cdot \hat{\varphi}_1,$$

then

(3.9.2)
$$Int g_1^{-1} g = \hat{\gamma}_1 \cdot \hat{\varphi}_1 \cdot \hat{\varphi}^{-1} \cdot \hat{\gamma}^{-1}.$$

Let U'(R') (resp. $U'^{-}(R')$) be the subgroup of G'(R') generated by $u_a(r)$ for all $a \in \Phi'$ (resp. $-a \in \Phi'$) and $r \in R'$. Since

$$\hat{\gamma}(U(R')) = \hat{\gamma}_1(U(R')) = U'(R')$$

and

$$\hat{\varphi}(U(R)) = \hat{\varphi}_1(U(R)) = U(R'),$$

we have by (3.9.2)

$$Int g_1^{-1}g(U'(R')) = U'(R').$$

Similarly we also have

$$Int g_1^{-1}g(U'^{-}(R')) = U'^{-}(R').$$

Therefore, if we denote by B'^- the opposite Borel subgroup of B', then

$$\begin{split} g_1^{-1}g &\in \mathcal{N}_{G'(R')}(U'(R')) \cap \mathcal{N}_{G'(R')}(U'^-(R')) \\ &\subseteq \mathcal{N}_{G'(R')}(\overline{U'(R')}) \cap \mathcal{N}_{G'(R')}(\overline{U'^-(R')}) = \mathcal{N}_{G'(R')}(U'(K)) \cap \mathcal{N}_{G'(R')}(U'^-(K)) \\ &= G'(R') \cap \mathcal{N}_{G'(K)}(U'(K)) \cap \mathcal{N}_{G'(K)}(U'^-(K)) \\ &= G'(R') \cap B' \cap B'^- = G'(R') \cap T'. \end{split}$$

This yields that, for each fundamental root $a \in \Delta'$,

$$Int g_1^{-1}g(u_a(1)) = u_a(a(g_1^{-1}g)).$$

On the other hand, we have

$$\hat{\gamma}_1 \hat{\varphi}_1 \hat{\varphi}^{-1} \hat{\gamma}^{-1}(u_a(1)) = u_{\gamma_1 \gamma^{-1}(a)}(1) \text{ for } a \in \Delta'.$$

Comparing these two identities, we obtain that $\gamma_1 = \gamma$ and $a(g_1^{-1}g) = 1$ for all $a \in \Delta'$, which means that

$$g_1^{-1}g \in \bigcap_{a \in \Delta'} \ker a = \mathcal{C}(G'(K)).$$

This implies immediately that $g_1 = g$ and that, by (3.9.2), $\varphi_1 = \varphi$. Hence the expression (3.9.1) of α is unique.

Proof of Theorem 1.1. (i) Suppose $\alpha: E(R) \to E'(R')$ is an isomorphism. it follows from Theorem 3.9 that α has an expression of the form $Int g \cdot \hat{\gamma} \cdot \hat{\varphi}$ where $g \in G'(R'), \ \gamma: \Phi \to \Phi'$ is an isomorphism of root systems with $\gamma(\Delta) = \Delta'$ and $\varphi: R \to R'$ is an isomorphism of rings. It is evident from the definitions that $\hat{\gamma}$ can be extended to the graph isomorphism $\tilde{\gamma}$ from G(R') to G'(R') and that $\hat{\varphi}$ can be extended to the ring isomorphism $\tilde{\varphi}$ from G(R) to G(R'). Hence α can be extended to an isomorphism $\tilde{\alpha}$ from G(R) to G'(R') in an obvious way. If $\bar{\alpha}: G(R) \to G'(R')$ is an isomorphism which is also an extension of α , then $\tilde{\alpha} \cdot \bar{\alpha}^{-1}$ is an automorphism

of G(R) which fixes each element of E(R) and, therefore, $\tilde{\alpha} = \bar{\alpha}$ by Proposition 2.9. Thus the extension of α to an isomorphism between G(R) and G'(R') is unique.

