PRESENTATION AND CENTRAL EXTENSIONS OF MAPPING CLASS GROUPS

SYLVAIN GERVAIS

ABSTRACT. We give a presentation of the mapping class group \mathcal{M} of a (possibly bounded) surface, considering either all twists or just non-separating twists as generators. We also study certain central extensions of \mathcal{M} . One of them plays a key role in studying TQFT functors, namely the mapping class group of a p_1 -structure surface. We give a presentation of this extension.

Introduction

All surfaces that we shall consider are connected and oriented. We shall denote by $\Sigma_{g,r}$ a surface with genus g and r boundary components, or simply Σ when there is no ambiguity. We shall denote its mapping class group by $\mathcal{M}_{g,r}$ (or \mathcal{M}_{Σ}). Recall that \mathcal{M}_{Σ} is the group of diffeomorphisms of Σ which leave fixed its boundary, modulo those which are isotopic to the identity. The aim of this article is to find a presentation of $\mathcal{M}_{g,r}$ with very simple geometrical relations and to describe more precisely this presentation as central extensions.

These groups are generated by Dehn twists ([D]). Lickorish ([L1, L2]) proved that 3g-1 of these twists generate $\mathcal{M}_{g,0}$. Humphries ([Hu]) reduced this number to 2g+1 and showed that it was minimal.

Using the presentation of $\mathcal{M}_{g,0}$ found by Hatcher and Thurston in [H-T], Wajnryb gave in [W] an explicit presentation of $\mathcal{M}_{g,1}$ and $\mathcal{M}_{g,0}$ with Humphries generators. We shall also use their result to obtain a presentation of $\mathcal{M}_{g,r}$ with the set of all Dehn twists for generators.

Four types of relations will appear in this presentation: "braids", "lanterns", "stars" and "chains".

The braids. It is well known that if α is a simple closed curve (s.c.c.) in Σ and h is a diffeomorphism of Σ , then $\tau_{h(\alpha)} = h\tau_{\alpha}h^{-1}$ (where τ_{α} represents the twist along α). More specifically, if h is a twist τ_{β} , one has the relation (called a braid relation)

(T)
$$\tau_{\gamma} = \tau_{\beta} \tau_{\alpha} \tau_{\beta}^{-1},$$

where $\gamma = \tau_{\beta}(\alpha)$. We will denote this relation by T_n when $|\alpha \cap \beta| = n$ and by T_{2_0} when $|\alpha \cap \beta| = 2$ and the algebraic intersection is zero (denoted $|\alpha \cap \beta| = 2_0$).

Remark. If G is a multiplicative group, \overline{x} will denote x^{-1} and y(x) will denote the conjugate of x by y (i.e. $y x \overline{y}$).

Received by the editors May 25, 1994 and, in revised form, April 5, 1995.

¹⁹⁹¹ Mathematics Subject Classification. Primary 57N05, 20F05; Secondary 20F34, 20F38, 57M05.

Key words and phrases. Mapping class groups, p₁-structure, central extensions, presentation.

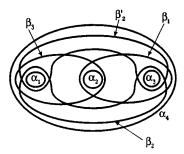


FIGURE 1

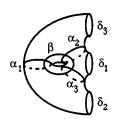


Figure 2

The lanterns. These relations were discovered by Johnson ([J]). Let us consider a subsurface of $\Sigma_{g,r}$ which is homeomorphic to a sphere with four holes. Let α_1 , α_2 , α_3 and α_4 be the boundary components and β_1 , β_2 and β_3 curves as shown in Figure 1. The relation (called a lantern relation) is:

Remark. By a homology calculation, one can check that if two curves α and β in a surface Σ are such that $|\alpha \cap \beta| = 2_0$, then a neighborhood of $\alpha \cup \beta$ in Σ is homeomorphic to a sphere with four holes. So, a lantern (L) is completely determined by the curves β_1 and β_3 . The curves α_i are the four boundary components of a neighborhood of $\beta_1 \cup \beta_3$. There are two choices for β_2 , but only one gives the equality (L) (the other choice, the curve β_2' shown in Figure 1, gives the equality $\tau_{\alpha_1} \tau_{\alpha_2} \tau_{\alpha_3} \tau_{\alpha_4} = \tau_{\beta_1} \tau_{\beta_2'} \tau_{\beta_3}$).

The stars. We consider a subsurface of $\Sigma_{g,r}$ which is homeomorphic to a surface of genus one with three boundary components. The relation is

$$(E) \qquad (\tau_{\alpha_1}\tau_{\alpha_2}\tau_{\alpha_3}\tau_{\beta})^3 = \tau_{\delta_1}\tau_{\delta_2}\tau_{\delta_3},$$

where the curves are described in Figure 2.

Remark. The star (E) is uniquely determined by four curves $\alpha_1, \alpha_2, \alpha_3$ and β such that $|\alpha_i \cap \alpha_j| = 0$ if $i \neq j$ and $|\beta \cap \alpha_i| = 1$ for all $i \in \{1, 2, 3\}$ (a neighborhood of these curves in Σ is homeomorphic to $\Sigma_{1,3}$).

The chains. These are just a particular case of the stars: we suppose that the curve δ_1 bounds a disc in Σ . Then, we have $\tau_{\delta_1} = 1$, $\tau_{\alpha_2} = \tau_{\alpha_3}$, and the relation (E) becomes:

$$(C) \qquad (\tau_{\alpha_1} \tau_{\beta} \tau_{\alpha_2})^4 = \tau_{\delta_2} \tau_{\delta_3}.$$

Remark. Using relations T_0 and T_1 , it is easy to show that $(\tau_{\alpha_1}\tau_{\alpha_2}\tau_{\alpha_2}\tau_{\beta})^3 = (\tau_{\alpha_1}\tau_{\beta}\tau_{\alpha_2})^4$. This kind of calculation will be often done in this article, and the reader can refer to them. Note that a chain is determined by the curves α_1 , β and α_2 , with $|\alpha_i \cap \beta| = 1$ and $\alpha_1 \cap \alpha_2 = \emptyset$.

Theorem A. For any oriented surface Σ of genus $g \ge 0$, with r boundary components $(r \ge 0)$, \mathcal{M}_{Σ} has the following presentation:

generators: $\{\tau_{\alpha} / \alpha \text{ s.c.c. in } \Sigma\}$ (if α bounds a disc in Σ , then $\tau_{\alpha} = 1$).

<u>relations:</u> (I) All the braids T_0 , T_1 and T_{2_0} .

(II) All the chains.

(III) All the lanterns.

If $g \ge 1$, one can replace (II) and (III) by (IV):

(IV) All the stars.

Remark. If g = 0, only the relations T_0 , T_{2_0} and (III) remain.

Harer proved in [H] that when $g \ge 3$, $\mathcal{M}_{g,r}$ is generated by the twists along the non-separating curves for any r. We shall see that this result is still true when g = 2, but not when g = 1. We shall also give a presentation of $\mathcal{M}_{g,r}$ $(g \ge 2)$ with these generators.

Notation. If the curves involved in a lantern L (resp. a star E or a chain C) are all non-separating curves, we will denote L by L_0 (resp. E by E_0 and C by C_0).

Theorem B. For any orientable surface Σ of genus $g \ge 2$, with r boundary components $(r \ge 0)$, \mathcal{M}_{Σ} has the following presentation:

generators: $\{\tau_{\alpha} / \alpha \text{ non-separating s.c.c. in } \Sigma \}$.

<u>relations:</u> (I)' All the braids T_0 and T_1 (with non-separating curves).

(II)' One chain C_0 .

(III)' One lantern L_0 .

When $g \ge 3$, one can replace (II)' or (III)' by a star E_0 .

Remark. In the case of genus two, there are only the relations (I)' and (II)' (the lanterns L_0 and the stars E_0 exist only if $g \ge 3$).

Let $S_{g,r}$ be the group generated by $\{a_{\alpha} / \alpha \text{ non-separating s.c.c. in } \Sigma\}$ and defined by the relations T_0 and T_1 between these curves. Theorem B shows that $\mathcal{M}_{g,r}$ is a quotient of $S_{g,r}$ when $g \geq 2$. We shall prove the following more precise result.

Theorem C. For any orientable surface Σ , there exists a central extension

$$(*) 0 \longrightarrow \mathbb{Z} \longrightarrow \mathcal{T}_{\Sigma} \longrightarrow \mathcal{M}_{\Sigma} \longrightarrow 1$$

satisfying the following properties:

- 1) $\Sigma \mapsto \mathcal{M}_{\Sigma}$, $\Sigma \mapsto S_{\Sigma}$ and $\Sigma \mapsto \mathcal{T}_{\Sigma}$ are three functors from the category of surfaces (where morphisms are embeddings) to the category of groups, and the extension (*) is natural. When $g \geq 3$ (g denotes the genus of Σ), this extension is the universal central extension of \mathcal{M}_{Σ} .
 - Furthermore, there exist two natural morphisms $\varphi: S_{\Sigma} \to \mathcal{T}_{\Sigma}$ and $\psi: S_{\Sigma} \to \mathbb{Z}$ such that:
- 2) if $g \ge 3$, φ and ψ induce an isomorphism from S_{Σ} to $\mathcal{T}_{\Sigma} \times \mathbb{Z}$.
- 3) if g=2, φ is an isomorphism from S_{Σ} to \mathcal{T}_{Σ} .

1. Preliminary results

In this section, Σ is a surface of genus $g \ge 0$ with r boundary components ($r \ge 0$). Let R_{Σ} (resp. S_{Σ}) be the group generated by $\{a_{\alpha} / \alpha \text{ a s.c.c. in } \Sigma\}$ (resp. $\{a_{\alpha} / \alpha \text{ a non-separating s.c.c. in } \Sigma\}$) and defined by the relations T_0 , T_1 and T_{2_0} (resp. the relations T_0 and T_1 between non-separating curves). The goal of this section will be to prove that all the braid relations are satisfied in R and S and to find an equality between the lanterns, the stars and the chains.

We start by proving two lemmas that will be used often.

Lemma 1.1. (i) Let α and β be two disjoint s.c.c. (resp. non-separating s.c.c.) in Σ . Then, a_{α} commutes with a_{β} in R (resp. S).

(ii) If α and β are two s.c.c. in Σ such that $|\alpha \cap \beta| = 1$, then $a_{\alpha} a_{\beta} a_{\alpha} = a_{\beta} a_{\alpha} a_{\beta}$ in R and S.

Notation. In the following, we will refer to these relations respectively by (0) and (1).

Proof. (i) is exactly the relation T_0 because $\tau_{\beta}(\alpha) = \alpha$. (ii) is a consequence of T_1 and the fact that $\tau_{\beta}(\alpha) = \tau_{\alpha}^{-1}(\beta)$.

Lemma 1.2. Let $(\alpha_1, \alpha_2, \alpha_3, \beta)$ be a star in Σ and set

$$X_1 = a_{\alpha_1} a_{\alpha_2}, \qquad X_2 = a_{\beta} X_1 a_{\beta}, \qquad X_3 = a_{\alpha_3} X_2 a_{\alpha_3}.$$

Then, one has in R and S:

(i)
$$X_i X_j = X_j X_i$$
,
(ii) $(a_{\alpha_1} a_{\alpha_2} a_{\alpha_3} a_{\beta})^3 = X_1 X_2 X_3$,
(iii) $(a_{\alpha_1} a_{\beta} a_{\alpha_2})^4 = X_1^2 X_2^2$.

Proof. (i) Using (1), we obtain

(2)
$$a_{\alpha_1} X_2 = a_{\alpha_1} a_{\beta} a_{\alpha_1} a_{\alpha_2} a_{\beta} = a_{\beta} a_{\alpha_1} a_{\beta} a_{\alpha_2} a_{\beta} = a_{\beta} a_{\alpha_1} a_{\alpha_2} a_{\beta} a_{\alpha_2} = X_2 a_{\alpha_2}$$

and in the same way, $a_{\alpha_2}X_2 = X_2 a_{\alpha_1}$. From this, we conclude that $X_1 X_2 = X_2 X_1$ and, since a_{α_3} commutes with a_{α_1} and a_{α_2} (by (0)), $X_1 X_3 = X_3 X_1$.

One has by (0) and (1)

$$\begin{array}{rcl} a_{\beta} \, X_3 & = & a_{\beta} \, a_{\alpha_3} \, a_{\beta} \, a_{\alpha_1} \, a_{\alpha_2} \, a_{\beta} \, a_{\alpha_3} = a_{\alpha_3} \, a_{\beta} \, a_{\alpha_3} \, a_{\alpha_1} \, a_{\alpha_2} \, a_{\beta} \, a_{\alpha_3} \\ & = & a_{\alpha_3} \, a_{\beta} \, a_{\alpha_1} \, a_{\alpha_2} \, a_{\beta} \, a_{\alpha_3} \, a_{\beta} = X_3 \, a_{\beta} \end{array}$$

so X_2 commutes with X_3 .

1.1. The braids.

Theorem 1.3. For any simple closed curves α and β in Σ , one has in R_{Σ} $a_{\gamma} = a_{\beta} a_{\alpha} \overline{a_{\beta}}$ where $\gamma = \tau_{\beta}(\alpha)$.

If α and β do not separate, this relation is also true in S_{Σ} .

Corollary 1.4. Let h be a diffeomorphism of Σ and suppose that it is decomposed into a product of Dehn twists; denote by m the corresponding word in R_{Σ} . Let α be a s.c.c. in Σ and $\gamma = h(\alpha)$. Then, in R_{Σ} one has the relation $a_{\gamma} = m a_{\alpha} \overline{m}$.

Furthermore, if the twists involved in the decomposition of h are all twists along non-separating curves and if α does not separate, then the relation is also true in S_{Σ} .

Proof. Write $h = \tau_{\beta_n}^{\varepsilon_n} \dots \tau_{\beta_1}^{\varepsilon_1}$ ($\varepsilon_i = \pm 1$); then, $m = a_{\beta_n}^{\varepsilon_n} \dots a_{\beta_1}^{\varepsilon_1}$ in R (or S). Denote, for $k \in \{0, \dots, n\}$, $\gamma_k = \tau_{\beta_k}^{\varepsilon_k} \dots \tau_{\beta_1}^{\varepsilon_1}(\alpha)$ ($\gamma_0 = \alpha$ and $\gamma_n = \gamma$). Then, Theorem 1.3 implies

$$a_{\gamma_k} = a_{\beta_k}^{\varepsilon_k} \, a_{\gamma_{k-1}} \, a_{\beta_k}^{-\varepsilon_k} \,,$$

thus

$$a_{\gamma} = a_{\gamma_n} = a_{\beta_n}^{\varepsilon_n} a_{\gamma_{n-1}} a_{\beta_n}^{-\varepsilon_n} = \ldots = m a_{\alpha} \overline{m}.$$

Before we prove Theorem 1.3, let us show that the relations T_{2_0} are true in S:

Lemma 1.5. Let α and β be two non-separating curves in Σ such that $|\alpha \cap \beta| = 2_0$. Then, if $\gamma = \tau_{\beta}(\alpha)$, one has in S

$$a_{\gamma} = a_{\beta} \, a_{\alpha} \, \overline{a_{\beta}} \,.$$

Proof. A neighborhood of $\alpha \cup \beta$ in Σ is a lantern where α and β are respectively identified with the curves β_1 and β_2 of the Figure 1. Since these curves do not separate, there exists a curve δ such that

$$|\delta \cap \alpha| = |\delta \cap \beta| = |\delta \cap \alpha_1| = |\delta \cap \alpha_2| = 1$$
.

(We might have to replace $\{\alpha_1, \alpha_2\}$ by $\{\alpha_3, \alpha_4\}$.)

It can be seen that

$$\tau_\delta \tau_{\alpha_1} \tau_{\alpha_2} \tau_\delta(\beta) = \alpha \quad \text{and} \quad \tau_\delta^{-1} \tau_{\alpha_1}^{-1} \tau_{\alpha_2}^{-1} \tau_\delta^{-1}(\beta) = \gamma.$$

And since $|\delta \cap \beta| = |\alpha_2 \cap \tau_\delta(\beta)| = \dots = |\delta \cap \tau_{\alpha_1}^{-1} \tau_{\alpha_2}^{-1} \tau_\delta^{-1}(\beta)| = 1$, the relation T_1 implies

$$X a_{\beta} \, \overline{X} = a_{\alpha} \quad \text{and} \quad \overline{X} a_{\beta} \, X = a_{\gamma}, \quad \text{where} \quad X = a_{\delta} \, a_{\alpha_{1}} \, a_{\alpha_{2}} \, a_{\delta}$$

and so $a_{\beta} a_{\alpha} \overline{a_{\beta}} = a_{\beta} X a_{\beta} \overline{X} \overline{a_{\beta}}$.

Since $(\alpha_1, \alpha_2, \beta, \delta)$ defines a star in Σ , Lemma 1.2 shows that X commutes with $a_{\beta} X a_{\beta}$. Thus, we obtain:

$$a_{\beta} a_{\alpha} \overline{a_{\beta}} = \overline{X} a_{\beta} X a_{\beta} \overline{a_{\beta}} = a_{\gamma}. \quad \Box$$

Proof of Theorem 1.3. Suppose inductively that the braid relations T_k are satisfied in R and S for $k \le n-1$, let α and β be two s.c.c. in Σ such that $|\alpha \cap \beta| = n$, and set $\gamma = \tau_{\beta}(\alpha)$ (for S, we suppose also that α and β do not separate). Let us fix an orientation on α and β .

First case. There exist two points A and B in $\alpha \cap \beta$ which are consecutive on α and such that the signs of the intersection of α and β at these points are the same.