(ii) It follows from Proposition 3.4 that there exists an element $g \in G'(R')$ such that

$$\alpha(E(\mathbb{Q})) = Int g(E'(\mathbb{Q})).$$

Thus H is a normal subgroup of G(R) which contains $E(\mathbb{Q})$ if and only if $\alpha(H)$ is a normal subgroup of G'(R') containing $E'(\mathbb{Q})$. This implies that α induces a bijection between the set of normal subgroups of G(R) containing $E(\mathbb{Q})$, which is denoted by N, and the set of normal subgroups of G'(R') containing $E'(\mathbb{Q})$, which is denoted by N'. Note that by Proposition 2.8

$$E(R) = \bigcap_{H \in \mathcal{N}} H.$$

Hence we have

$$\alpha(E(R)) = \bigcap_{H \in N} \alpha(H) = \bigcap_{H' \in N'} H' = E'(R').$$

. D

Proof of Theorem 1.2. It follows from Theorem 1.1(ii) and Theorem 3.9 that the restriction $\alpha|_{E(R)}$ of α to E(R) is an isomorphism between E(R) and E'(R') which has an expression of the form $Int \, g \cdot \hat{\gamma} \cdot \hat{\varphi}$ where $g \in G'(R')$, $\hat{\gamma}$ is a graph isomorphism from E(R') to E'(R') related to an isomorphism of root systems $\gamma: \Phi \to \Phi'$ with $\gamma(\Delta) = \Delta'$ and $\hat{\varphi}$ is a ring isomorphism from E(R) to E(R') related to an isomorphism of rings $\varphi: R \to R'$. Thus $\alpha|_{E(R)}$ can be extended to an isomorphism from G(R) to G'(R') by extending $\hat{\gamma}$ (resp. $\hat{\varphi}$) to $\tilde{\gamma}$ (resp. $\tilde{\varphi}$). This extension of $\alpha|_{E(R)}$ has the form $Int \, g \cdot \tilde{\gamma} \cdot \tilde{\varphi}$ and is equal to α by Theorem 1.1(i). The uniqueness of the elements g, γ and φ comes directly from Theorem 3.9.

4. Automorphisms of G(R) and E(R)

In this section, we assume that G is an adjoint Chevalley-Demazure group scheme that has no simple component of type A_1 . Let $\{G_i\}_{i=1}^n$ be the simple components of G and Φ_i (resp. Δ_i) be the root (resp. fundamental root) system of G_i for all $1 \leq i \leq n$. Denote by $E_i(R)$ the elementary subgroup of $G_i(R)$ for all $1 \leq i \leq n$.

Proposition 4.1. Suppose H is either E(R) or G(R) and α is an automorphism of H. Then there exists a permutation σ of $\{1, 2, ..., n\}$ such that

- (i) $\alpha(E_i(R)) = E_{\sigma(i)}(R)$ for $1 \le i \le n$;
- (ii) $\alpha(G_i(R)) = G_{\sigma(i)}(R)$ if $\alpha \in Aut G(R)$.

Proof. We show first that $\alpha(E(\mathbb{Q}))$ is a Zariski dense subset of G(K). If n=1, we obtain by Lemma 2.1 and Lemma 3.2(i) that dim $G \leq \dim \overline{\alpha(E(\mathbb{Q}))}$. Since $\overline{\alpha(E(\mathbb{Q}))}$ is a subgroup of G(K), this implies that

$$\dim G = \dim \overline{\alpha(E(\mathbb{Q}))}.$$

Thus we have immediately the Zariski density of $\alpha(E(\mathbb{Q}))$ in G(K) since $\overline{\alpha(E(\mathbb{Q}))}$ is connected by Lemma 2.1. Suppose n > 1, then

$$(4.1.1) E_i(\mathbb{Q}) \subseteq \mathcal{C}_{E(R)}(E_j(\mathbb{Q})) \text{ for } 1 \le i \ne j \le n.$$

Hence

$$(4.1.2) \overline{\alpha(E_i(\mathbb{Q}))} \subseteq \mathcal{C}_{G(K)}(\overline{\alpha(E_j(\mathbb{Q}))}) \text{ for } 1 \leq i \neq j \leq n.$$