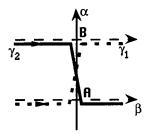


FIGURE 3

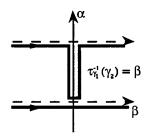


Figure 4

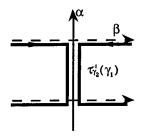


Figure 5

Let us consider the curves γ_1 and γ_2 shown on Figure 3. As shown on Figure 4, one has $\tau_{\gamma_1}^{-1}(\gamma_2) = \beta$ and so, using T_1 and (1),

$$(3) a_{\beta} = \overline{a_{\gamma_1}} \, a_{\gamma_2} \, a_{\gamma_1} = \overline{a_{\gamma_1}} \, \overline{a_{\gamma_1}} \, a_{\gamma_2} \, a_{\gamma_1} = \overline{a_{\gamma_1}} \, \overline{a_{\gamma_1}} \, a_{\gamma_2} \, a_{\gamma_1} \, a_{\gamma_2}.$$

Let us denote by δ_1 , δ_2 , δ_3 and δ_4 the curves

$$\delta_1 = \tau_{\gamma_2}(\alpha) \;, \quad \delta_2 = \tau_{\gamma_1}(\delta_1) \;, \quad \delta_3 = \tau_{\gamma_2}(\delta_2) \;, \quad \delta_4 = \tau_{\gamma_1}^{-1}(\delta_3) \,.$$

Then, we have $\gamma = \tau_{\gamma_1}^{-1}(\delta_4)$. We will successively show that $|\gamma_2 \cap \alpha|, |\gamma_1 \cap \delta_1|,$ $|\gamma_2 \cap \delta_2|, |\gamma_1 \cap \delta_3|$ and $|\gamma_1 \cap \delta_4|$ are smaller than n-1. Then, by the induction hypothesis we obtain:

$$a_{\gamma} = \overline{a_{\gamma_1}}(a_{\delta_4}) = \overline{a_{\gamma_1}} \, \overline{a_{\gamma_1}}(a_{\delta_3}) = \ldots = \overline{a_{\gamma_1}} \, \overline{a_{\gamma_1}} \, a_{\gamma_2} \, a_{\gamma_1} \, a_{\gamma_2}(a_{\alpha}),$$

that is to say, $a_{\gamma} = a_{\beta} a_{\alpha} \overline{a_{\beta}}$ using (3).

- By definition, $|\gamma_2 \cap \alpha| < n$.
- $|\gamma_1 \cap \delta_1| = |\gamma_1 \cap \tau_{\gamma_2}(\alpha)| = |\tau_{\gamma_2}^{-1}(\gamma_1) \cap \alpha| = n-2$ as shown on Figure 5. $|\gamma_2 \cap \delta_2| = |\gamma_2 \cap \tau_{\gamma_1} \tau_{\gamma_2}(\alpha)| = |\tau_{\gamma_2}^{-1} \tau_{\gamma_1}^{-1}(\gamma_2) \cap \alpha| = |\tau_{\gamma_2}^{-1} \tau_{\gamma_2}(\gamma_1) \cap \alpha| = |\gamma_1 \cap \alpha| < n$.

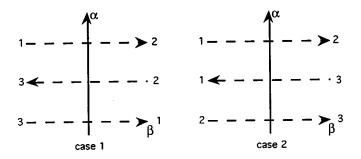


Figure 6

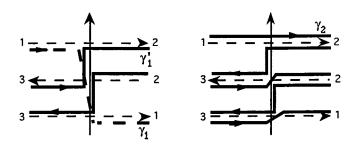


FIGURE 7

- $|\gamma_1 \cap \delta_3| = |\gamma_1 \cap \tau_{\gamma_2} \tau_{\gamma_1} \tau_{\gamma_2}(\alpha)| = |\tau_{\gamma_2}^{-1} \tau_{\gamma_1}^{-1} \tau_{\gamma_2}(\gamma_1) \cap \alpha| = |\tau_{\gamma_2}^{-1} \tau_{\gamma_1}^{-1} \tau_{\gamma_1}(\gamma_2) \cap \alpha| = |\tau_{\gamma_2}^{-1} \tau_{\gamma_1}^{-1} \tau_{\gamma_2}(\gamma_2) \cap \alpha| = |\tau_{\gamma_2}^{-1} \tau_{\gamma_1}^{-1} \tau_{\gamma_2}(\gamma_2) \cap \alpha| = |\tau_{\gamma_2}^{-1} \tau_{\gamma_2}^{-1} \tau_{\gamma_2}(\gamma_2) \cap \alpha| = |\tau_{\gamma_2}^{-1} \tau_{\gamma_2}(\gamma_2) \cap \alpha| = |\tau_{$ $|\gamma_2 \cap \alpha| < n$.
 - $|\gamma_1 \cap \delta_4| = |\tau_{\gamma_1}(\gamma_1) \cap \tau_{\gamma_1}(\delta_4)| = |\gamma_1 \cap \delta_3| < n$.

Remark. Note that the curves γ_1 and γ_2 do not separate. So, the proof above remains valid for S.

Second case. There are not two points in $\alpha \cap \beta$ consecutive on α and with the same intersection sign.

If n is equal to two, then T_n is the relation T_{2_0} (which is true in S by Lemma 1.5); so, suppose that $n \ge 3$. As we can see in Figure 6 there are only two different ways to join the strands in order to obtain the simple closed curve β . Denote by n_k the number of points in $\alpha \cap \beta$ which are on the arc k-k of β (k=1,2 or 3).

Let us consider the first case. If γ_1 and γ_2 are the curves shown in Figure 7, one has $|\gamma_1 \cap \beta| = 2_0$ and $\tau_{\beta}(\gamma_1) = \gamma_2$. So, the relation T_{2_0} yields

$$a_{\gamma_2} = a_{\beta} \, a_{\gamma_1} \, \overline{a_{\beta}}, \quad \text{ i.e., } \quad a_{\beta} = \overline{a_{\gamma_2}} \, a_{\beta} \, a_{\gamma_1} \, .$$

Now, if $\delta_1 = \tau_{\gamma_1}(\alpha)$ and $\delta_2 = \tau_{\beta}(\delta_1)$, then $\gamma = \tau_{\gamma_2}^{-1}(\delta_2)$. Since $|\gamma_1 \cap \alpha| = n_1 + 1 \le n - 2 < n$, one has by the induction hypothesis that $a_{\delta_1} = a_{\gamma_1}(a_{\alpha})$. We have (Figure 8 shows $\tau_{\gamma_1}^{-1}(\beta)$)

$$|\beta \cap \delta_1| = |\beta \cap \tau_{\gamma_1}(\alpha)| = |\tau_{\gamma_1}^{-1}(\beta) \cap \alpha| = n - 2 < n$$

so $a_{\delta_2} = a_{\beta}(a_{\delta_1}) = a_{\beta} a_{\gamma_1}(a_{\alpha})$. Finally,

$$|\gamma_2 \cap \delta_2| = |\gamma_2 \cap \tau_\beta \tau_{\gamma_1}(\alpha)| = |\tau_\beta^{-1}(\gamma_2) \cap \tau_{\gamma_1}(\alpha)| = |\gamma_1 \cap \tau_{\gamma_1}(\alpha)| = |\gamma_1 \cap \alpha| = n_1 + 1 < n$$

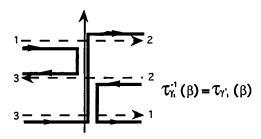


Figure 8

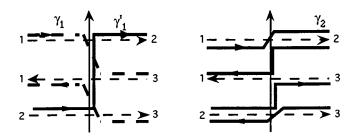


Figure 9

and we obtain

$$a_{\gamma} = \overline{a_{\gamma_2}}(a_{\delta_2}) = \overline{a_{\gamma_2}} a_{\beta} a_{\gamma_1}(a_{\alpha}) = a_{\beta}(a_{\alpha}).$$

Note that the curve γ_1 (and also γ_2) may separate Σ , and in this case the proof above is incorrect for S. But, if γ'_1 is the curve shown in Figure 7, then $[\gamma_1] + [\gamma'_1] = [\beta]$ (where $[\lambda]$ is the homology class modulo two of the curve λ) and so γ_1' is a non-separating curve if β does not separate and γ_1 does.

Let us set $\gamma_2' = \tau_\beta(\gamma_1')$; then, since $|\beta \cap \gamma_1'| = 2_0$, one has by Lemma 1.5

$$a_{\gamma_2'} = a_\beta \, a_{\gamma_1'} \, \overline{a_\beta}, \quad \text{ and thus } \quad a_\beta = a_{\gamma_2'} \, a_\beta \, \overline{a_{\gamma_1'}} \, .$$

If δ_1' and δ_2' are respectively the curves $\tau_{\gamma_1'}^{-1}(\alpha)$ and $\tau_{\beta}(\delta_1')$, then $\gamma = \tau_{\gamma_2'}(\delta_2')$.

• $|\gamma_1' \cap \alpha| = 2 + n_2 + n_3 < n$. • $|\beta \cap \delta_1'| = |\beta \cap \tau_{\gamma_1'}^{-1}(\alpha)| = |\tau_{\gamma_1'}(\beta) \cap \alpha|$. Since $\tau_{\gamma_1'}(\beta) = \tau_{\gamma_1}^{-1}(\beta)$ (see Figure 8), one has $|\beta \cap \delta_1'| = n - 2$. • $|\gamma_2' \cap \delta_2'| = |\gamma_2' \cap \tau_{\beta} \tau_{\gamma_1'}^{-1}(\alpha)| = |\tau_{\gamma_1'} \tau_{\beta}^{-1}(\gamma_2') \cap \alpha| = |\gamma_1' \cap \alpha| < n$. So, by the induction hypothesis,

$$a_{\gamma} = a_{\gamma'_2}(a_{\delta'_2}) = a_{\gamma'_2} a_{\beta}(a_{\delta'_1}) = a_{\gamma'_2} a_{\beta} \overline{a_{\gamma'_1}}(a_{\alpha}) = a_{\beta}(a_{\alpha}).$$

For the second case of the Figure 6, the proof is the same using the curves γ_1 , γ_1' , and γ_2 of Figure 9

1.2. A relation between the lanterns, the stars and the chains. For any lantern determined by the curves β_1 and β_3 , we denote by $L(\beta_1, \beta_3)$ the element $a_{\alpha_1} a_{\alpha_2} a_{\alpha_3} a_{\alpha_4} \overline{a_{\beta_1}} \overline{a_{\beta_2}} \overline{a_{\beta_3}}$ of R, and by \mathcal{L} the subgroup of R generated by all these elements. Similarly, we define elements $E(\alpha_1, \alpha_2, \alpha_3, \beta)$ and $C(\alpha_1, \beta, \alpha_2)$ associated to the stars and the chains and the subgroups \mathcal{E} and \mathcal{C} . When the curves involved do not separate, we will also consider these elements in S, but we will denote them with a subscript "0".

Theorem 1.6. a) (i) The subgroups \mathcal{L} , \mathcal{E} and \mathcal{C} are in the center of R.

- (ii) If $g \ge 1$, then $\mathcal{E} = \mathcal{CL}$, where \mathcal{CL} is the subgroup generated by \mathcal{C} and \mathcal{L} .
- **b)** (i) The elements $L_0(.,.)$, $E_0(.,.,.)$ and $C_0(.,.,.)$ are central in S.
- (ii) For any lanterns (β_1, β_3) and (β_1', β_3') with non-separating curves, one has in S

$$L_0(\beta_1, \beta_3) = L_0(\beta_1', \beta_3').$$

The same result holds for stars and chains. Let us denote by L_0 , E_0 and C_0 the three elements of S obtained this way.

(iii)
$$C_0 = L_0 E_0$$
 in S .

Remark. Part b) makes sense only if the elements L_0 , E_0 and C_0 exists, that is to say, when $g \ge 2$ for C_0 and when $g \ge 3$ for L_0 and E_0 .

Proof. The assertion (i) of a) and b) is an easy consequence of Corollary 1.4, and (ii) of b) is a consequence of (i) and the classification of surfaces. Thus, let us look at the relation $\mathcal{E}=\mathcal{C}\,\mathcal{L}$. To do this, we first consider a lantern $L=L(\beta_1,\beta_3)$ where the curves are denoted as shown in Figure 1.

First case: At least one of the curves α_i does not separate. Then, there is a second curve α_j which does not separate. Without loss of generality, one can suppose that these two curves are α_1 and α_2 . Then, if β and δ are the curves shown in Figure 10, one has by Lemma 1.2

$$C = C(\alpha_1, \beta, \alpha_2) = X_1^2 X_2^2 \overline{a_\delta} \overline{a_{\beta_3}}$$

and

$$E = E(\alpha_1, \beta_1, \alpha_2, \beta) = X_1 X_2 X_3 \overline{a_\delta} \overline{a_{\alpha_4}} \overline{a_{\alpha_3}}$$

where $X_1=a_{\alpha_1}\,a_{\alpha_2}$, $X_2=a_{\beta}\,X_1\,a_{\beta}$ and $X_3=a_{\beta_1}\,X_2\,a_{\beta_1}$. Thus, we obtain by (0), Lemma 1.2 and (i)

$$C\,\overline{E} = a_{\alpha_1}\,a_{\alpha_2}\,a_{\alpha_3}\,a_{\alpha_4}\,\overline{a_{\beta_3}}\,\overline{a_{\beta_1}}\,\overline{X_2}\,\overline{a_{\beta_1}}\,X_2\,.$$

But $(\tau_{\beta}\tau_{\alpha_{1}}\tau_{\alpha_{2}}\tau_{\beta})^{-1}(\beta_{1}) = \beta_{2}$, so, by Corollary 1.4, $a_{\beta_{2}} = \overline{X_{2}}(a_{\beta_{1}})$ and we obtain $C \overline{E} = L$. Thus, since $C \subset \mathcal{E}$, we have $L \in \mathcal{E}$ (by (i), $L = a_{\alpha_{1}} a_{\alpha_{2}} a_{\alpha_{3}} a_{\alpha_{4}} \overline{a_{\beta_{1}}} \overline{a_{\beta_{2}}} \overline{a_{\beta_{3}}} \overline{a_{\beta_{1}}} = a_{\alpha_{1}} a_{\alpha_{2}} a_{\alpha_{3}} a_{\alpha_{4}} \overline{a_{\beta_{2}}} \overline{a_{\beta_{3}}} \overline{a_{\beta_{1}}} = a_{\alpha_{1}} a_{\alpha_{2}} a_{\alpha_{3}} a_{\alpha_{3}} \overline{a_{\beta_{1}}} \overline{a_{\beta_{2}}} \overline{a_{\beta_{3}}} \overline{a_{\beta_{1}}} \overline{a_{\beta_{2}}} \overline{a_{\beta_{2}}} \overline{a_{\beta_{3}}} \overline{a_{\beta_{1}}} \overline{a_{\beta_{2}}} \overline{a_{\beta_{3}}} \overline{a_{\beta_{$

Note that this shows the relation (iii) of b) because if β_3 does not separate, then δ does not separate either.

Second case: All the curves α_i separate in Σ . Since g is greater than or equal to one, there exists i such that the component of $\Sigma \setminus \alpha_i$ which does not contain α_j (for all $j \neq i$) is of genus greater than or equal to one. We can suppose, without loss of generality, that i=3 and consider the curves $\gamma_1, \ldots, \gamma_6$ shown in Figure 11.

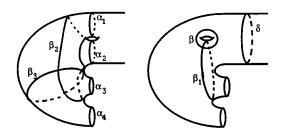


Figure 10

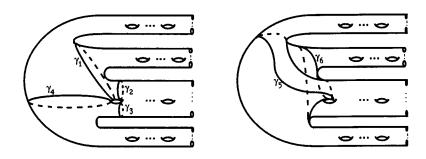


Figure 11

Denote respectively by L_1 , L_2 and L_3 the lanterns $L(\gamma_6, \gamma_1)$, $L(\gamma_6, \gamma_4)$ and $L(\gamma_5, \gamma_1)$. Then, using (0) and (i), one has

$$\begin{array}{rcl} \overline{L_1}\,L_2\,L_3 & = & (a_{\alpha_2}\,a_{\beta_1}\,a_{\gamma_2}\,a_{\gamma_3}\,\overline{a_{\gamma_6}}\,\overline{a_{\alpha_3}}\,\overline{a_{\gamma_1}})^{-1}(a_{\alpha_2}\,a_{\alpha_4}\,a_{\gamma_3}\,a_{\gamma_5}\,\overline{a_{\gamma_6}}\,\overline{a_{\beta_2}}\,\overline{a_{\gamma_4}}) \\ & & \times (a_{\alpha_1}\,a_{\alpha_2}\,a_{\gamma_2}\,a_{\gamma_4}\,\overline{a_{\gamma_5}}\,\overline{a_{\beta_3}}\,\overline{a_{\gamma_1}}) \\ & = & a_{\alpha_3}\,\overline{a_{\gamma_3}}\,\overline{a_{\gamma_2}}\,\overline{a_{\beta_1}}\,a_{\alpha_4}\,a_{\gamma_3}\,\overline{a_{\beta_2}}\,a_{\alpha_1}\,a_{\alpha_2}\,a_{\gamma_2}\,\overline{a_{\beta_3}} \\ & = & a_{\alpha_3}\,\overline{a_{\beta_1}}\,a_{\alpha_4}\,\overline{a_{\beta_2}}\,a_{\alpha_1}\,a_{\alpha_2}\,\overline{a_{\beta_3}} \\ & = & L. \end{array}$$

The first case proves that $L_k \in \mathcal{E}$, so we have $L \in \mathcal{E}$.