Therefore, since $E(\mathbb{Q})$ is the direct product of $E_i(\mathbb{Q})$ for all $1 \leq i \leq n$, we obtain

$$(4.1.3) \overline{\alpha(E(\mathbb{Q}))} = \overline{\alpha(E_1(\mathbb{Q}))} \cdot \overline{\alpha(E_2(\mathbb{Q}))} \dots \overline{\alpha(E_n(\mathbb{Q}))}.$$

Hence $\overline{\alpha(E(\mathbb{Q}))}$ is connected since each $\overline{\alpha(E_i(\mathbb{Q}))}$ is connected for $1 \leq i \leq n$ by Lemma 2.1. Let \Re be the solvable radical of $\overline{\alpha(E(\mathbb{Q}))}$ and let Y_i be the quotient group of $\Re \cdot \overline{\alpha(E_i(\mathbb{Q}))}$ modulo \Re for all $1 \leq i \leq n$, then

$$(4.1.4) \overline{\alpha(E(\mathbb{Q}))}/\Re = Y_1 \cdot Y_2 \dots Y_n.$$

It is obvious that Y_i is a semisimple normal subgroup of $\overline{\alpha(E(\mathbb{Q}))}/\Re$ for all $1 \leq i \leq n$. Moreover $[Y_i, Y_j]$ is trivial for all $1 \leq i \neq j \leq n$ since

$$[\overline{\alpha(E_i(\mathbb{Q}))}, \overline{\alpha(E_j(\mathbb{Q}))}] = \{1\}.$$

This implies that $|Y_i \cap Y_j| < \infty$ for all $1 \le i \ne j \le n$ since $\overline{\alpha(E(\mathbb{Q}))}/\Re$ is semisimple. Thus (4.1.4) yields

(4.1.5)
$$\dim \overline{\alpha(E(\mathbb{Q}))}/\Re = \sum_{i=1}^{n} \dim Y_{i}.$$

Let \Re_i be the solvable radical of $\overline{\alpha(E_i(\mathbb{Q}))}$ for $1 \leq i \leq n$. Note that

$$\Re_i = \Re \cap \overline{\alpha(E_i(\mathbb{O}))}; \ Y_i \cong \overline{\alpha(E_i(\mathbb{O}))} / \Re_i.$$

We obtain from (4.1.5) that

(4.1.6)
$$\dim \overline{\alpha(E(\mathbb{Q}))}/\Re = \sum_{i=1}^n \dim \overline{\alpha(E_i(\mathbb{Q}))}/\Re_i.$$

Let π_i $(1 \leq i \leq n)$ be the natural homomorphism from $\alpha(E_i(\mathbb{Q}))$ to its quotient group $\alpha(E_i(\mathbb{Q}))/\Re_i$. Note that the restriction of $\pi_i \cdot \alpha$ to $E_i(\mathbb{Q})$ is nontrivial. We obtain from Lemma 3.2(i)

dim
$$G_i \leq \dim \overline{\alpha(E_i(\mathbb{Q}))}/\Re_i$$
 for $1 \leq i \leq n$.

Thus we have from (4.1.6) that

$$\dim G \leq \sum_{i=1}^{n} \dim \overline{\alpha(E(\mathbb{Q}))} / \Re_i \leq \dim \overline{\alpha(E(\mathbb{Q}))} \leq \dim G.$$

This forces

$$\overline{\alpha(E(\mathbb{Q}))} = G(K).$$

We show now that for each $i \in \{1, 2, ..., n\}$, $\overline{\alpha(E_i(\mathbb{Q}))}$ is a simple component of G(K). From the above identity and (4.1.3) we have

$$G(K) = \overline{\alpha(E_1(\mathbb{Q}))} \cdot \overline{\alpha(E_2(\mathbb{Q}))} \dots \overline{\alpha(E_n(\mathbb{Q}))}.$$

Then (4.1.2) implies that $\overline{\alpha(E_i(\mathbb{Q}))}$ is a normal subgroup of G(K) for all $1 \leq i \leq n$ and

$$(4.1.7) \overline{\alpha(E_i(\mathbb{Q}))} \cap \overline{\alpha(E_j(\mathbb{Q}))} \subseteq \mathcal{C}(G(K)) \text{ for } 1 \leq i \neq j \leq n.$$

Note that $\overline{\alpha(E_i(\mathbb{Q}))}$ is of positive dimension for all $1 \leq i \leq n$. Hence each $\overline{\alpha(E_i(\mathbb{Q}))}$ contains at least one simple component of G(K) and, meanwhile, is the direct product of all those simple components which are contained in $\overline{\alpha(E_i(\mathbb{Q}))}$. Moreover, (4.1.7) implies that each simple component $G_k(K)$ $(1 \leq k \leq n)$ lies in at most one $\overline{\alpha(E_i(\mathbb{Q}))}$ for some $1 \leq i \leq n$. Since G(K) has exact n different simple components, each $\overline{\alpha(E_i(\mathbb{Q}))}$ is in fact a simple component of G(K) for all $1 \leq i \leq n$. In other words, there exists a permutation σ of $\{1, 2, \ldots, n\}$ such that for all $1 \leq i \leq n$

(4.1.8)
$$\overline{\alpha(E_i(\mathbb{Q}))} = G_{\sigma(i)}(K).$$

Now we come to show (ii). Note that for all $1 \leq i \neq j \leq n$, $[G_i(R), E_j(\mathbb{Q})]$ is trivial and we have

$$G_i(R) \subseteq \mathcal{C}_{G(K)}(\prod_{j \neq i}^n E_j(\mathbb{Q})) \ for \ 1 \leq i \leq n.$$

Hence

$$\alpha(G_i(R)) \subseteq \mathcal{C}_{G(K)}(\prod_{j \neq i}^n \alpha(E_j(\mathbb{Q}))) = \mathcal{C}_{G(K)}(\prod_{j \neq i}^n \overline{\alpha(E_j(\mathbb{Q}))})$$
$$= \mathcal{C}_{G(K)}(\prod_{j \neq i}^n G_{\sigma(j)}(K)) = G_{\sigma(i)}(K).$$

Consequently

$$\alpha(G_i(R)) \subseteq G(R) \cap G_{\sigma(i)}(K) = G_{\sigma(i)}(R) \text{ for } 1 \leq i \leq n.$$

By taking α^{-1} instead of α and by following a similar argument as above, we obtain on the other hand that $\alpha(G_{\sigma(i)}(R)) \subseteq G_i(R)$ for all $1 \leq i \leq n$. Hence $\alpha(G_i(R)) = G_{\sigma(i)}(R)$ for all $1 \leq i \leq n$.

Finally we show (i). If α is an automorphism of G(R), then (i) comes as a consequence of the above (ii) and Theorem 1.1(ii). Suppose α is an automorphism of E(R). Note that

$$E_i(R) \subseteq \mathcal{C}_{E(R)}(\prod_{j \neq i}^n E_j(\mathbb{Q})) \ for \ 1 \leq i \leq n.$$

We have, by using the identity (4.1.8),

$$\alpha(E_i(R)) \subseteq \mathcal{C}_{E(R)}(\prod_{j \neq i}^n \alpha(E_j(\mathbb{Q}))) = \mathcal{C}_{E(R)}(\prod_{j \neq i}^n \overline{\alpha(E_j(\mathbb{Q}))})$$
$$= E(R) \cap \mathcal{C}_{G(K)}(\prod_{j \neq i}^n G_{\sigma(j)}(K)) = E(R) \cap G_{\sigma(i)}(K) = E_{\sigma(i)}(R).$$

Since α is an automorphism, we obtain that $\alpha(E_i(R)) = E_{\sigma(i)}(R)$ for all $1 \le i \le n$ as required.