Thus, we have proved that $\mathcal{L} \subset \mathcal{E}$ and so $\mathcal{LC} \subset \mathcal{E}$. Now, let $(\alpha_1, \alpha_2, \alpha_3, \beta)$ be a star E. We shall find a lantern L and a chain C such that $E = C\overline{L}$ in R. Considering the curves shown in Figure 12, one has

$$E = X_1 X_2 X_3 \overline{a_{\delta_1}} \overline{a_{\delta_2}} \overline{a_{\delta_3}},$$

$$C(\alpha_1, \beta, \alpha_2) = X_1^2 X_2^2 \overline{a_{\delta_3}} \overline{a_{\gamma_1}} = C,$$

$$L(\gamma_2, \gamma_1) = a_{\alpha_1} a_{\alpha_2} a_{\delta_1} a_{\delta_2} \overline{a_{\alpha_3}} \overline{a_{\gamma_2}} \overline{a_{\gamma_1}} = L,$$

where $X_1 = a_{\alpha_1} a_{\alpha_2}$, $X_2 = a_{\beta} X_1 a_{\beta}$ and $X_3 = a_{\alpha_3} X_2 a_{\alpha_3}$.

П

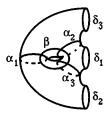


Figure 12

Then, using (0) and (i), we obtain

$$C \overline{L} = X_1 X_2 \overline{a_{\delta_3}} X_1 X_2 \overline{a_{\gamma_1}} a_{\gamma_1} a_{\gamma_2} a_{\alpha_3} \overline{a_{\alpha_1}} \overline{a_{\alpha_2}} \overline{a_{\delta_1}} \overline{a_{\delta_2}}$$

$$= X_1 X_2 \overline{a_{\delta_3}} X_2 a_{\gamma_2} a_{\alpha_3} \overline{a_{\delta_1}} \overline{a_{\delta_2}}$$

$$= X_1 X_2 X_2 a_{\gamma_2} a_{\alpha_3} \overline{a_{\delta_1}} \overline{a_{\delta_2}} \overline{a_{\delta_3}}.$$

But one can see that $\tau_{\beta}\tau_{\alpha_2}\tau_{\alpha_1}\tau_{\beta}(\gamma_2) = \alpha_3$, so $a_{\alpha_3} = X_2 a_{\gamma_2} \overline{X_2}$ by Corollary 1.4. Thus,

$$C \overline{L} = X_1 X_2 a_{\alpha_3} X_2 a_{\alpha_3} \overline{a_{\delta_1}} \overline{a_{\delta_2}} \overline{a_{\delta_3}}$$

$$= X_1 X_2 X_3 \overline{a_{\delta_1}} \overline{a_{\delta_2}} \overline{a_{\delta_3}}$$

$$= E$$

This shows that $\mathcal{E} \subset \mathcal{CL}$ and concludes the proof of Theorem 1.6.

We conclude this section by a lemma which gives us a new relation in \mathcal{M} .

Lemma 1.7. Let Σ' be a subsurface of Σ which is diffeomorphic to a surface of genus one with four boundary components. Consider the curves shown on Figure 13 and set (in R and S)

$$X_1 = a_{\alpha_1} a_{\alpha_3}, \quad X_2 = a_{\beta} X_1 a_{\beta}, \quad X_3 = a_{\alpha_2} X_2 a_{\alpha_2}, \quad X_3' = a_{\alpha_4} X_2 a_{\alpha_4}.$$

Then, one can find two stars E_1 , E_2 , and a chain C such that

$$X_3 X_3' = a_{\delta_1} a_{\delta_2} a_{\delta_3} a_{\delta_4} E_1 E_2 C^{-1}$$
 in R.

The same result holds in S if $\delta_1, \ldots, \delta_4$ do not separate in Σ .

Proof. By Lemma 1.2, one has

$$E_1 = E(\alpha_1, \alpha_3, \alpha_2, \beta) = X_1 X_2 X_3 \overline{a_{\delta_2}} \overline{a_{\delta_3}} \overline{a_{\delta}},$$

$$E_2 = E(\alpha_1, \alpha_3, \alpha_4, \beta) = X_1 X_2 X_3' \overline{a_{\delta_1}} \overline{a_{\delta_4}} \overline{a_{\delta'}},$$

$$C = C(\alpha_1, \beta, \alpha_3) = X_1^2 X_2^2 \overline{a_{\delta}} \overline{a_{\delta'}},$$

where δ and δ' are the curves shown on Figure 14. Thus, we obtain

$$E_{1} E_{2} C^{-1} = \overline{a_{\delta_{1}}} \overline{a_{\delta_{2}}} \overline{a_{\delta_{3}}} \overline{a_{\delta_{4}}} X_{1} X_{2} X_{3} \overline{a_{\delta}} X_{1} X_{2} X_{3}' \overline{a_{\delta'}} a_{\delta} a_{\delta'} \overline{X_{1}^{2}} \overline{X_{2}^{2}} \text{ by (0)}$$

$$= \overline{a_{\delta_{1}}} \overline{a_{\delta_{2}}} \overline{a_{\delta_{3}}} \overline{a_{\delta_{4}}} X_{3} \overline{a_{\delta}} X_{3}' a_{\delta} \text{ by Lemma 1.2 and (0)}$$

$$= \overline{a_{\delta_{1}}} \overline{a_{\delta_{2}}} \overline{a_{\delta_{3}}} \overline{a_{\delta_{4}}} X_{3} X_{3}' \text{ by (0) and (i) of Theorem 1.6.}$$

Suppose now that the four curves $\delta_1, \ldots, \delta_4$ do not separate. The proof above remains valid for S only if both δ and δ' do not separate Σ . But if they separate, the curves γ and γ' shown on Figure 14 do not separate. Then, one can conclude in the

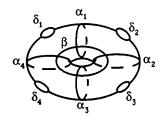


Figure 13

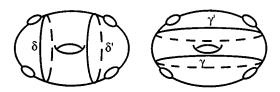


Figure 14

same way using the stars $(\alpha_2, \alpha_4, \alpha_1, \beta)$, $(\alpha_2, \alpha_4, \alpha_3, \beta)$ and the chain $(\alpha_2, \beta, \alpha_4)$.

2. Proof of Theorems A and B

Let Σ be a surface of genus $g \geq 0$ with r boundary components $(r \geq 1)$, $\mathcal{M} = \mathcal{M}_{g,r}$ its mapping class group (we consider Σ to be a disc with g handles attached and r-1 holes).

In order to simplify notation, we will denote by β the twist along a curve β . First, we shall recall the results obtained by Hatcher-Thurston ([H-T]) and Harer ([H]) about presentations of \mathcal{M} . To do this, we will consider the curves shown on Figures 15, 16 and 17. If $D_1, D_2, \ldots, D_{2g+r-1}$ are the holes obtained when we cut Σ along the curves α_i or corresponding to $\partial \Sigma$ (except δ , the boundary of the disc on which the handles were attached), then $\delta_{ij, 1 \leq i < j \leq 2g+r-1}$ is a curve in $\Sigma \setminus (\bigcup \alpha_i)$ which encircles the holes D_i , and D_j and $\varphi_{k, 3 \leq k \leq 2g+r-1}$ a curve which encircles D_1, D_2 and D_k (see Figure 17).

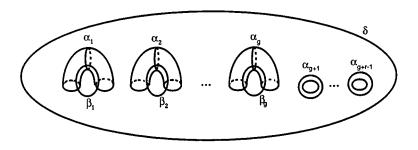


Figure 15

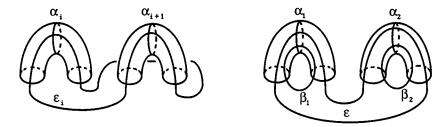


Figure 16

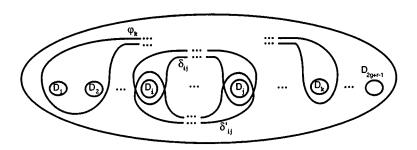


Figure 17

Denote by H_0 the subgroup of elements of \mathcal{M} which leave the curves α_i fixed. Hatcher and Thurston have proved in [H-T] that H_0 is isomorphic to $P_{2g+r-1} \times \mathbb{Z}^{g+r-1}$, where P_n is the pure braid group on n strands. It is generated by α_i 's and $\delta_{i,j}$'s, and admits a presentation with relations (see [B] for a presentation of P_n)

$$\lambda_{ijkl} = \begin{cases} \delta_{kl} & \text{if } 1 \le k < l < i < j \le 2g + r - 1 \\ & \text{or } 1 \le i < k < l < j \le 2g + r - 1, \\ \delta_{kj}\delta_{kl} & \text{if } 1 \le k < l = i < j \le 2g + r - 1, \\ \delta_{lj}\delta_{ij}\delta_{kl} & \text{if } 1 \le i = k < l < j \le 2g + r - 1, \\ [\delta_{lj}^{-1}, \delta_{kj}^{-1}]\delta_{kl} & \text{if } 1 \le k < i < l < j \le 2g + r - 1. \end{cases}$$

H is the subgroup of elements of \mathcal{M} which leave the set $\{\alpha_1, \ldots, \alpha_g\}$ fixed (an element of H can permute the α_i 's and reverse their orientations). So H is defined by the following exact sequences (see [W]):

$$1 \to H_0 \to H \xrightarrow{\theta} \pm \mathcal{S}_n \to 1$$
, $1 \to (\mathbb{Z}/2\mathbb{Z})^n \to \pm \mathcal{S}_n \to \mathcal{S}_n \to 1$,

where S_n is the symmetric group of rank n and θ the morphism which assigns to each element of H the induced signed permutation on the α_i 's. Therefore, H is generated by H_0 , $\xi = \beta_1 \alpha_1 \alpha_1 \beta_1$ and $(\theta_i = \varepsilon_i \alpha_i \alpha_{i+1} \varepsilon_i)_{1 \leq i \leq g-1}$, and is defined by the relations (i) and

- $(ii)_a \ \theta_{i+1} \theta_i \theta_{i+1} = \theta_i \theta_{i+1} \theta_i \text{ for } 1 \leq i \leq g-2, \text{ and } \theta_i \theta_j = \theta_j \theta_i \text{ for } |i-j| \geq 2,$
- $(ii)_b \ \theta_i^2 \in H_0 \ \text{for} \ 1 \le i \le g 1,$
- $(ii)_c \xi^2 \in H_0$,
- $(ii)_d \ [\xi_i, \xi_j] \in H_0 \ \text{for} \ 1 \le i < j \le g \ \text{where} \ \xi_i = \theta_{i-1} \theta_{i-2} \dots \theta_1 \xi \overline{\theta_1} \dots \overline{\theta_{i-2}} \overline{\theta_{i-1}},$
- $(ii)_e [\theta_i, \xi_j] \in H_0 \text{ for } i \neq j, j-1,$
- $(iii)_a \ \xi(\alpha_i) \in H_0 \ \text{for} \ 1 \le i \le g+r-1,$
- $(iii)_b \ \xi(\delta_{ij}) \in H_0 \ \text{for} \ 1 \le i < j \le 2g + r 1,$
- $(iii)_c \ \theta_k(\alpha_i) \in H_0 \ \text{for} \ 1 \le i \le g+r-1 \ \text{and} \ 1 \le k \le g-1,$
- $(iii)_d \ \theta_k(\delta_{ij}) \in H_0 \ \text{for} \ 1 \le i < j \le 2g + r 1 \ \text{and} \ 1 \le k \le g 1.$

Remark. θ_i permutes α_i and α_{i+1} , and ξ_i reverses the orientation of α_i ($\xi_1 = \xi$).

Theorem 2.1 ([H-T][H]). \mathcal{M} is generated by H and $\sigma = \alpha_1 \beta_1 \alpha_1$. All relations involving σ come from (A)–(E) below and, together with (i)–(iii), they suffice for the presentation of \mathcal{M} .

- (A) σ commutes with $H(\alpha_1, \beta_1)$, where $H(\alpha_1, \beta_1)$ is the subgroup of elements of H which leave α_1 and β_1 fixed.
- (B) $\sigma^2 \in H$.
- (C) Consider the curves $\gamma_1, \ldots, \gamma_N$ shown on Figure 18. For any γ among these curves and any $h \in H$ such that $h\sigma(\alpha_1) = \gamma$, $h\sigma(\gamma) = \beta_1$ and $h\sigma(\beta_1) = \alpha_1$, one has $\sigma h\sigma h\sigma \in H$. In the presence of (A), the choice of one h suffices.
- (D) For any $h \in H$ such that $h(\beta_2) = \beta_1$, σ commutes with $\overline{h}(\sigma)$. In the presence of (A), the choice of one h suffices.
- (E) If ε is the curve shown on Figure 16, then $\sigma h_5 \sigma h_4 \sigma h_3 \sigma h_2 \sigma h_1 \sigma \in H$ whenever there are $h_1, h_2, h_3, h_4, h_5 \in H$ such that $h_1 \sigma(\delta_{2,3}) = \beta_1, h_2 \sigma h_1 \sigma(\varepsilon) = \beta_1, h_3 \sigma h_2 \sigma h_1 \sigma(\alpha_1) = \beta_1, h_4 \sigma h_3 \sigma h_2 \sigma h_1 \sigma(\beta_2) = \beta_1$ and

$$h_5 \sigma h_4 \sigma h_3 \sigma h_2 \sigma h_1 \sigma(\alpha_2) = \beta_1$$
.

The choice of one 5-tuple $(h_1, \ldots, h_5) \in H^5$ suffices.

Remark. Relations (C) and (E) are slightly different from [H-T]. Moreover, Hatcher and Thurston worked only with closed surfaces. The result above is due to Harer ([H]).

Corollary 2.2. Let Σ be a surface with at least one boundary component. Then \mathcal{M}_{Σ} admits a presentation with generators α_i , $\delta_{i,j}$, ξ , θ_i , σ and relations (i)–(iii) above added to the following:

- (iv) σ commutes with $(\alpha_i)_{2 \leq i \leq g+r-1}$, $(\theta_i)_{2 \leq i \leq g-1}$, $\xi' = \overline{\theta_1} \, \delta_{2,4} \, \overline{\alpha_1}(\xi)$, $\delta_{1,2}$, $(\delta_{ij})_{3 \leq i < j \leq 2g+r-1}$ and $(\varphi_i)_{3 \leq i \leq 2g+r-1}$, where $\varphi_i = \alpha_1^2 (\xi \, \delta_{2,i})^2 \overline{\alpha_{k_i}}$ with $k_i = [(i+1)/2]$ if $i \leq 2g$ and $k_i = i-g$ if $i \geq 2g+1$.
- $(v) \ \sigma^2 \in H$.
- (vi) $\sigma h \sigma h \sigma \in H$ for all $h \in \mathcal{H} = \{\alpha_1 ; \delta_{1,3} ; \delta_{1,4} \delta_{1,3} \overline{\alpha_1} ; \delta_{1,5} \delta_{1,3} \overline{\alpha_1} ; \delta_{1,2g+1}, \dots, \delta_{1,2g+r-1} ; \delta_{1,2g+1} \delta_{1,3} \overline{\alpha_1}, \dots, \delta_{1,2g+r-1} \delta_{1,3} \overline{\alpha_1} ; \delta_{1,k} \delta_{1,j} \overline{\alpha_1} \text{ for } 2g+1 \leq j < k \leq 2g+r-1 \}.$

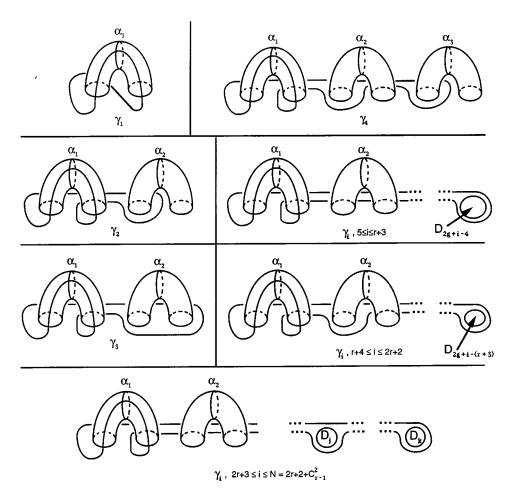


Figure 18

(vii) σ commutes with $\overline{h}\sigma h$, where $h = \alpha_1 \overline{\delta_{2,4}} \theta_1$.

(viii) $\sigma h_5 \sigma h_4 \sigma h_3 \sigma h_2 \sigma h_1 \sigma \in H$, where $h_1 = h_3 = h_5 = \overline{\alpha_1} \delta_{2,3}$, $h_2 = \overline{\delta_{2,3}} \theta$ and $h_4 = \delta_{2,3} \overline{\alpha_1} \overline{\theta}$; here $\theta = \overline{\varphi_3} \xi \alpha_1^2 \alpha_2(\theta_1)$.

Remarks. (i) φ_i is the curve shown in Figure 17. The chain $(\alpha_1, \beta_1, \delta_{2,i})$ and the computations of Lemma 1.2 prove that

$$\varphi_i = (\alpha_1 \beta_1 \delta_{2,i})^4 \overline{\alpha_{k_i}} = \alpha_1^2 (\xi \delta_{2,i})^2 \overline{\alpha_{k_i}}.$$

(ii) As diffeomorphisms of Σ , ξ and θ can be seen to be equal to $\beta_2 \alpha_2 \alpha_2 \beta_2$ and $\varepsilon \alpha_1 \alpha_2 \varepsilon$ respectively, where the curves are whose which are shown on Figures 15 and 16.

Proof. We have to prove that the relations (iv)–(viii) are equivalent to the relations (A)–(E).

(iv) Let $H_0(\alpha_1, \beta_1)$ be the subgroup of elements of $H(\alpha_1, \beta_1)$ which leave each curve α_i fixed. Then, $H(\alpha_1, \beta_1)$ is generated by $H_0(\alpha_1, \beta_1)$ and elements permuting the α_i 's for $2 \le i \le g$ or reversing their orientation. We have seen that θ_i permutes α_i and α_{i+1} . The diffeomorphism ξ' preserves α_1 , β_1 and α_i for

 $i \geq 3$ and reverses the orientation of α_2 (using braid relations, one can see that $\xi' = \beta_2 \, \alpha_2 \, \alpha_2 \, \beta_2$). So, $H(\alpha_1, \beta_1)$ is generated by $H_0(\alpha_1, \beta_1)$, ξ' and $(\theta_i)_{2 \leq i \leq g-1}$. Furthermore, following the proof of Hatcher-Thurston for H_0 , one can prove that $H_0(\alpha_1, \beta_1)$ is isomorphic to $P_{2g+r-2} \times \mathbb{Z}^{g+r-2}$ and deduce that it is generated by $\delta_{1,2}$, $(\alpha_i)_{2 \leq i \leq g+r-1}$, $(\delta_{ij})_{3 \leq i < j \leq 2g+r-1}$ and $(\varphi_i)_{3 \leq i \leq 2g+r-1}$. So, we have found the required generators for $H(\alpha_1, \beta_1)$, and this proves that (iv) is equivalent to (A).

(vi) For any s.c.c. γ in $\{\gamma_1, \ldots, \gamma_N\}$, we have to find an element h of H such that $h\sigma(\alpha_1) = \gamma$, $h\sigma(\gamma) = \beta_1$ and $h\sigma(\beta_1) = \alpha_1$. \mathcal{H} is exactly the set of the elements that we have found:

```
\begin{array}{lll} * \ \gamma = \gamma_1 & \Rightarrow & h = \alpha_1, \\ * \ \gamma = \gamma_2 & \Rightarrow & h = \delta_{1,3}, \\ * \ \gamma = \gamma_3 & \Rightarrow & h = \delta_{1,4} \ \delta_{1,3} \ \overline{\alpha_1}, \\ * \ \gamma = \gamma_4 & \Rightarrow & h = \delta_{1,5} \ \delta_{1,3} \ \overline{\alpha_1}, \\ * \ \gamma = \gamma_i, \ i = 5, \ldots, r + 3 & \Rightarrow & h = \delta_{1,2g+i-4}, \\ * \ \gamma = \gamma_i, \ i = r + 4, \ldots, 2r + 2 & \Rightarrow & h = \delta_{1,2g+i-r-3} \ \delta_{1,3} \ \overline{\alpha_1}, \\ * \ \gamma = \gamma_i, \ i = 2r + 3, \ldots, N & \Rightarrow & h = \delta_{1,k} \ \delta_{1,j} \ \overline{\alpha_1} & \text{if} \ \gamma_i \text{ encircles } D_j \text{ and } D_k. \end{array}
```

(vii) $h = \alpha_1 \overline{\delta_{2,4}} \theta_1$ is an element of H satisfying $h(\beta_2) = \beta_1$, so (vii) is equivalent to (D).

(viii) If we choose $h_1 = h_3 = h_5 = \overline{\alpha_1} \, \delta_{2,3}$, $h_2 = \overline{\delta_{2,3}} \, \theta$ and $h_4 = \delta_{2,3} \, \overline{\alpha_1} \, \overline{\theta}$, then $h_i \in H$ for all i and the 5-tuple $(h_1, h_2, h_3, h_4, h_5)$ satisfies the condition of the relation (E).

2.1. **Proof of Theorem A.** Let G be a group with generators $\{a \equiv a_{\alpha} / \alpha \text{ s.c.c.} \text{ in } \Sigma\}$ and relations (I), (II) and (III) (Theorem A). We shall denote by H'_0 the subgroup of G generated by the a_i 's and the d_{ij} 's, and by H' the subgroup generated by H'_0 , $x = b_1 \ a_1 \ a_1 \ b_1$, and the t_i 's, where $t_i = e_i \ a_i \ a_{i+1} \ e_i \ (i=1,\ldots,g-1)$.

Remark. Since G is a quotient of R, the relations which have been shown in Section 1 are also true in G.

Let $\varphi: G \to \mathcal{M}$ be the epimorphism defined by $\varphi(a) = \alpha$. In order to prove that φ is an isomorphism, we shall construct an inverse morphism $\psi: \mathcal{M} \to G$. So, let us define ψ on the generators of \mathcal{M} as follows:

$$\psi(\alpha) = a \ \forall \alpha \in \{(\alpha_i)_{1 \le i \le g+r-1}; (\delta_{ij})_{1 \le i < j \le 2g+r-1} \},$$

$$\psi(\xi) = x$$
, $\psi(\theta_i) = t_i$, $\psi(\sigma) = a_1 b_1 a_1 = s$.

First of all, let us prove that ψ is a homomorphism defined on \mathcal{M} ; to do this, we will show that the relations (i)–(viii) are mapped by ψ into true relations in G.

Relations (*i*). (*i*)_a and (*i*)_b are consequences of (0), and since $\lambda_{ijkl}(\delta_{ij}) = \delta_{ij}$, (*i*)_c is a consequence of Corollary 1.4.

Relation (ii) a. (0) implies $t_i t_j = t_j t_i$ when $|i-j| \ge 2$. For $1 \le i \le g-1$, one has

$$\begin{array}{lll} t_{i+1}(t_i) & = & (e_{i+1}\,a_{i+1}\,a_{i+2}\,e_{i+1})(e_i\,a_i\,a_{i+1}\,e_i)(\overline{e_{i+1}}\,\overline{a_{i+1}}\,\overline{a_{i+2}}\,\overline{e_{i+1}}) \\ & = & e_{i+1}\,a_{i+1}\,a_{i+2}\,e_i\,a_i\,e_{i+1}\,a_{i+1}\,\overline{e_{i+1}}\,e_i\,\overline{a_{i+1}}\,\overline{a_{i+2}}\,\overline{e_{i+1}} & \mathrm{by} \ (0) \\ & = & e_{i+1}\,a_{i+1}\,a_{i+2}\,e_i\,a_i\,\overline{a_{i+1}}\,e_{i+1}\,a_{i+1}\,e_i\,\overline{a_{i+1}}\,\overline{a_{i+2}}\,\overline{e_{i+1}} & \mathrm{by} \ (1) \\ & = & e_{i+1}\,a_{i+2}\,a_{i+1}\,e_i\,\overline{a_{i+1}}\,a_ie_{i+1}\,a_{i+1}\,e_i\,\overline{a_{i+1}}\,\overline{a_{i+2}}\,\overline{e_{i+1}} & \mathrm{by} \ (1) \\ & = & e_{i+1}\,a_{i+2}\,\overline{e_i}\,a_{i+1}\,e_i\,a_i\,e_{i+1}\,a_{i+1}\,e_i\,\overline{a_{i+2}}\,\overline{e_{i+1}} & \mathrm{by} \ (1) \\ & = & \overline{e_i}\,e_{i+1}\,a_{i+2}\,a_{i+1}\,e_i\,a_i\,\overline{e_i}\,e_{i+1}\,a_{i+1}\,\overline{a_{i+2}}\,\overline{e_{i+1}}\,e_i & \mathrm{by} \ (0) \\ & = & \overline{e_i}\,e_{i+1}\,a_{i+2}\,a_{i+1}\,\overline{e_i}\,a_i\,e_{i+1}\,a_{i+1}\,\overline{a_{i+2}}\,\overline{e_{i+1}}\,e_i & \mathrm{by} \ (1) \\ & = & \overline{e_i}\,\overline{a_i}\,e_{i+1}\,a_{i+1}\,e_i\,a_{i+2}\,e_{i+1}\,\overline{a_{i+2}}\,a_{i+1}\,\overline{e_{i+1}}\,a_i\,e_i & \mathrm{by} \ (0) \\ & = & \overline{e_i}\,\overline{a_i}\,e_{i+1}\,a_{i+1}\,e_i\,\overline{e_{i+1}}\,a_{i+2}\,e_{i+1}\,a_{i+1}\,\overline{e_{i+1}}\,a_i\,e_i & \mathrm{by} \ (1) \\ & = & \overline{e_i}\,\overline{a_i}\,\overline{a_{i+1}}\,e_{i+1}\,a_{i+1}\,e_i\,a_{i+2}\,\overline{a_{i+1}}\,e_{i+1}\,a_{i+1}\,a_i\,e_i & \mathrm{by} \ (0) \\ & = & \overline{e_i}\,\overline{a_i}\,\overline{a_{i+1}}\,e_{i+1}\,a_{i+1}\,e_i\,\overline{a_{i+1}}\,e_{i+1}\,a_{i+2}\,e_{i+1}\,a_{i+1}\,a_i\,e_i & \mathrm{by} \ (0) \\ & = & \overline{e_i}\,\overline{a_i}\,\overline{a_{i+1}}\,e_{i+1}\,a_{i+1}\,e_i\,a_{i+1}\,e_i\,a_{i+2}\,e_{i+1}\,a_{i+1}\,a_i\,e_i & \mathrm{by} \ (0) \\ & = & \overline{e_i}\,\overline{a_i}\,\overline{a_{i+1}}\,e_{i+1}\,a_{i+1}\,e_i\,a_{i+1}\,e_i\,a_{i+2}\,e_{i+1}\,a_{i+1}\,a_i\,e_i & \mathrm{by} \ (0) \\ & = & \overline{e_i}\,\overline{a_i}\,\overline{a_{i+1}}\,e_{i+1}\,\overline{e_i}\,a_{i+1}\,e_i\,a_{i+1}\,e_i\,a_{i+2}\,e_{i+1}\,a_{i+1}\,a_i\,e_i & \mathrm{by} \ (0) \\ & = & \overline{e_i}\,\overline{a_i}\,\overline{a_{i+1}}\,\overline{e_i}\,e_{i+1}\,a_{i+1}\,e_i\,a_{i+2}\,e_{i+1}\,a_{i+1}\,a_i\,e_i & \mathrm{by} \ (0) \\ & = & \overline{e_i}\,\overline{a_i}\,\overline{a_{i+1}}\,\overline{e_i}\,e_{i+1}\,a_{i+1}\,a_{i+1}\,e_i\,a_{i+2}\,e_{i+1}\,a_{i+1}\,a_i\,e_i & \mathrm{by} \ (0) \\ & = & \overline{e_i}\,\overline{a_i}\,\overline{a_{i+1}}\,\overline{e_i}\,e_{i+1}\,a_{i+1}\,a_{i+1}\,a_{i+2}\,e_{i+1}\,a_{i+1}\,a_i\,e_i & \mathrm{by} \ (0) \\ & = & \overline{e_i}\,\overline{a_i}\,\overline{a_i}\,\overline{a_{i+1}}\,\overline{e_i}\,a_{i+1}\,a_{i+1}\,a_{i+1}\,a_{i+2}\,e_{i+1}\,a_{i+1}\,a_i\,e_i & \mathrm{by} \ (0) \\ & = & \overline{e$$

which implies $t_{i+1} t_i t_{i+1} = t_i t_{i+1} t_i$.

Relation (ii)_b. Let δ'_{ij} be the curves shown in Figure 17.

Lemma 2.3. $d'_{ij} \in H'_0$ for all $1 \le i < j \le 2g + r - 1$, and H'_0 is generated by a_i 's and d'_{ij} 's.

Proof. Since $\delta_{i,j} = \tau_{\delta_{i,j-1}} \dots \tau_{\delta_{i,i+1}}(\delta'_{i,j})$, one has

$$d'_{i,j} = \overline{d_{i,i+1}} \dots \overline{d_{i,j-1}}(d_{i,j}) \in H'_0$$

(use Corollary 1.4). Symmetrically, we obtain $d_{i,j}=d'_{i,i+1}\dots d'_{i,j-1}(d'_{i,j})$, which proves the lemma. \Box

By Lemma 1.2, one has $(a_ie_ia_{i+1})^4 = a_i^2a_{i+1}^2t_i^2$. But the chain $(\alpha_i, \varepsilon_i, \alpha_{i+1})$ gives:

$$(a_i e_i a_{i+1})^4 = d'_{2i-1,2i+1} d_{2i,2i+2}.$$

Thus, by Lemma 2.3, t_i^2 is an element of H_0' .

Relation (ii)_c. The chain $(\alpha_1, \beta_1, \alpha_1)$ yields the relation $a_1^4(b_1a_1a_1b_1)^2 = d_{1,2}$ (using Lemma 1.2). Thus we have $x^2 = d_{1,2}a_1^{-4} \in H'_0$.

Relation (iii) a. For $i \ge 2$, $x(a_i) = a_i \in H'_0$ by (0). One has

$$x(a_1) = b_1 a_1 a_1 b_1(a_1) = b_1 a_1 a_1 \overline{a_1}(b_1) = b_1 \overline{b_1}(a_1) = a_1 \in H'_0$$
 by (1).

Relation $(iii)_b$. When $3 \le i < j \le 2g + r - 1$ or (i, j) = (1, 2), one has $x(d_{i,j}) = d_{i,j} \in H'_0$ by (0).

When $3 \le j \le 2g + r - 1$, one has $\tau_{\delta_{1,2}}^{-1} \xi(\delta_{1,j}) = \delta_{2,j}$ so, according to Corollary 1.4, $x(d_{1,j}) = d_{1,2}(d_{2,j}) \in H'_0$.

Similarly, when $3 \le j \le 2g + r - 1$, we have $x(d_{2,j}) = d_{1,j} \in H'_0$.

Relation (iii)_c. We have seen that θ_k permutes α_k and α_{k+1} and leaves α_i fixed when $i \neq k, k+1$. So, by Corollary 1.4, one has $t_k(a_i) \in H'_0$.

Relation (*iii*)_d. For all i, j, k, we shall find $h \in H_0$ such that $\theta_k(\delta_{ij}) = h(\delta_{i',j'})$ for some i', j'. Then, if h is given as a word on the generators a_i 's and $\delta_{i,j}$'s, and m is the associated word in H'_0 , one has by Corollary 1.4

$$t_k(d_{ij}) = m(d_{i',j'}) \in H'_0.$$

The cases of $\delta_{2k-1,2k+1}$, $\delta_{2k+1,j}$ and $\delta_{i,2k+1}$ will be proved in a slightly different way:

- $\begin{array}{lll} * & i,j \neq 2k-1, \ 2k, \ 2k+1, \ 2k+2 \ \Rightarrow \ \theta_k(\delta_{i,j}) = \delta_{i,j}. \\ * & j \geq 2k+3 \ \Rightarrow \ \theta_k(\delta_{2k-1,j}) = \delta'_{2k-1,2k+1} \delta'_{2k,2k+1} (\delta_{2k+1,j}). \\ & i \leq 2k-2 \ \Rightarrow \ \theta_k(\delta_{i,2k-1}) = \delta'_{2k-1,2k+1} \delta'_{2k,2k+1} (\delta_{i,2k+1}). \\ * & j \geq 2k+3 \ \Rightarrow \ \theta_k(\delta_{2k,j}) = \delta_{2k,2k+2} (\delta_{2k+2,j}). \\ & i \leq 2k-2 \ \Rightarrow \ \theta_k(\delta_{i,2k}) = \delta_{2k,2k+2} (\delta_{i,2k+2}). \\ * & j \geq 2k+3 \ \Rightarrow \ \theta_k(\delta_{2k+2,j}) = \delta_{2k+1,j}. \\ & i \leq 2k-2 \ \Rightarrow \ \theta_k(\delta_{i,2k+2}) = \delta_{i,2k+1}. \\ * & \theta_k(\delta_{2k-1,2k}) = \delta'_{2k-1,2k+1} (\delta_{2k+1,2k+2}). \\ * & \theta_k(\delta_{2k-1,2k+2}) = \delta_{2k-1,2k} (\delta_{2k,2k+1}). \end{array}$
- * $\theta_k(\delta_{2k,2k+1}) = \delta_{2k+1,2k+2}^{-1}(\delta'_{2k-1,2k+2}).$
- * $\theta_k(\delta_{2k,2k+2}) = \delta_{2k,2k+2}$.
- * $\theta_k(\delta_{2k+1,2k+2}) = \delta_{2k,2k+2}(\delta_{2k-1,2k}).$
- * Since $\delta_{2k-1,2k+1} = \delta_{2k-1,2k}(\delta'_{2k-1,2k+1})$, one has

$$\theta_k(\delta_{2k-1,2k+1}) = \theta_k \, \delta_{2k-1,2k}(\delta'_{2k-1,2k+1}) = \theta_k \, \delta_{2k-1,2k} \, \overline{\theta_k} \, \theta_k(\delta'_{2k-1,2k+1}) \, .$$

But since

$$\theta_k(\delta'_{2k-1,2k+1}) = \delta'_{2k-1,2k+1},$$

one has using Corollary 1.4

$$t_k(d_{2k-1,2k+1}) = t_k d_{2k-1,2k} \overline{t_k} (d'_{2k-1,2k+1}).$$

We have seen that $t_k(d_{2k-1,2k}) \in H'_0$; therefore $t_k(d_{2k-1,2k+1}) \in H'_0$ by Lemma 2.3.

* We saw in Lemma 2.3 that

$$d_{2k+1,j} = d_{2k+1,j-1} \dots d_{2k+1,2k+2} (d'_{2k+1,j}).$$

Since, for $j \ge 2k+3$, $\theta_k(\delta'_{2k+1,j}) = \delta'_{2k-1,2k+1}(\delta'_{2k-1,j})$, one has $t_k(d'_{2k+1,j}) \in H'_0$ by Corollary 1.4. Furthermore, we already have $t_k(d_{2k+1,2k+2}) \in H'_0$, thus, $t_k(d_{2k+1,j}) \in H'_0$ by induction on j.

* Similarly, one has $d_{i,2k+1} = d_{i,2k} \dots d_{i,i+1}(d'_{i,2k+1})$ and, for i less than 2k-1, $t_k(d'_{i,2k+1}) = d'_{2k-1,2k+1}(d'_{i,2k-1}) \in H'_0$. Since $t_k(d_{i,l}) \in H'_0$ for $l = i+1, \dots, 2k$, we have $t_k(d_{i,2k+1}) \in H'_0$.

Relation $(ii)_d$.

Lemma 2.4. t_1 commutes with $x t_1 x$ in G.