Theorem 4.2. Suppose α is an automorphism of E(R), then there exist an element $g \in G(R)$, an automorphism of root system $\gamma : \Phi \to \Phi$ which keeps fundamental

root system Δ invariant and an automorphism $\varphi_i \in Aut\,R$ for each $1 \leq i \leq n$ such that

(4.2.1)
$$\alpha = \operatorname{Int} g \cdot \hat{\gamma} \cdot \prod_{i=1}^{n} \hat{\varphi}_{i}.$$

Moreover, g, γ and φ_i $(1 \le i \le n)$ are uniquely determined by α .

Proof. It is known from Proposition 4.1 that for each $1 \leq i \leq n$, the restriction of α to $E_i(R)$ is an isomorphism from $E_i(R)$ to $E_{\sigma(i)}(R)$ for some permutation σ of $\{1,2,\ldots,n\}$. Hence by theorem 3.9 there exist an element $g_i \in G_{\sigma(i)}(R)$, an isomorphism of root system $\gamma_i: \Phi_i \to \Phi_{\sigma(i)}$ with $\gamma_i(\Delta_i) = \Delta_{\sigma(i)}$ and an automorphism $\varphi_i \in Aut R$ such that the restriction of α to $E_i(R)$ has an expression

(4.2.2)
$$\alpha|_{E_i(R)} = \operatorname{Int} g_i \cdot \hat{\gamma}_i \cdot \hat{\varphi}_i \text{ for } 1 \leq i \leq n.$$

Since $\Phi = \bigcup_{i=1}^n \Phi_i$, it is easily seen that the isomorphisms $\gamma_1, \gamma_2, \ldots, \gamma_n$, being pieced together, induce an automorphism of root system $\gamma : \Phi \to \Phi$ defined by

$$\gamma(a) = \gamma_i(a) \text{ for } a \in \Phi_i, 1 \leq i \leq n,$$

which keeps the fundamental root system Δ invariant. Moreover, we have by the definition of the graph automorphism that for all $1 \le i \le n$

$$\hat{\gamma}(x) = \hat{\gamma}_i(x) \text{ for } x \in E_i(R).$$

Suppose x is an arbitrary element of E(R), we may assume that $x = x_1 x_2 \dots x_n$, where $x_i \in E_i(R)$ for all $1 \le i \le n$. Then we have by (4.2.2)

(4.2.4)
$$\alpha(x) = \prod_{i=1}^{n} \operatorname{Int} g_i \hat{\gamma}_i \hat{\varphi}_i(x_i).$$

Note that, since G(R) is the direct product of $G_i(R)$ for all $1 \le i \le n$, we have for each $i \in \{1, 2, ..., n\}$

$$Int g_1 Int g_2 \dots Int g_n \hat{\gamma}_i \hat{\varphi}_i(x_i) = Int g_i \hat{\gamma}_i \hat{\varphi}_i(x_i).$$

Let $g = \prod_{i=1}^{n} g_n$, then the identities (4.2.3) and (4.2.4) yield

$$\alpha(x) = \operatorname{Int} g\hat{\gamma}(\prod_{i=1}^{n} \hat{\varphi}_{i}(x_{i})) = \operatorname{Int} g\hat{\gamma}(\prod_{i=1}^{n} \hat{\varphi}_{i})(x) \text{ for } x \in E(R),$$

from which follows immediately (4.2.1).

Proof of Theorem 1.4. (i) It follows from Theorem 4.2 that every automorphism α of E(R) has an expression of the form $Int g \cdot \hat{\gamma} \cdot \prod_{i=1}^n \hat{\varphi}_i$ for some $g \in G(R), \gamma \in Aut \Phi$ with $\gamma(\Delta) = \Delta$ and $\varphi_i \in Aut R$ for $1 \leq i \leq n$. Since $\hat{\gamma}$ and $\prod_{i=1}^n \hat{\varphi}_i$ have the extensions $\tilde{\gamma}$ and $\prod_{i=1}^n \tilde{\varphi}_i$ in Aut G(R) respectively, α can be extended to an automorphisms of G(R) in an obvious way.