Proof. We have

Denote $\psi(\xi_i) = t_{i-1} t_{i-2} \dots t_1(x)$ by x_i ; we have to prove that $[x_i, x_j] \in H'_0$ (i < j). Relations (iii) $_{c-d}$ show that H'_0 is stable under conjugation by t_i . So, one can conjugate by $g = \overline{t_2} \dots \overline{t_i} \, \overline{t_1} \dots \overline{t_{j-1}}$:

$$g t_{j-1} \dots t_1(x) = \overline{t_2} \dots \overline{t_i}(x) = x$$
 by (0) ,

and

$$g t_{i-1} \dots t_1(x) = \overline{t_2} \dots \overline{t_i} \overline{t_1} \dots \overline{t_{i-1}} \overline{t_i} \dots \overline{t_{j-1}} t_{i-1} \dots t_1(x)$$

$$= \overline{t_2} \dots \overline{t_i} \overline{t_1} \dots \overline{t_{i-1}} \overline{t_i} t_{i-1} \dots t_1(x) \quad \text{by } (ii)_a \text{ and } (0)$$

$$= \overline{t_2} \dots \overline{t_i} \overline{t_1} \dots \overline{t_{i-2}} t_i \overline{t_{i-1}} \overline{t_i} t_{i-2} \dots t_1(x) \quad \text{by } (ii)_a$$

$$= \overline{t_2} \dots \overline{t_i} \overline{t_i} \overline{t_1} \dots \overline{t_{i-2}} \overline{t_{i-1}} t_{i-2} \dots t_1(x) \quad \text{by } (ii)_a \text{ and } (0)$$

$$= \overline{t_2} \dots \overline{t_{i-1}} \overline{t_1} \dots \overline{t_{i-3}} t_{i-1} \overline{t_{i-2}} \overline{t_{i-1}} t_{i-3} \dots t_1(x) \quad \text{by } (ii)_a$$

$$\vdots$$

$$= \overline{t_2} \overline{t_1} \overline{t_2} t_1(x)$$

$$= \overline{t_2} t_2 \overline{t_1} \overline{t_2}(x) \quad \text{by } (ii)_a$$

$$= \overline{t_1}(x) \quad \text{by } (0).$$

Thus, $(ii)_d$ is equivalent to $[\overline{t_1}(x), x] \in H'_0$. But, by Lemma 2.4, we have

$$[\overline{t_1}(x), x] = \overline{t_1} x t_1 x \overline{t_1} \overline{x} t_1 \overline{x} = \overline{t_1}^2 x t_1^2 \overline{x}.$$

Then, relations $(ii)_b$ and $(iii)_{a-b}$ yield $(ii)_d$.

Relation (*ii*)_e. For $i \ge j+1$, relations $(ii)_a$ and (0) give

$$t_i(x_i) = t_i t_{i-1} \dots t_1(x) = t_{i-1} \dots t_1 t_i(x) = x_i$$

i.e.

$$t_i, x_j] = 1 \in H'_0$$
.

So,

For $i \le j-2$, the same relations give

$$t_{i}(x_{j}) = t_{i} t_{j-1} \dots t_{1}(x)$$

$$= t_{j-1} \dots t_{i} t_{i+1} t_{i} \dots t_{1}(x)$$

$$= t_{j-1} \dots t_{i+1} t_{i} t_{i+1} \dots t_{1}(x)$$

$$= t_{j-1} \dots t_{i+1} t_{i} \dots t_{1} t_{i+1}(x)$$

$$= t_{j-1} \dots t_{i+1} t_{i} \dots t_{1}(x) = x_{j}.$$

Thus $[t_i, x_j] = 1 \in H'_0$.

Relation (*iv*). The relation (0) shows that s commutes with $(a_i)_{2 \le i \le g+r-1}$, $(t_i)_{2 \le i \le g-1}$, $(d_{ij})_{3 \le i < j \le 2g+r-1}$.

By Corollary 1.4, one has $\psi(\xi') = \overline{t_1} d_{2,4} \overline{a_1}(x) = b_2 a_2 a_2 b_2$ and so (0) implies that s commutes with $\psi(\xi')$.

Chain relations and Lemma 1.2 show that $\psi(\varphi_i) = a_1^2 (x d_{2,i})^2 \overline{a_{k_i}}$ is equal to f_i . Thus, s commutes with $\psi(\varphi_i)$ by (0).

Relation (v). $s^2 = a_1 x a_1 \in H'$.

Relation (*vi*). Suppose first that $m = \psi(h) \in \{a_1; d_{1,3}; d_{1,2g+1}, \dots, d_{1,2g+r-1}\}$. Then

$$m a_1 = a_1 m$$
 by (0) and $b_1 m b_1 = m b_1 m$ by (1).

$$s m s m s = a_1 b_1 a_1 m a_1 b_1 a_1 m a_1 b_1 a_1 = a_1 b_1 a_1 a_1 m b_1 m a_1 a_1 b_1 a_1$$

= $a_1 x m x a_1 \in H'$.

Suppose next that

$$m \in \{d_{1,4} d_{1,3} \overline{a_1} ; d_{1,5} d_{1,3} \overline{a_1} ; d_{1,2g+1} d_{1,3} \overline{a_1}, \dots, d_{1,2g+r-1} d_{1,3} \overline{a_1} ; d_{1,k} d_{1,j} \overline{a_1} \}$$

for $2g+1 \le j < k \le 2g+r-1\}$;

m can be seen as a product $d_{1,k} d_{1,j} \overline{a_1}$ with j=3 and $k \in \{4, 5, 2g+1, \ldots, 2g+r-1\}$ or $2g+1 \leq j < k \leq 2g+r-1$.

If μ_{jk} is a curve in $\Sigma \setminus \{\alpha_i\} \subset \Sigma$ which encircles D_1 , D_j and D_k , the lantern $L(\delta_{j,k}, \delta_{1,k})$ yields

$$a_1 a_{i_j} a_{i_k} m_{jk} = d_{1,k} d_{1,j} d_{jk}.$$

Thus, $m = a_{i_j} a_{i_k} m_{jk} \overline{d_{jk}}$ and

$$s m s m s = (a_1 b_1 a_1) (\overline{d_{jk}} a_{i_j} a_{i_k} m_{jk}) (a_1 b_1 a_1) (\overline{d_{jk}} a_{i_j} a_{i_k} m_{jk}) (a_1 b_1 a_1)$$

$$= \overline{d_{jk}}^2 a_{i_j}^2 a_{i_k}^2 a_1 b_1 a_1 a_1 m_{jk} b_1 m_{jk} a_1 a_1 b_1 a_1 \text{ by } (0)$$

$$= \overline{d_{jk}}^2 a_{i_k}^2 a_{i_k}^2 a_1 x m_{jk} x a_1 \text{ by } (1).$$

It is already known that a_1, a_{i_j}, a_{i_k}, x and d_{jk} are elements of H'; (4) shows that $m_{jk} \in H'$. Therefore, $s m s m s \in H'$.

Relation (*vii*). If $h = \tau_{\alpha_1} \tau_{\delta_2,4}^{-1} \tau_{\varepsilon_1} \tau_{\alpha_2} \tau_{\varepsilon_1}$, then $h^{-1}(\alpha_1) = \alpha_2$ and $h^{-1}(\beta_1) = \beta_2$. Thus, by Corollary 1.4, one has $\overline{m}(a_1) = a_2$ and $\overline{m}(b_1) = b_2$, where $m = \psi(h) = a_1 d_{2,4} t_1$, so $\overline{m}(s) = a_2 b_2 a_2$. Then, s commutes with $\overline{m}(s)$ by (0).

Relation (*viii*). Set $m_i = \psi(h_i)$ and $t = \psi(\theta) = \psi(\varphi_3)^{-1} x a_1^2 a_2(t_1)$. We have seen that $\psi(\varphi_3) = f_3$ and so, using Corollary 1.4, we can see that $t = e a_1 a_2 e$ where ε is the curve shown in Figure 16.

Recall that by relation (2) (see the proof of Lemma 1.2), one has $a_1 t_1 = t_1 a_2$ and $a_2 t_1 = t_1 a_1$. Then one can compute:

```
s \, m_5 \, s \, m_4 \, s \, m_3 \, s \, m_2 \, s \, m_1 \, s
         = (a_1 b_1 a_1)(\overline{a_1} d_{2.3})(a_1 b_1 a_1)(d_{2.3} \overline{a_1} \overline{t})(a_1 b_1 a_1)(\overline{a_1} d_{2.3})
               \times (a_1 b_1 a_1)(\overline{d_{2,3}} t)(a_1 b_1 a_1)(\overline{a_1} d_{2,3})(a_1 b_1 a_1)
         = a_1 b_1 a_1 d_{2.3} b_1 d_{2.3} \overline{t} a_1 b_1 d_{2.3} a_1 b_1 a_1 \overline{d_{2.3}} t a_1 b_1 d_{2.3} a_1 b_1 a_1  by (0)
         = (a_1 b_1 d_{2.3})^2 \overline{t} b_1 a_1 b_1 d_{2.3} b_1 \overline{d_{2.3}} a_1 t a_1 b_1 d_{2.3} a_1 b_1 a_1 by (0) and (1)
         = (a_1 b_1 d_{2.3})^2 \overline{t} b_1 a_1 d_{2.3} b_1 d_{2.3} \overline{d_{2.3}} a_2 t a_2 b_1 d_{2.3} a_1 b_1 a_1 by (1) and (2)
         = (a_1 b_1 d_{2.3})^2 \overline{t} a_2 b_1 d_{2.3} a_1 b_1 e a_1 a_2 e b_1 d_{2.3} a_1 b_1 a_1 a_2  by (0)
         = (a_1 b_1 d_{23})^2 a_1 \overline{t} b_1 d_{23} a_1 e b_1 a_1 b_1 a_2 e d_{23} a_1 b_1 a_1 a_2 by (0) and (2)
         = (a_1 b_1 d_{2,3})^2 a_1 \overline{t} b_1 d_{2,3} a_1 e a_1 b_1 a_1 a_2 e d_{2,3} a_1 b_1 a_1 a_2 by (1)
         = (a_1 b_1 d_2)^2 a_1 \overline{t} b_1 d_2 a_1 e a_1 e b_1 a_1 a_2 e d_2 a_1 b_1 a_1 a_2  by (1)
         = (a_1 b_1 d_{2,3})^2 a_1 \overline{e} \overline{a_1} \overline{a_2} \overline{e} b_1 d_{2,3} e a_1 b_1 t d_{2,3} a_1 b_1 a_1 a_2 \text{ by } (0)
         = (a_1 b_1 d_{23})^2 a_1 \overline{e} \overline{a_1} \overline{a_2} b_1 d_{23} a_1 b_1 t d_{23} a_1 b_1 a_1 a_2 by (0)
         = (a_1 b_1 d_{23})^2 a_1 \overline{e} \overline{a_1} b_1 a_1 d_{23} b_1 \overline{a_2} t d_{23} a_1 b_1 a_1 a_2 by (0)
         = (a_1 b_1 d_{23})^2 a_1 \overline{e} b_1 a_1 \overline{b_1} d_{23} b_1 t \overline{a_1} d_{23} a_1 b_1 a_1 a_2 by (1) and (2)
         = (a_1 b_1 d_{2.3})^2 a_1 b_1 \overline{e} a_1 d_{2.3} b_1 \overline{d_{2.3}} t d_{2.3} b_1 a_1 a_2 by (0) and (1)
         = (a_1 b_1 d_{23})^2 a_1 b_1 d_{23} \overline{e} a_1 b_1 t b_1 a_1 a_2 by (0)
         = (a_1 b_1 d_{2,3})^3 \overline{e} a_1 b_1 e a_1 a_2 e b_1 a_1 a_2
         = (a_1 b_1 d_{2,3})^3 \overline{e} a_1 e b_1 a_1 b_1 a_2 e a_1 a_2 by (0)
         = (a_1 b_1 d_{23})^3 a_1 e \overline{a_1} a_1 b_1 a_1 a_2 e a_1 a_2 by (1)
         = (a_1 b_1 d_{2,3})^3 a_1 b_1 e a_1 a_2 e a_1 a_2 by (0)
         =(a_1 b_1 d_{2.3})^4 \overline{d_{2.3}} t a_1 a_2
         = a_1^2 (x d_{2,3})^2 \overline{d_{2,3}} t a_1 a_2 by Lemma 1.2.
```

It is known that a_i , x and $d_{2,3}$ are elements of H'. Since $\psi(\varphi_3) = a_1^2 (x d_{2,3})^2 \overline{a_{k_i}} \in H'$, one has $t = \psi(\theta) = \psi(\varphi_3) x a_1^2 a_2(t_1) \in H'$. This concludes the proof of (viii).

This ends the proof that $\psi : \mathcal{M} \to G$ is a homomorphism. One has $\varphi \psi = Id_{\mathcal{M}}$. So, to prove Theorem A, it is enough to show that ψ is onto. Let α be a s.c.c. in Σ . We have to show that a is in K, the subgroup of G generated by $\{a_i's, d_{ij}'s, x, t_i's, s\}$ (one has $\psi(\mathcal{M}) = K$).

First case: α does not separate Σ . There exists a diffeomorphism h of Σ such that $h(\alpha_1) = \alpha$. If we decompose h into a product of elements of $\{\alpha_i$'s, δ_{ij} 's, ξ , θ_i 's, σ } (these elements generate \mathcal{M} by Corollary 2.2) and set $m = \psi(h)$, then Corollary 1.4 implies $a = m(a_1) \in K$.

Second case: α separates in Σ . Denote by g_{α} the genus of the component of $\Sigma \setminus \alpha$ which does not contain δ , and by r_{α} its number of boundary components. Up to diffeomorphism, α is the curve shown in Figure 19.

If, in $\Sigma \setminus (\bigcup \alpha_i)$, α encircles only one hole, then $\alpha = \alpha_{g+1}$ and $a \in K$. If α encircles two holes, then α is one of the curves $\delta_{2g-1,2g}$ or $\delta_{2g+1,2g+2}$ and $a \in K$.

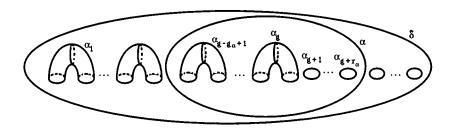


Figure 19

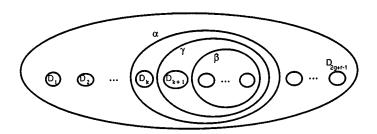


Figure 20

K. Otherwise, one can find three curves β , γ , λ verifying the lantern relation $a \, a_{i_k} \, a_{i_{k+1}} \, b = d_{k,k+1} \, c \, l$ in G and such that if one of them separates, it encircles fewer holes than α does (see Figure 20). Then we conclude, using the first case and an inductive argument.

We have proved the first part of Theorem A when $r \ge 1$. If r = 0, it is clear that the presentation given by Wajnryb in [W] together with Theorem 1.3 implies Theorem A. The last statement of the theorem was proven in Theorem 1.6.

2.2. **Proof of Theorem B.** Harer proved in [H] that, when $g \geq 3$, $\mathcal{M}_{g,r}$ is generated by twists along non-separating curves. The following two lemmas tell us what happens in genus one and two.

Lemma 2.5. For any $r \ge 0$, the twists on non-separating curves generate $\mathcal{M}_{2,r}$.

Proof. We only need to prove that a twist on a separating curve can be decomposed into a product of twists on non-separating curves. So, let α be a separating curve in $\Sigma_{2,r}$.

First case. One of the two components of $\Sigma \setminus \alpha$ has genus zero. Then the star $(\alpha_1, \alpha_2, \alpha_3, \beta)$ (see Figure 21) gives $(\tau_{\alpha_1} \tau_{\alpha_2} \tau_{\alpha_3} \tau_{\beta})^3 = \tau_{\alpha} \tau_{\delta_1} \tau_{\delta_2}$. Second case. The two components of $\Sigma \setminus \alpha$ have genus one. The chain $(\alpha_1, \beta, \alpha_2)$

(see Figure 22) gives $(\tau_{\alpha_1}\tau_{\beta}\tau_{\alpha_2})^4 = \tau_{\alpha}\tau_{\delta}$ and we conclude using the first case. \square

Lemma 2.6. For any $r \ge 1$, $\mathcal{M}_{1,r}$ is generated by twists on r-1 boundary curves together with those on non-separating curves.

This lemma will be proved in Section 5.

We shall now prove Theorem B. From now on, Σ will denote a surface of genus $g \geq 2$ with r boundary components $(r \geq 0)$. Let G' be a group with generators

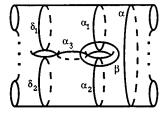


Figure 21

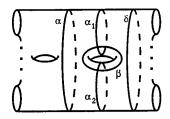


Figure 22

 $\{a \equiv a_{\alpha} / \alpha \text{ non-separating s.c.c. in } \Sigma\}$ and relations (I)', (II)' and (III)'. Since G' is a quotient of S, the relations which have been shown in Section 1 will be true in G'. In particular, all lanterns, stars and chains are equal to one if the curves involved do not separate (Theorem 1.6).

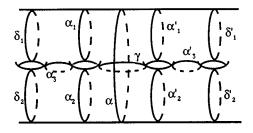
Define $\varphi: G' \to \mathcal{M}$ by $\varphi(a) = \alpha$. φ is clearly a homomorphism. Harer's result and Lemma 2.5 show that φ is onto. We shall construct an inverse morphism $\psi: \mathcal{M} \to G'$. To do this, we consider \mathcal{M} given by the presentation of Theorem A. So, let α be a s.c.c. in Σ . If α does not separate, we set $\psi(\alpha) = a$. Otherwise, there are the two following cases.

First case. One of the two components of $\Sigma \setminus \alpha$ has genus greater than or equal to two. Consider the curves shown in Figure 21 and define $\psi(\alpha)$ by $\psi(\alpha) = (a_1 a_2 a_3 b)^3 \overline{d_1} \overline{d_2}$. We have to show that $\psi(\alpha)$ is independent of the choice of the star. So, let $(\alpha'_1, \alpha'_2, \alpha'_3, \beta')$ be a second star and denote $(a_1 a_2 a_3 b)^3 \overline{d_1} \overline{d_2}$ by a and $(a'_1 a'_2 a'_3 b')^3 \overline{d'_1} \overline{d'_2}$ by a'. We want to show that a = a'.

If all the curves involved lie in the same component Σ_1 of $\Sigma \setminus \alpha$, there is a diffeomorphism h of Σ_1 which sends the first star onto the second one fixing α (this is a consequence of the classification of surfaces). Decompose h into a product of twists on non-separating curves in Σ_1 (it can be done since Σ_1 has genus greater than or equal to two) and extend it to Σ by the identity. Then, if m denotes the word of G' associated to h, one has a' = m(a) using Corollary 1.4. But if γ is a curve in the decomposition of h, then γ and α are disjoint. So, one has

$$\gamma = \tau_{\alpha}(\gamma) = (\tau_{\alpha_1}\tau_{\alpha_2}\tau_{\alpha_3}\tau_{\beta})^4\tau_{\delta_1}^{-1}\tau_{\delta_2}^{-2}(\gamma)$$

and by Corollary 1.4, a(c)=a. This proves that m commutes with a and so a'=a. We suppose now that the two stars lie in distinct components of $\Sigma \setminus \alpha$ (see Figure 23).



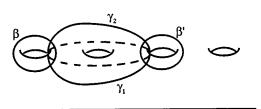


Figure 23

By Lemma 1.7 and stars and chains relations E_0 and C_0 , one has

$$(c b a_1 a_2 b c)(a_3 b a_1 a_2 b a_3) = a'_1 a'_2 d_1 d_2,$$

$$(c\,b'\,a_1'\,a_2'\,b'\,c)(a_3'\,b'\,a_1'\,a_2'\,b'\,a_3') = a_1\,a_2\,d_1'\,d_2'\,.$$

Thus, we obtain, using Lemma 1.2 and (0),

$$a = (a_1 a_2 a_3 b)^3 \overline{d_1} \overline{d_2}$$

 $= [(a_1 \, a_2)(b \, a_1 \, a_2 \, b)(a_3 \, b \, a_1 \, a_2 \, b \, a_3)][(a_1' \, a_2')(\overline{a_3} \, \overline{b} \, \overline{a_1} \, \overline{a_2} \, \overline{b} \, \overline{a_3})(\overline{c} \, \overline{b} \, \overline{a_1} \, \overline{a_2} \, \overline{b} \, \overline{c})]$

$$= a_1 a_2 a'_1 a'_2 [b a_1 a_2 b \overline{c} \overline{b} \overline{a_1} \overline{a_2} \overline{b}] \overline{c}$$

and, similarly,

$$a' = (a_1' \, a_2' \, a_3' \, b')^3 \overline{d_1'} \, \overline{d_2'} = a_1' \, a_2' \, a_1 \, a_2 \, [b' \, a_1' \, a_2' \, b' \, \overline{c} \, \overline{b'} \, \overline{a_1'} \, \overline{a_2'} \, \overline{b'}] \, \overline{c} \, .$$

But one can check that $\tau_{\beta}\tau_{\alpha_1}\tau_{\alpha_2}\tau_{\beta}(\gamma) = \tau_{\beta'}\tau_{\alpha'_1}\tau_{\alpha'_2}\tau_{\beta'}(\gamma)$. So, if γ' denotes this curve, one has (by Corollary 1.4)

$$a = a_1 a_2 a'_1 a'_2 \overline{c'} \overline{c} = a'$$
.

Lemma 2.7. Let δ be a separating curve in Σ such that $\Sigma \setminus \delta$ has a component of genus greater than two. Let h be a diffeomorphism of Σ which is decomposed into a product of twists along non-separating curves. Then, if $\delta' = h(\delta)$ and m is the word associated to h in G', one has $\psi(\delta') = m\psi(\delta)\overline{m}$.

Proof. Let $E=(\alpha_1,\alpha_2,\alpha_3,\beta)$ be a star such that $\psi(\delta)=(a_1a_2a_3b)^3\overline{d_1}\,\overline{d_2}$ (Figure 21). Then, if $E'=(\alpha'_1,\alpha'_2,\alpha'_3,\beta')$ is the image of E by h, one has $\psi(\delta')=(a'_1a'_2a'_3b')^3\overline{d'_1}\,\overline{d'_2}$. Furthermore, Corollary 1.4 gives $a'_k=m(a_k),\ b'=m(b)$ and $d'_k=m(d_k)$, which imply the required result.

Second case. The two components of $\Sigma \setminus \alpha$ have genus one. Consider the curves shown in Figure 22 and define $\psi(\alpha)$ by $\psi(\alpha) = (a_1ba_2)^4 \overline{\psi(\delta)}$ (according to the first case, $\psi(\delta)$ is well defined). We have to show that $\psi(\alpha)$ is independent of the choice

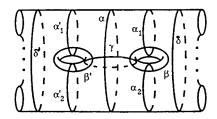


Figure 24

of the chain. So, let $(\alpha'_1, \beta', \alpha'_2)$ be a second chain and denote $(a_1ba_2)^4 \overline{\psi(\delta)}$ by a and $(a'_1b'a'_2)^4 \overline{\psi(\delta')}$ by a'.

If the two chains lie in the same component Σ_1 of $\Sigma \setminus \alpha$, there is a diffeomorphism h of Σ_1 which sends one of the two chains to the other one fixing α . By Lemma 2.6, one can decompose h into a product of twists along non-separating curves or boundary curves. But since a twist on a boundary curve is central, one can suppose that h is a product of twists along only non-separating curves. Extend h to Σ by identity. Then, if m is the word in G' corresponding to the decomposition of h, one has by Corollary 1.4 and Lemma 2.7 a' = m(a). At last, since all the curves involved in the decomposition of m are disjoint from α , m commutes with a by Corollary 1.4.

We now suppose that the chains lie in distinct components of $\Sigma \setminus \alpha$ (Figure 24). We set

$$X_1 = a_1 a_2$$
, $X_2 = b X_1 b$, $X_3 = c X_2 c$, $X'_1 = a'_1 a'_2$,
 $X'_2 = b' X'_1 b'$, and $X'_3 = c X'_2 c$.

Then, one has, using Lemma 1.2, $a = X_1^2 X_2^2 \overline{\psi(\delta)}$ with $\psi(\delta) = X_1 X_2 X_3 \overline{a_1'} \overline{a_2'}$ and $a' = X_1'^2 X_2'^2 \overline{\psi(\delta')}$ with $\psi(\delta') = X_1' X_2' X_3' \overline{a_1} \overline{a_2}$. Thus,

$$a = (X_1 X_2)^2 \overline{X_1} \overline{X_2} \overline{X_3} X_1' = X_1 X_2 \overline{c} \overline{X_2} \overline{c} X_1'$$
 and $a' = X_1' X_2' \overline{c} \overline{X_2'} \overline{c} X_1$.

But since $\tau_{\beta}\tau_{\alpha_1}\tau_{\alpha_2}\tau_{\beta}(\gamma) = \tau_{\beta'}\tau_{\alpha'_1}\tau_{\alpha'_2}\tau_{\beta'}(\gamma)$, by Corollary 1.4 we have $X_2(c) = X_2'(c)$. Thus, we obtain $a = X_1 X_2' \overline{c} \overline{X_2'} \overline{c} X_1' = a'$.

We have proved that $\psi: \mathcal{M} \to G'$ is well defined. It remains to prove that ψ is a homomorphism. To do this, it is enough to show that the relations (I) and (IV) are mapped by ψ into true relations in G'.

The braids. Let λ and μ be two curves in Σ , $\nu = \tau_{\mu}(\lambda)$. We have to prove that $\psi(\nu) = \psi(\mu)\psi(\lambda)\psi(\mu)^{-1}$. This is shown by Corollary 1.4 if λ does not separate. Otherwise, if a component of $\Sigma \setminus \lambda$ has genus greater than two, the relation is still true by Lemma 2.7.

Finally, let us suppose that λ separates and that the two components of $\Sigma \setminus \lambda$ have genus one. Let $C(\alpha_1, \beta, \alpha_2)$ be a chain such that $\psi(\lambda) = (a_1 b a_2)^4 \overline{\psi(\delta)}$ (see Figure 22) and denote by α'_1 , β' , α'_2 and δ' the respective image of α_1 , β , α_2 and δ under τ_{μ} . Then, one has $\psi(\nu) = (a'_1 b' a'_2)^4 \overline{\psi(\delta')}$.

But there are some non-separating curves $\varepsilon_1, \ldots, \varepsilon_p$ such that $\psi(\mu)$ is equal to the product $e_1 \ldots e_p$. Thus, by Corollary 1.4, one has $a'_k = \psi(\mu)(a_k)$, $b' = \psi(\mu)(b)$ and, by Lemma 2.7, $\psi(\delta') = \psi(\mu)(\psi(\delta))$. So, we obtain $\psi(\nu) = \psi(\mu)\psi(\lambda)\psi(\mu)^{-1}$.

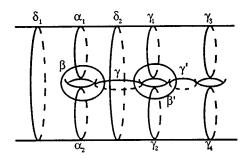


Figure 25

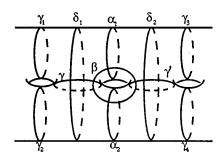


Figure 26

Remark. Since the braids relations are mapped by ψ into true relations, one has in G', for any disjoint s.c.c. α and β in Σ , the relation

$$\psi(\alpha)\psi(\beta) = \psi(\beta)\psi(\alpha).$$

Lemma 2.8. The chain relations are satisfied in G'.

Proof. Let $(\alpha_1, \beta, \alpha_2)$ be a chain C, and δ_1 and δ_2 its boundary components. If δ_1 and δ_2 do not separate, the relation is satisfied by (II)' and Theorem 1.6. So, we suppose that δ_1 and δ_2 separate in Σ . If g is equal to two, the relation is satisfied by definition of $\psi(\delta_k)$. And when $g \geq 3$, two different cases occur, which are described by Figures 25 and 26 (we have to consider the second case only if g=3).

First case (Figure 25). The definition of $\psi(\delta_k)$ gives $\psi(\delta_1) = X_1 X_2 X_3 \overline{Y_1}$ and $\psi(\delta_2) = Y_1 Y_2 Y_3' \overline{c_3} \overline{c_4}$, where

$$X_1 = a_1 a_2,$$
 $X_2 = b X_1 b,$ $X_3 = c X_2 c,$
 $Y_1 = c_1 c_2,$ $Y_2 = b' Y_1 b',$ $Y_3' = c' Y_2 c'.$

Furthermore, if $Y_3=cY_2c$, one has by Lemma 1.7 $Y_3Y_3'=a_1a_2c_3c_4$. Thus, we obtain

$$\psi(\delta_1)\psi(\delta_2) = X_1 X_2 X_3 Y_2 Y_3' \overline{c_3} \overline{c_4} = (X_1 X_2 X_3 Y_2)(\overline{Y_3} X_1)$$
$$= X_1^2 X_2^2 \overline{X_2} c X_2 c Y_2 \overline{c} \overline{Y_2} \overline{c}.$$

At last, since $\overline{X_2}(c) = cY_2(c)$ (Corollary 1.4), we have $X_1^2 X_2^2 = \psi(\delta_1) \psi(\delta_2)$.

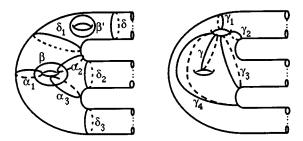


Figure 27

Second case (Figure 26). Set $X_1 = a_1 a_2$, $X_2 = b X_1 b$, $X_3 = c X_2 c$ and $X_3' = c' X_2 c'$. Then, by definition, we have

$$\psi(\delta_1) = X_1 X_2 X_3' \overline{c_3} \overline{c_4}$$
 and $\psi(\delta_2) = X_1 X_2 X_3 \overline{c_1} \overline{c_2}$

and so

$$\psi(\delta_1)\psi(\delta_2) = X_1^2 X_2^2 X_3' X_3 \overline{c_1} \overline{c_2} \overline{c_3} \overline{c_4}.$$

Then, using the equality $X_3'X_3 = c_1 c_2 c_3 c_4$ (given by Lemma 1.7), one obtains the required result.

The stars. Let $(\alpha_1, \alpha_2, \alpha_3, \beta)$ be a star E in Σ , and let δ_1 , δ_2 , and δ_3 be the boundary components. If all these curves do not separate Σ , E is satisfied in G' by (II)', (III)' and Theorem 1.6. If only one curve δ_i separates, E is satisfied by definition of $\psi(\delta_i)$. So, let us suppose that δ_1 , δ_2 and δ_3 separate Σ . Since $g \geq 2$, one can suppose that the component of $\Sigma \setminus \delta_1$ which does not contain δ_2 is of genus greater than or equal to one. Consider the curves shown on Figure 27, and set

$$X_1 = a_3 c$$
, $X_2 = b X_1 b$, $X_3 = a_1 X_2 a_1$, $X_3' = a_2 X_2 a_2$,
 $Y_1 = c_1 c_2$, $Y_2 = b' Y_1 b'$, $Y_3 = c Y_2 c$.

By definition of $\psi(\delta_2)$, $\psi(\delta_3)$ and $\psi(\delta)$, one has

$$X_1 X_2 X_3 = c_1 c_3 \psi(\delta_3), \ X_1 X_2 X_3' = c_2 c_4 \psi(\delta_2), \ Y_1 Y_2 Y_3 = a_1 a_2 \psi(\delta)$$

and Lemma 2.8 gives $X_1^2 X_2^2 = c_3 c_4$ and $Y_1^2 Y_2^2 = \psi(\delta_1) \psi(\delta)$. From these relations we obtain

$$\begin{array}{rclcrcl} \psi(\delta_2)\psi(\delta_3) & = & X_1\,X_2\,X_3'\,\overline{c_2}\,\overline{c_4}\,X_1\,X_2\,X_3\,\overline{c_1}\,\overline{c_3} \\ & = & X_1^2X_2^2\,\overline{c_1}\,\overline{c_2}\,\overline{c_3}\,\overline{c_4}\,X_3\,X_3' & \text{by } (\mathcal{B}) & \text{and Lemma } 1.2 \\ & = & \overline{c_1}\,\overline{c_2}\,(a_1\,b\,a_3\,c\,b\,a_1)(a_2\,b\,a_3\,c\,b\,a_2) \\ & = & \overline{c_1}\,\overline{c_2}\,(c\,b\,a_1\,a_2\,b\,c)(a_3\,b\,a_1\,a_2\,b\,a_3) & \text{by } (\mathcal{B}), \\ \psi(\delta_1)\psi(\delta_2)\psi(\delta_3) & = & (Y_1^2Y_2^2\,\psi(\delta)^{-1})\overline{c_1}\,\overline{c_2}\,(c\,b\,a_1\,a_2\,b\,c)(a_3\,b\,a_1\,a_2\,b\,a_3) \\ & = & Y_1^2Y_2^2\,(\overline{Y_1}\,\overline{Y_2}\,\overline{Y_3}\,a_1\,a_2)\,\overline{Y_1}\,(c\,b\,a_1\,a_2\,b\,c)(a_3\,b\,a_1\,a_2\,b\,a_3) \\ & = & a_1\,a_2\,Y_2\,\overline{c}\,\overline{Y_2}\,\overline{c}\,(c\,b\,a_1\,a_2\,b\,c)(a_3\,b\,a_1\,a_2\,b\,a_3) & \text{by } (0). \end{array}$$

Now, set $Z_1 = a_1 a_2$, $Z_2 = b Z_1 b$ and $Z_3 = a_3 Z_2 a_3$. Then, using Corollary 1.4 one can check that $Y_2(c) = Z_2(c)$. Thus, we obtain

$$\psi(\delta_1)\psi(\delta_2)\psi(\delta_3) = Z_1 \left[Z_2 \,\overline{c} \,\overline{Z_2} \,\overline{c} \right] \left[c \,Z_2 \,c \right] Z_3 = Z_1 \,Z_2 \,Z_3 \,.$$

Lemma 1.2 shows that this last relation is the star E.

This proves that ψ is a homomorphism. One has clearly $\psi \circ \varphi = \operatorname{Id}_{G'}$ so φ is a monomorphism from G' to \mathcal{M} . Since φ is onto, this concludes the proof of Theorem B.

3. Mapping class group with p_1 -structure

A Topological Quantum Field Theory is a functor from a cobordism category to a category of modules with suitable properties (see for instance [A1]). When we consider the cobordism category of 2-dimensional surfaces and 3-dimensional cobordisms, this functor produces projective representations of mapping class groups. One can linearize this representation by considering a certain central extension (G. Masbaum and J. Roberts describe some of these extensions in [M-R]).

In [BHMV2], the authors construct a TQFT V_p from the Kauffman bracket. In order to solve the framing anomaly, all the manifolds are equipped with p_1 -structure. The central extension obtained this way is the mapping class group with p_1 -structure and the goal of this section is to give a presentation of this group.

3.1. **Definitions.**

Definition 3.1. Let X be the homotopy fiber of the map $p_1: BO \to K(\mathbb{Z}, 4)$ corresponding to the first Pontryagin class of the universal stable bundle γ over BO. A p_1 -structure on a manifold M is a lifting of a classifying map of the stable tangent bundle of M to X.

Definition 3.2. A homotopy between two p_1 -structures Φ_0 and Φ_1 on a manifold M is a p_1 -structure Φ on $M \times I$ such that $\Phi_{|M \times 0}$ and $\Phi_{|M \times 1}$ coincide respectively with Φ_0 and Φ_1 .

If N is a submanifold of M, one can define a homotopy rel N in the obvious way.

Remarks. (i) A p_1 -structure up to homotopy is the analogue of a spin structure, where the second Stiefel-Whitney class w_2 is replaced by the first Pontryagin class n_1 .