Suppose $\tilde{\alpha}$ and $\check{\alpha}$ are automorphisms of G(R) and the both are extensions of α , then $\tilde{\alpha} \cdot \check{\alpha}^{-1}$ is an automorphism of G(R) which fixes every element of E(R). Hence $\tilde{\alpha} = \check{\alpha}$ by Proposition 2.9. Thus the extension of α is unique.

(ii) Suppose α is an automorphism of G(R), then by Proposition 4.1(i) there exists a permutation σ of $\{1, 2, ..., n\}$ such that $\alpha(E_i(R)) = E_{\sigma(i)}(R)$. Hence

$$\alpha(E(R)) = \prod_{i=1}^{n} \alpha(E_i(R)) = \prod_{i=1}^{n} E_{\sigma(i)}(R) = E(R).$$

Proof of Theorem 1.5. Since the restriction of α to E(R) induces an automorphism of E(R) by Theorem 1.4(ii), it follows from Theorem 4.2 that there exist an element $g \in G(R)$, a graph automorphism $\hat{\gamma} \in Aut E(R)$ related to an automorphism of root system $\gamma: \Phi \to \Phi$ with $\gamma(\Delta) = \Delta$ and a ring automorphism $\hat{\varphi}_i$ of E(R) related to an automorphism $\varphi_i \in Aut R$ for each $1 \le i \le n$ such that

$$\alpha|_{E(R)} = Int \, g \cdot \hat{\gamma} \cdot \prod_{i=1}^{n} \hat{\varphi}_{i}.$$

It is easily seen from the definitions that the graph automorphism $\tilde{\gamma}$ of G(R) is an extension of $\hat{\gamma}$ while the ring automorphism $\prod_{i=1}^{n} \tilde{\varphi}_{i}$ is an extension of $\prod_{i=1}^{n} \hat{\varphi}_{i}$, hence the automorphism $Int g \cdot \tilde{\gamma} \cdot \prod_{i=1}^n \tilde{\varphi}_i$ is an extension of $\alpha|_{E(R)}$. Since the extension of $\alpha|_{E(R)}$ is unique by Theorem 1.4(i), we obtain immediately the expression (1.5.1). Moreover, we have the uniqueness of g,γ and φ_i (1 $\leq i \leq n$) because, by Theorem 4.2 and Theorem 1.4(ii), all of them are uniquely determined by the restriction $\alpha|_{E(R)}$ which is, as a consequence of Theorem 1.4(i), uniquely determined by α . This completes our proof.

References

- A. Borel, Linear algebraic groups, Springer-Verlag, New York, 1991, MR 92e:20001.
- A. Borel, J. Tits, Homomorphismes "abstraits" de groupes algébrique simples, Ann. of Math. 97 (1973), 499-571, MR 47:5134.
- N. Bourbaki, Groupes et algèbres de Lie, Hermann, Paris, 1972, MR 58:28083a.
- R. Carter, Y. Chen, Automorphisms of affine Kac-Moody groups and related Chevalley groups over rings, J. of Algebra 155 (1993), 44–94, MR 94e:17032.
- Y. Chen, Isomorphic Chevalley groups over integral domains, Rend. Sem. Mat. Univ. Padova **92** (1994), 231–237.
- C. Chevalley, Séminaire sur la classification des groupes de Lie algébriques, Inst. H.
- Poincare, Paris, 1956/58, MR 21:5696.
- M. Demazure, A. Grothendieck, Schémas en groupes III, Springer-Verlag, New York, 1970. J. Humphreys, On the automorphisms of infinite Chevalley groups, Canad. J. Math. 21 (1969), 908-911, MR 40:1397.
- R. Steinberg, Automorphisms of finite linear groups, Canad. J. Math. 12 (1960), 606–615, MR **22:**12165.
- R. Steinberg, Lectures on Chevalley groups, 1967.
- G. Taddei, Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau, Contemp. Math. 55 (1986), 693-710, MR 88a:20054.

Department of Mathematics, University of Turin, Via Carlo Alberto 10, 10123 TORINO, ITALY

 $E ext{-}mail\ address: yuchen@dm.unito.it}$