(ii) We consider actual p_1 -structure rather than the homotopy class of such a structure. This allows manifolds with p_1 -structure to be glued along parts of their boundary.

For the relevant classical algebraic topology or structure on manifolds, see for instance [S] or [Sw]. The following fact is easily proven using obstruction theory.

Proposition 3.3. If M is a manifold and N a submanifold of M, then, the set of homotopy class rel N of p_1 -structure on M is affinely isomorphic to $H^3(M, N; \mathbb{Z})$.

Thus, manifolds of dimension less than or equal to two admit a unique p_1 structure up to homotopy, and the set of homotopy class rel boundary of p_1 structure on an oriented, compact, connected 3-manifold is affinely isomorphic to \mathbb{Z} .

Now, let Σ be an oriented, connected surface and φ a given p_1 -structure on Σ . We shall define \mathcal{M}_{Σ} , the mapping class group with p_1 -structure. For $f \in \mathcal{M}_{\Sigma}$, we provide $\partial(\Sigma \times I)$ with the following p_1 -structure: $\varphi \circ f$ on $\Sigma \times 0$ and φ on $(\Sigma \times 1 \cup \partial \Sigma \times I)$. This can be extended to $\Sigma \times I$, and P_f , the set of homotopy class of such extensions, is affinely isomorphic to \mathbb{Z} .

Definition 3.4. The mapping class group with p_1 -structure is the set of all pairs (f, F) where $f \in \mathcal{M}_{\Sigma}$ and $F \in P_f$, together with the obvious composition.

Remark. Atiyah ([A2]) has previously defined this group in a different way.

The forgetful map μ is an epimorphism from \mathcal{M}_{Σ} to \mathcal{M}_{Σ} , with kernel \mathbb{Z} . Let us denote by u a generator of $Ker \mu$. Since to modify a given p_1 -structure on $\Sigma \times I$, it is enough to change it in a small 3-ball, u is in the center of \mathcal{M}_{Σ} . So, we obtain the following central extension of \mathcal{M}_{Σ} :

$$(**) 0 \longrightarrow \mathbb{Z} \longrightarrow \overset{\sim}{\mathcal{M}} \overset{\mu}{\longrightarrow} \mathcal{M} \longrightarrow 1.$$

Note that this extension is natural in the following sense: if Σ' is a subsurface of Σ , then we have the following commutative diagram, where i_* and i_{\sharp} are the obvious morphisms induced by the inclusion i of Σ' in Σ :

$$0 \longrightarrow \mathbb{Z} \longrightarrow \widetilde{\mathcal{M}}_{\Sigma'} \stackrel{\mu'}{\longrightarrow} \mathcal{M}_{\Sigma'} \longrightarrow 1$$

$$\downarrow i_{*} \qquad \downarrow i_{\sharp}$$

$$0 \longrightarrow \mathbb{Z} \longrightarrow \widetilde{\mathcal{M}}_{\Sigma} \stackrel{\mu}{\longrightarrow} \mathcal{M}_{\Sigma} \longrightarrow 1.$$

3.2. **Presentation of** $\widetilde{\mathcal{M}}$. Let τ_{α} be a Dehn twist. We shall construct a canonical lifting $\tilde{\tau}_{\alpha} = (\tau_{\alpha}, A)$. To do this, consider a neighborhood $V \approx S^1 \times I_1$ $(I_1 = [0, 1])$ of α in Σ and define A on $(\Sigma \setminus V) \times I$ by $A(\sigma,t) = \varphi(\sigma)$. We have to extend to $V \times I$ the p_1 -structure on $\partial(V \times I)$ which is equal to $\varphi \circ \tau_\alpha$ on $V \times 0$ and to φ on $(V \times 1 \cup (\partial V) \times I)$.

Now, we paste a copy of $D^2 \times I_1$ to V identifying $S^1 \times I_1$ with V.

- * τ_{α} is a diffeomorphism of $S^1 \times I_1$ which can be extended to $D^2 \times I_1$. * Since $H^p(D^2 \times I_1, S^1 \times I_1; \mathbb{Z}) = 0$ for p = 3 or 4, there is one and only one way to extend $\varphi_{|V}$ to $D^2 \times I_1$ (up to homotopy).

So, we can define a p_1 -structure Φ on $D^2 \times \partial(I_1 \times I)$ which extends the given one on $\partial(V \times I) = S^1 \times \partial(I_1 \times I)$ as follow:

$$\begin{split} &\Phi(x,\tau,t) = \varphi(x,\tau) & \text{for } (x,\tau,t) \in D^2 \times \partial I_1 \times I, \\ &\Phi(x,\tau,0) = \varphi \circ \tau_\alpha(x,\tau) & \text{for } (x,\tau) \in D^2 \times I_1, \\ &\Phi(x,\tau,1) = \varphi(x,\tau) & \text{for } (x,\tau) \in D^2 \times I_1. \end{split}$$

Since $H^p(D^2 \times I_1 \times I, D^2 \times \partial(I_1 \times I); \mathbb{Z}) = 0$ when p is equal to four or three, there is one and only one way to extend Φ to $D^2 \times I_1 \times I$ up to homotopy. We will denote this extension by π_{α} , and we define A on $V \times I$ by $A(\sigma, t) = \pi_{\alpha}(\sigma, t)$. This gives a well defined p_1 -structure A on $\Sigma \times I$, and we will denote by $\tilde{\tau}_{\alpha}$ the element (τ_{α}, A) of \mathcal{M} .

Remark. It is easy to see that when α bounds a disc in Σ , then $\tilde{\tau}_{\alpha} = 1_{\tilde{M}}$.

Since Dehn twists generate \mathcal{M} , the set of all $\tilde{\tau}_{\alpha}$ together with the generator u of \mathbb{Z} generate $\widetilde{\mathcal{M}}$. Because u is central in $\widetilde{\mathcal{M}}$, one has the relation $u\tilde{\tau}_{\alpha} = \tilde{\tau}_{\alpha}u$ for any s.c.c. α in Σ . Theorems 3.7, 3.8 and 3.9 below tell us how braids, lanterns, stars and chains are lifted to $\widetilde{\mathcal{M}}$ by the section $s: \mathcal{M} \to \widetilde{\mathcal{M}}, \ s(\tau_{\alpha}) = \widetilde{\tau}_{\alpha}$. Using these results, we obtain from Theorems A and B the two following presentations of \mathcal{M} .

Notation. If $m \in \mathcal{M}$ is a word $\tau_{\alpha_1} \dots \tau_{\alpha_p}$, we will denote by \widetilde{m} the corresponding word $\tilde{\tau}_{\alpha_1} \dots \tilde{\tau}_{\alpha_p} \in \tilde{\mathcal{M}}$.

Theorem 3.5. For any oriented surface Σ , \mathcal{M}_{Σ} has the following presentation: generators: $\{\tilde{\tau}_{\alpha} / \alpha \text{ s.c.c. in } \Sigma\} \cup \{u\} \text{ (if } \alpha \text{ bounds a disc in } \Sigma, \text{ then } \tilde{\tau}_{\alpha} = 1)$.

<u>relations:</u> (1) For any s.c.c. α in Σ , $\tilde{\tau}_{\alpha}u = u\tilde{\tau}_{\alpha}$.

- (2) $\widetilde{T}=1$ for any braids T_0 , T_1 and T_{2_0} .
- (3) $\widetilde{C} = u^{12}$ for any chain C.
- (4) $\widetilde{L} = 1$ for any lantern L.

If $g \ge 1$, one can replace (3) and (4) by

(5) $\widetilde{E} = u^{12}$ for any star E.

With the non-separating curves, we obtain

Theorem 3.6. For any oriented surface Σ of genus greater than or equal to two, \mathcal{M}_{Σ} has the following presentation:

generators: $\{\tilde{\tau}_{\alpha} / \alpha \text{ non-separating s.c.c. in } \Sigma\} \cup \{u\}$

<u>relations:</u> (1)' For any non-separating s.c.c. α in Σ , $\tilde{\tau}_{\alpha}u = u\tilde{\tau}_{\alpha}$.

- (2)' $\widetilde{T}=1$ for any braids T_0 and T_1 between only non-separating
- curves. (3)' $\widetilde{C}_0 = u^{12}$ for one chain C_0 with non-separating curves.
- (4)' $\widetilde{L_0}=1$ for one lantern L_0 with non-separating curves. When $g \ge 3$, one can replace (3)' or (4)' by

- (5)' $\widetilde{E}_0 = u^{12}$ for one star E_0 (with non-separating curves).
- 3.3. Lifting of the braid relations. The following theorem proves that the braid relations are still true in $\mathcal{M}_{g,r}$, where g and r are non-negative.

Theorem 3.7. Let α be a s.c.c. in Σ , $m = (f, F) \in \widetilde{\mathcal{M}}$ and $\gamma = f(\alpha)$. Then, in $\widetilde{\mathcal{M}}$ we have the relation

$$\tilde{\tau}_{\gamma} = m\tilde{\tau}_{\alpha}\overline{m}$$
.

Proof. Denote the element $m\tilde{\tau}_{\alpha}\overline{m}$ by (τ_{γ},Φ) (see Figure 28) and consider a neighborhood. borhood V of γ in Σ . $V' = f^{-1}(V)$ is a neighborhood of α .

$$\begin{array}{c|c}
F\left(\tau_{\alpha}f^{-1}(\sigma), 3t\right) & A\left(f^{-1}(\sigma), 3t - 1\right) & F\left(f^{-1}(\sigma), 3(1 - t)\right) \\
\varphi \circ \underbrace{f \circ \tau_{\alpha} \circ f^{-1}}_{\tau_{\gamma}} & \varphi \circ \tau_{\alpha} \circ f^{-1} & \varphi \circ f^{-1}
\end{array}$$

$$\Phi \text{ on } \Sigma \times I$$

Figure 28

First step. We shall homotope Φ rel $\partial(\Sigma \times I)$ to a p_1 -structure Ψ on $\Sigma \times I$ such that $\Psi(\sigma,t) = \varphi(\sigma)$ for $\sigma \notin V$. To do this, we have to define a p_1 -structure H on $\Sigma \times I \times I$ such that:

$$\begin{split} H_{|\Sigma\times I\times 0}(\sigma,t,0) = & \, \Phi(\sigma,t) \ , \quad H_{|(\Sigma\setminus V)\times I\times 1}(\sigma,t,1) = & \, \varphi(\sigma) \ , \\ H_{|\Sigma\times 0\times I}(\sigma,0,\theta) = & \, \varphi\circ\tau_{\gamma}(\sigma) \ , \quad H_{|\Sigma\times 1\times I}(\sigma,1,\theta) = & \, \varphi(\sigma) = H_{|\partial\Sigma\times I\times I}(\sigma,t,\theta) \ . \end{split}$$

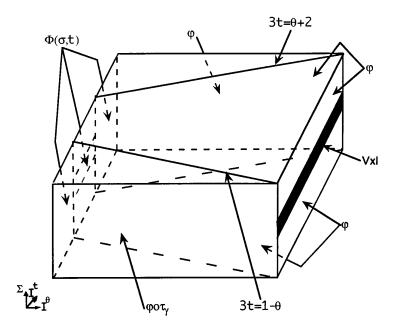


Figure 29

First, we define

$$H(\sigma,t,\theta) = \begin{vmatrix} F(\tau_{\alpha}f^{-1}(\sigma),3t) & \text{if } 3t \leq 1-\theta, \\ F(f^{-1}(\sigma),3(1-t)) & \text{if } 3t \geq 2+\theta, \\ F(f^{-1}(\sigma),1-\theta) & \text{if } 1-\theta \leq 3t \leq 2+\theta \text{ and } \sigma \notin V. \end{vmatrix}$$

Then, it remains us to extend H to $W = \{(\sigma, t, \theta) \in V \times I \times I \text{ such that } 1 - \theta \leq 3t \leq 2 + \theta\}$, which is diffeomorphic to $V \times I \times I$ (see Figure 29; we will identify W with $V \times I \times I$). H is given on $M = (\partial(V \times I) \times I) \cup (V \times I \times 0)$. Since $H^4(W, M) = H^3(W, M) = 0$, there is one and only one way to extend H to W up to homotopy. We define Ψ by $\Psi(\sigma, t) = H(\sigma, t, 1)$.

Second step. To show that $(\tau_{\gamma}, \Psi) = \tilde{\tau}_{\gamma}$, we only need to look at the p_1 -structure on $V \times I$. So, from now on, φ is considered as a p_1 -structure on V and V', and f is considered as a diffeomorphism from V' to V. Consider two copies of $D^2 \times I_1$ (one is denoted $D'^2 \times I_1$) and paste them on V and V'. Extend f to a diffeomorphism from $D'^2 \times I_1$ to $D^2 \times I_1$, and φ to a p_1 -structure on $D^2 \times I_1$ and $D'^2 \times I_1$. Then, we define a p_1 -structure Ξ on $\partial(D^2 \times I_1 \times I)$ by

$$\Xi(x,\tau,t) = \begin{cases} \Psi(x,\tau,t) & \text{if } x \in S^1, \\ \varphi \circ \tau_{\gamma}(x,\tau) & \text{if } t = 0, \\ \varphi(x,\tau) & \text{if } t = 1 \text{ or } \tau \in \{0,1\}. \end{cases}$$

To prove that $(\tau_{\gamma}, \Psi) = \tilde{\tau}_{\gamma}$, it is enough to show that Ξ can be extended to $D^2 \times I_1 \times I$ (see definition of $\tilde{\tau}_{\gamma}$ in 3.2). To do this, we shall find a p_1 -structure K on $D^2 \times I_1 \times I \times I$ such that $K_{|\partial(D^2 \times I \times I) \times 1}$ coincides with Ξ . Then, $K_{|D^2 \times I \times I \times 1}$ will be the extension of Ξ .

We recall that F is a p_1 -structure on $\Sigma \times I$. We shall extend it to $D'^2 \times I_1 \times I$. We consider its restriction to $V' \times I = S^1 \times I_1 \times I$, which we will also denote F.

Since $H^4(D^2 \times I_1 \times I, (S^1 \times I_1 \times I) \cup (D^2 \times I_1 \times \partial I)) = 0$, there exists a p_1 -structure \hat{F} on $D'^2 \times I_1 \times I$ such that $\hat{F}_{|S^1 \times I_1 \times I} = F$, $\hat{F}_{|D'^2 \times I_1 \times 0} = \varphi \circ f$ and $\hat{F}_{|D'^2 \times I_1 \times 1} = \varphi$. Now, we can define K on $M' = \overline{\partial(D^2 \times I_1 \times I \times I)} \setminus D^2 \times I \times I \times I$ by

$$K(x, \tau, t, \theta) = \begin{cases} \pi_{\alpha}(f^{-1}(x, \tau), t) & \text{if } \theta = 0, \\ H(x, \tau, t, \theta) & \text{if } x \in S^{1} \text{ (with } W \equiv S^{1} \times I_{1} \times I \times I), \\ \hat{F}(f^{-1}(x, \tau), 1 - \theta) & \text{if } t = 1 \text{ or } \tau \in \{0, 1\}, \\ \hat{F}(\tau_{\alpha}f^{-1}(x, \tau), 1 - \theta) & \text{if } t = 0. \end{cases}$$

One can check that K coincides with Ξ on $\partial(D^2 \times I_1 \times I) \times 1$; since when p=3 or 4 we have $H^p(D^2 \times I_1 \times I \times I, M') = 0$ K can be extended in a unique way up to homotopy to $D^2 \times I_1 \times I \times I$.

3.4. Lifting of the lantern relations.

Theorem 3.8. Let Σ be a sphere with four holes. If $\alpha_1, \ldots, \alpha_4, \beta_1, \beta_2$ and β_3 are the curves shown in Figure 1, then one has in $\widetilde{\mathcal{M}}_{\Sigma}$:

$$\tilde{\tau}_{\alpha_1}\tilde{\tau}_{\alpha_2}\tilde{\tau}_{\alpha_3}\tilde{\tau}_{\alpha_4} = \tilde{\tau}_{\beta_3}\tilde{\tau}_{\beta_2}\tilde{\tau}_{\beta_1}$$
.

Consequence. Since the extension (**) is natural, the lantern relations will be true in $\widetilde{\mathcal{M}}_{\Sigma}$ for any surface Σ .

Proof. Since $\tau_{\alpha_1}\tau_{\alpha_2}\tau_{\alpha_3}\tau_{\alpha_4} = \tau_{\beta_3}\tau_{\beta_2}\tau_{\beta_1}$, there exists an integer n such that

$$\tilde{\tau}_{\alpha_1}\tilde{\tau}_{\alpha_2}\tilde{\tau}_{\alpha_3}\tilde{\tau}_{\alpha_4} = \tilde{\tau}_{\beta_3}\tilde{\tau}_{\beta_2}\tilde{\tau}_{\beta_1}u^n$$
.

Consider an embedding of Σ in a surface Σ' such that α_4 bounds a disc in Σ' . Then, we have $\tilde{\tau}_{\alpha_4} = 1$ and β_k is isotopic to α_k , thus $\tilde{\tau}_{\beta_k} = \tilde{\tau}_{\alpha_k}$ and $\tilde{\tau}_{\alpha_1} \tilde{\tau}_{\alpha_2} \tilde{\tau}_{\alpha_3} = \tilde{\tau}_{\alpha_3} \tilde{\tau}_{\alpha_2} \tilde{\tau}_{\alpha_1} u^n$, which implies that n = 0.

3.5. Lifting of the star and chain relations.

Theorem 3.9. Let Σ be a surface of genus one with three holes. If α_1 , α_2 , α_3 , β , δ_1 , δ_2 and δ_3 are the curves shown in Figure 2, then, in $\widetilde{\mathcal{M}}_{\Sigma}$, we have the relation:

$$(\tilde{\tau}_{\alpha_1}\tilde{\tau}_{\alpha_2}\tilde{\tau}_{\alpha_3}\tilde{\tau}_{\beta})^3 = \tilde{\tau}_{\delta_1}\,\tilde{\tau}_{\delta_2}\,\tilde{\tau}_{\delta_3}\,u^{12}\,.$$

Consequence. For any surface Σ and any stars E or chain C in Σ , in $\widetilde{\mathcal{M}}_{\Sigma}$ we have the relation $\widetilde{E} = \widetilde{C} = u^{12}$.

Proof. Since the star relations are verified in \mathcal{M} , there exists an integer n such that $(\tilde{\tau}_{\alpha_1}\tilde{\tau}_{\alpha_2}\tilde{\tau}_{\alpha_3}\tilde{\tau}_{\beta})^3 = \tilde{\tau}_{\delta_1}\tilde{\tau}_{\delta_2}\tilde{\tau}_{\delta_3}u^n$. Consider an embedding of Σ in $S^1 \times S^1$ and denote by α the common image of α_1 , α_2 and α_3 . Since each of the three curves δ_1 , δ_2 and δ_3 bounds a disc in $S^1 \times S^1$, the relation becomes

$$(\star) \qquad (\tilde{\tau}_{\alpha}\tilde{\tau}_{\beta}\tilde{\tau}_{\alpha})^4 = u^n.$$

In order to prove that n = 12, we shall use the action of $\widetilde{\mathcal{M}}_{S^1 \times S^1}$ on $V_p = V_p(S^1 \times S^1)$ induced by the TQFT developed in [BHMV2].

First, let us describe V_p . We suppose that $p \ge 4$ and we consider the ring k_p define by

$$k_p = \mathbb{Z}\left[\frac{1}{p}, A, \kappa\right] / (\varphi_{2p}(A), \kappa^6 - u)$$

where $\varphi_{2p}(A)$ is the 2p-th cyclotomic polynomial and $u = A^{-6 - \frac{p(p+1)}{2}}$. Let us denote by $K(D^2 \times S^1)$ (resp. $K(S^1 \times D^2)$) the Jones-Kauffman module of $D^2 \times S^1$ (resp. $S^1 \times D^2$) over k_p . There is a bilinear form

$$\langle , \rangle : K(D^2 \times S^1) \times K(-S^1 \times D^2) \longrightarrow k_p$$

which associates to a pair of banded links L, L' in $D^2 \times S^1$ and $S^1 \times D^2$ the Kauffman bracket of $L \cup L'$ in S^3 , using the standard decomposition

$$D^2 \times S^1 \underset{S^1 \times S^1}{\cup} S^1 \times (-D^2)$$

of S^3 . Then, V_p is the quotient of $K(D^2 \times S^1)$ by the left kernel. It is shown in [BHMV1] that V_p is a k_p -module of dimension [(p-1)/2].

The Dehn twist τ_{α} induces an obvious endomorphism t on $K(D^2 \times S^1)$ which descends to V_p . Similarly, τ_{β} induces an endomorphism on $K(-S^1 \times D^2)$. Considering its adjoint, we obtain a new endomorphism t' on V_p . Then, the actions of $\tilde{\tau}_{\alpha}$ and $\tilde{\tau}_{\beta}$ on V_p coincide respectively with t and t'. By using methods and results of [BHMV1], one can check that $(tt't)^2 = -A^{-6}A^{-p(p-1)/2}$ Id $_{V_p}$ when p is odd. So, since u acts as the multiplication by the scalar κ , (**) implies $A^{-12}A^{-p(p-1)} = \kappa^n$ in k_p . Suppose now that $p \equiv -1 \mod 4$. Then, $\kappa^n = \kappa^{12}$ and, since $\kappa^6 = A^{-6}$, we obtain $1 = \kappa^{6(n-12)} = A^{-6(n-12)}$. Moreover, since A is a primitive 2p-th root of unity, one has $-6(n-12) \equiv 0$ (2p) for all integers $p \geq 4$ such that $p \equiv -1 \mod 4$. This proves the required equality n=12.

4. On central extensions of \mathcal{M}_{Σ}

Let Σ be a surface of genus $g \geq 0$ with r boundary components $(r \geq 0)$. Recall that S_{Σ} is a group generated by $\{a_{\alpha} / \alpha \text{ a non-separating s.c.c. in } \Sigma\}$ and defined by the relations T_0 and T_1 . Let T_{Σ} be the subgroup of \mathcal{M}_{Σ} generated by $\{\tilde{\tau}_{\alpha} / \alpha \text{ s.c.c. in } \Sigma\} \cup \{u^{12}\}$. In this section, we shall prove the following theorem:

Theorem 4.1. (i) Considering the restriction of μ to \mathcal{T}_{Σ} , we have the natural central extension

$$(*) 0 \longrightarrow \mathbb{Z} \longrightarrow \mathcal{T}_{\Sigma} \xrightarrow{\mu} \mathcal{M}_{\Sigma} \longrightarrow 1.$$

- (ii) If $g \ge 2$, \mathcal{T}_{Σ} is generated by $\{\tilde{\tau}_{\alpha} / \alpha \text{ non-separating s.c.c. in } \Sigma\}$.
- (iii) One can define natural homorphisms $\varphi: S_{\Sigma} \to \mathcal{T}_{\Sigma}$ and $\psi: S_{\Sigma} \to \mathbb{Z}$ by $\varphi(a_{\alpha}) = \tilde{\tau}_{\alpha}$ and $\psi(a_{\alpha}) = 1$.

When $g \ge 3$, φ and ψ induce an isomorphism between S_{Σ} and $\mathcal{T}_{\Sigma} \times \mathbb{Z}$.

When g=2, φ is an isomorphism from S_{Σ} to \mathcal{T}_{Σ} .

(iv) When $g \ge 3$, the extension (*) is the universal central extension of \mathcal{M}_{Σ} .

Clearly, this theorem proves Theorem C (the functorial properties are obvious) and implies the following two corollaries:

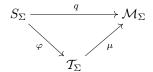
Corollary 4.2. The kernel of the quotient map $S_{\Sigma} \to \mathcal{M}_{\Sigma}$ is isomorphic to \mathbb{Z} (generated by C_0) when g=2 and to $\mathbb{Z} \oplus \mathbb{Z}$ (generated by L_0 and C_0) when $g \geq 3$.

Corollary 4.3. Suppose that $g \geq 3$. Then, \mathcal{T}_{Σ} admits a presentation with generators $\{a_{\alpha} \mid \alpha \text{ non-separating s.c.c. in } \Sigma\}$ and the relations (I)' and (II)' (braids T_0 and T_1 and a lantern L with only non-separating curves).

Proof of Theorem 4.1. (i) is clear since the kernel of $\mu_{\mid \mathcal{T}_{\Sigma}}$ is generated by u^{12} .

To prove (ii), first one can see, by considering a chain C without separating curves and using Theorem 3.9, that u^{12} is in the subgroup of $\widetilde{\mathcal{M}}_{\Sigma}$ generated by $\{\widetilde{\tau}_{\alpha} / \alpha \text{ a non-separating s.c.c. in } \Sigma\}$. Then, we can conclude exactly as in the proof of Lemma 2.5.

Since braid relations are verified in $\widetilde{\mathcal{M}}_{\Sigma}$, the map φ is a morphism. Furthermore, (ii) implies that φ is onto when $g \geq 2$. Now, we shall determine $\operatorname{Ker} \varphi$. Denote by $q: S_{\Sigma} \to \mathcal{M}_{\Sigma}$ the quotient map given by Theorem B. First, we suppose that $g \geq 3$. Then, $\operatorname{Ker} q$ is generated by two elements C_0 and L_0 coming from chains and lanterns. So, considering the commutative diagram



we see that $\operatorname{Ker} \varphi \subset \langle C_0, L_0 \rangle$. Since this group is abelian (Theorem 1.6) and $\varphi(L_0) = 1$ and $\varphi(C_0) = u^{12}$, we have $\operatorname{Ker} \varphi = \langle L_0 \rangle$. But since ψ is the abelianized morphism and $\psi(L_0) = 1$, we have $\langle L_0 \rangle = \mathbb{Z}$ and we obtain the following exact sequence:

$$0 \longrightarrow \mathbb{Z} \longrightarrow S_{\Sigma} \xrightarrow{\varphi} \mathcal{T}_{\Sigma} \longrightarrow 1$$
.

Furthermore, since $\psi: S_{\Sigma} \to \mathbb{Z}$ is a section, this sequence splits. When g=2, Ker q is cyclic generated by C_0 . Thus, φ is an isomorphism.

5. The genus one case

The goal of this section is to prove Lemma 2.6 and the fact that there is no epimorphism from $S_{1,r}$ to $\mathcal{M}_{1,r}$ if $r \ge 2$. In fact, we shall prove stronger results.

Lemma 5.1. Considering the curves shown on Figure 30, $\mathcal{M}_{1,r}$ is generated by the twists τ_{α_i} , τ_{β} and τ_{δ_i} for $j \geq 2$.

Proof. We shall use an inductive argument. Capping off δ_r by a disc with center p, one can obtain the following two exact sequences (see [B] and [H]):

$$0 \longrightarrow \mathbb{Z} \xrightarrow{f_1} \mathcal{M}_{1,r} \xrightarrow{f_2} \mathcal{N}_{1,r-1} \longrightarrow 1,$$

$$0 \longrightarrow \pi_1(\Sigma_{1,r-1}, p) \xrightarrow{f_3} \mathcal{N}_{1,r-1} \xrightarrow{f_4} \mathcal{M}_{1,r-1} \longrightarrow 1,$$

where $\mathcal{N}_{1,r-1}$ is the group of isotopy classes of orientation preserving diffeomorphisms of $\Sigma_{1,r-1}$ which are the identity on the boundary and which leave fixed the base point p. The four morphisms f_k are defined as follows:

$$\rightarrow f_1(1) = \delta_r$$
.

- \rightarrow f_2 is obtained by extending each map over the disc by the identity.
- \rightarrow If α is a loop based on p and α' and α'' the two boundary components of a neighborhood of α , then $f_3(\alpha) = \tau_{\alpha'} \tau_{\alpha''}^{-1}$ (here and below, we will denote by the same letter a curve and its homotopy class).
- $\rightarrow f_4$ is defined by forgetting the base point p.

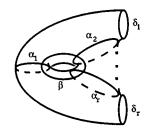


Figure 30

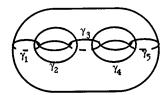


Figure 31

It is known that $\mathcal{M}_{1,1}$ is generated by τ_{α_1} and τ_{β} . Suppose inductively that $\mathcal{M}_{1,r-1}$ is generated by $\tau_{\alpha_1}, \ldots, \tau_{\alpha_{r-1}}, \tau_{\beta}, \tau_{\delta_2}, \ldots, \tau_{\delta_{r-1}}$. Then, $\mathcal{N}_{1,r-1}$ is generated by these twists and Im f_3 . Furthermore, $\pi_1(\Sigma_{1,r-1},p)$ is generated by the homotopy classes of the curves $\alpha_1, \ldots, \alpha_{r-1}$ and β . If we denote by α_i' the curve $\tau_{\beta}\tau_{\alpha_1}\tau_{\alpha_r}^{-1}\tau_{\beta}^{-1}(\alpha_i)$, then one can check that f_3 maps α_i into $\tau_{\alpha_i}\tau_{\alpha_i'}^{-1}$, and if $\beta' = \tau_{\alpha_1}\tau_{\beta}(\alpha_r)$, then $f_3(\beta) = \tau_{\beta}\tau_{\beta'}^{-1}$. Thus, since $\tau_{\alpha_i'} = \tau_{\beta}\tau_{\alpha_1}\tau_{\alpha_r}^{-1}\tau_{\beta}^{-1}(\tau_{\alpha_i})$ and $\tau_{\beta'} = \tau_{\alpha_1}\tau_{\beta}(\tau_{\alpha_r})$, the group $\mathcal{N}_{1,r-1}$ is generated by $\tau_{\alpha_1}, \ldots, \tau_{\alpha_{r-1}}, \tau_{\beta}, \tau_{\delta_2}, \ldots, \tau_{\delta_{r-1}}$ and τ_{α_r} .

Finally, we obtain the required result for $\mathcal{M}_{1,r}$ using the first exact sequence. \square

Proposition 5.2. Suppose that $r \geq 2$. Then, the twists along non-separating curves and r-2 boundary curves do not generate $\mathcal{M}_{1,r}$.

Proof. Referring to Figure 30, suppose that τ_{δ_1} and τ_{δ_2} can be decomposed into a product of twists along non-separating curves or the curves $\delta_3, \ldots, \delta_r$. First, let α be a non-separating curve in $\Sigma = \Sigma_{1,r}$. There is a diffeomorphism h of Σ which sends α_1 on α . Lemma 5.1 tells us that h can be decomposed into a product of twists along the curves $\alpha_1, \ldots, \alpha_r, \beta, \delta_2, \ldots, \delta_r$. One has $\tau_\alpha = h \tau_{\alpha_1} \overline{h}$; since Dehn twists along boundary curves are central in $\mathcal{M}_{1,r}$, one still has $\tau_\alpha = h' \tau_{\alpha_1} \overline{h'}$, where h' is obtain from h by removing the boundary twits in its decomposition. Thus, one can suppose that τ_{δ_1} and τ_{δ_2} are decomposed into a product of twists along the curves $\alpha_1, \ldots, \alpha_r, \beta, \delta_3, \ldots, \delta_r$.

Now, let $\varphi: \mathcal{M}_{1,r} \to \mathcal{M}_{2,0}$ be the morphism obtained by capping off each of the boundary components δ_j for $j \geq 3$ with a disc and gluing a cylinder onto δ_1 and δ_2 . Then, if $\gamma_1, \ldots, \gamma_5$ are the curves shown in Figure 31, one has $\varphi(\tau_\beta) = \tau_{\gamma_2}$, $\varphi(\tau_{\alpha_i}) = \tau_{\gamma_1}$ for $i \neq 2$, $\varphi(\tau_{\alpha_2}) = \tau_{\gamma_3}$, $\varphi(\tau_{\delta_1}) = \varphi(\tau_{\delta_2}) = \tau_{\gamma_5}$ and $\varphi(\tau_{\delta_j}) = 1$ for $j \geq 3$. Thus, our hypothesis implies that τ_{γ_5} can be decomposed into a product of twists along the three curves γ_1 , γ_2 and γ_3 . Then, since $\tau_{\gamma_1}, \ldots, \tau_{\gamma_5}$ generate

 $\mathcal{M}_{2,0}$, one only needs $\tau_{\gamma_1}, \ldots, \tau_{\gamma_4}$ to generate $\mathcal{M}_{2,0}$. This is false according to Humphries ([Hu]).

ACKNOWLEDGEMENTS

This article is a short version of my thesis ([G]) written under the supervision of Professor P. Vogel. I am grateful to him for his help and advices. I want to thank Professors C. Blanchet and N. Habegger as well, for many useful discussions.

References

- [A1] M. Atiyah. Topological quantum field theories, Publ. Math. IHES 68, 175-186 (1989). MR 90e:57059
- [A2] M. Atiyah. On framings of 3-manifolds, Topology 29, 1-7 (1990). MR 91g:57025
- J. Birman. Braids, Links, and Mapping Class Groups, Annals of Math. Studies 82,
 Princeton Univ. Press (1975). MR 51:11477; MR 54:13894
- [BHMV1] C. Blanchet, N. Habegger, G. Masbaum, P. Vogel. Three-manifold invariants derived from the Kauffman bracket, Topology 31, 685-699 (1992). MR 94a:57010
- [BHMV2] C. Blanchet, N. Habegger, G. Masbaum, P. Vogel. Topological quantum field theories derived from the Kauffman bracket, Topology 34, 883–927 (1995). CMP 96:04
- [D] M. Dehn. Die Gruppe der Abbildungsklassen, Acta Math. 69, 135-206 (1938).
- [G] S. Gervais. Etude de certaines extensions centrales du "mapping class group" des surfaces orientables, thèse, Université de Nantes, janv. 1994.
- [H] J. Harer. The second homology group of the mapping class group of an orientable surface, Invent. Math. 72, 221-239 (1983). MR 84g:57006
- [Hu] S. Humphries. Generators for the mapping class group, Lecture Notes in Math. 722, Springer, Berlin, 44-47 (1979). MR 80i:57010
- [H-T] A. Hatcher, W. Thurston. A presentation for the mapping class group of a closed orientable surface, Topology 19, 221-237 (1980). MR 81k:57008
- [J] D. Johnson. Homeomorphisms of a surface which act trivially on homology, Proc. of Amer. Math. Soc. 75, 119-125 (1979). MR 80h:57008
- [L1] W.B.R. Lickorish. A finite set of generators for the homeotopy group of a 2-manifold, Proc. Cambridge Philos. Soc. 60, 769-778 (1964). MR 30:1500
- [L2] W.B.R. Lickorish. On the homeotopy group of a 2-manifold (Corrigendum), Proc. Cambridge Philos. Soc. 62, 679-681 (1966). MR 34:799
- [M-R] G. Masbaum, J. Roberts. On central extensions of mapping class groups, Math. Annalen. 302, 131–150 (1995). CMP 95:12
- [S] R. Stong. Notes on cobordism theory, Princeton (1968). MR 40:2108
- [Sw] R.M. Switzer. Algebraic topology—homotopy and homology, Berlin, Heidelberg, New York, Springer (1975). MR 52:6695
- [W] B. Wajnryb. A simple presentation for the mapping class group of an orientable surface, Israel Journal of Math. 45, 157-174 (1983). MR 85g:57007

URA
 $\rm N^{\circ}$ 758 du C.N.R.S., Université de Nantes, Département de Mathématiques, 2
 Rue de la Houssinière, F-44072 Nantes Cedex 03, France

E-mail address: gervais@math.univ-nantes.fr