RESTRICTION OF STABLE BUNDLES IN CHARACTERISTIC p

TOHRU NAKASHIMA

ABSTRACT. Let k be an algebraically closed field of characteristic p>0. Let X be a nonsingular projective variety defined over k and H an ample line bundle on X. We shall prove that there exists an explicit number m_0 such that if E is a μ -stable vector bundle of rank at most three, then the restriction $E_{|D}$ is μ -stable for all $m\geq m_0$ and all smooth irreducible divisors $D\in |mH|$. This result has implications to the geometry of the moduli space of μ -stable bundles on a surface or a projective space.

Introduction

Let X be a nonsingular projective variety of dimension n defined over an algebraically closed field k, and let E be a vector bundle of rank r on X. The problem of whether the μ -(semi)stability of E with respect to an ample divisor H is preserved under restriction to a divisor $D \in |mH|$ has been studied intensively in recent years. When the characteristic of k is arbitrary, a fundamental theorem of Mehta-Ramanathan states that the answer is positive for a general member D and sufficiently large m ([M-R1], [M-R2]). However, most of the important results have been proved under the assumption that the characteristic is zero. For example, H. Flenner's theorem on the effective estimate of m has no known analogue in positive characteristic ([F]).

In this paper we would like to contribute to the restriction problem when char k=p>0. Under the assumption that r=2 or 3, we shall give an explicit number m_0 such that for all $m\geq m_0$, every μ -stable bundle E with fixed Chern classes remains μ -stable when restricted to arbitrary smooth irreducible divisors $D\in |mH|$. As a consequence, we obtain the restriction morphism between moduli spaces of μ -stable bundles

$$j_D: M_X(r, c_i) \to M_D(r, c_{i|D}),$$

where $M_X(r, c_i)$ denotes the moduli space of μ -stable bundles E of rank r (r = 2, 3) with Chern classes $c_i(E) = c_i$. We remark that a restriction theorem with no genericity assumption on D has been obtained by F. Bogomolov if n = 2 and char k = 0 ([B1], [B2]). Recently, A. Moriwaki has generalized the result to higher dimensional varieties ([Mo3]).

The lower bound m_0 mentioned above can be expressed as a function of $\delta_H(E)$ and $\mu_H(X)$, where $\delta_H(E) = \{2rc_2(E) - (r-1)c_1(E)^2\} \cdot H^{n-2}$ and $\mu_H(X)$ denotes the minimal slope of the Harder-Narasimhan filtration of the tangent bundle of X. The appearance of the number $\mu_H(X)$ comes from our use of an analogue of

Received by the editors April 30, 1996.

1991 Mathematics Subject Classification. Primary 14D20, 14F05.

Bogomolov-Gieseker inequality, which has been proved for rank two bundles in [N1]. The inequality is described as follows. If E is a μ -semistable torsion-free sheaf of rank r=2 or 3, we have $\delta_H(E) \geq 0$ if $\mu_H(X) \geq 0$, and otherwise

$$\delta_H(E) \ge -\alpha \frac{\mu_H(X)^2}{p^2 H^n},$$

where $\alpha = 1$ if r = 2, $\alpha = 9$ if r = 3. Inequalities of different types have been obtained for rank two bundles on surfaces ([S-B]) and non-uniruled varieties ([Mo2]).

It is natural to ask whether the results in the present paper generalize to bundles of rank greater than three. This problem is closely related to the boundedness of the family of μ -semistable sheaves in positive characteristic, which is at present unknown except when $r \leq 3$ or n=2. Roughly speaking, the restriction theorem, the Bogomolov-Gieseker inequality and the boundedness may be considered as almost equivalent properties of μ -semistable sheaves.

In the first section we will prove analogues of the Bogomolov-Gieseker inequality. The restriction theorem will be proved in section two. This result will be applied in the last section to the study of moduli spaces of μ -stable bundles on surfaces and projective spaces.

The author is very grateful to the referee for pointing out several inaccuracies in the original version of this paper.

1. The Bogomolov-Gieseker inequality

Throughout this paper all varieties are defined over an algebraically closed field k of characteristic p > 0. Let X be a nonsingular projective variety of dimension $n \ge 2$ over k and E a rank r torsion-free sheaf on X. For an ample line bundle H on X, we define the slope of E by

$$\mu_H(E) = \frac{c_1(E) \cdot H^{n-1}}{r}$$

and let

$$\delta_H(E) := \{2rc_2(E) - (r-1)c_1(E)^2\} \cdot H^{n-2}.$$

Even if E is μ -semistable, the Bogomolov-Gieseker inequality $\delta_H(E) \geq 0$ does not hold in general. Nevertheless, one expects that some lower bound for $\delta_H(E)$, which depends on X and H, may exist. In fact, the boundedness of semistable sheaves implies the existence of a lower bound. For rank two μ -semistable bundles, an effective lower bound has been given in [N1]. The purpose of this section is to extend the result to μ -semistable torsion-free sheaves of rank at most three.

A torsion-free sheaf E is said to be p-semistable with respect to H if, for all $m \geq 0$, the m-th iterated Frobenius pull-back $(F^m)^*E$ is μ -semistable with respect to H. The following result has been proved for vector bundles in [Mo1, Theorem 1], and its generalization to torsion-free sheaves poses no significant problems.

Proposition (1.1). Let X be a nonsingular projective variety of dimension $n \geq 2$. Let E be a torsion-free sheaf of rank r on X which is p-semistable with respect to H. Then $\delta_H(E) \geq 0$ if $r \leq 3$.

Let T_X denote the tangent bundle of X and let

$$0 = T_0 \subset T_1 \subset \cdots \subset T_{s-1} \subset T_s = T_X$$

be the Harder-Narasimhan filtration (H-N filtration for short) with respect to H. We define

$$\mu_H(X) := \mu_H(T_X/T_{s-1}).$$

Proposition (1.2). Assume that $\mu_H(X) \geq 0$, and let E be a μ -semistable torsion-free sheaf of rank r. Then $\delta_H(E) \geq 0$ if $r \leq 3$.

Proof. It suffices to show that under the assumption $\mu_H(X) \geq 0$, every μ -semistable sheaf E is p-semistable. Assume that E is not p-semistable, and let m be the smallest integer such that $(F^m)^*E$ is unstable. Let

$$0 = E_0 \subset E_1 \subset \cdots \subset E_{s-1} \subset E_s = (F^m)^* E$$

be the H-N filtration of $(F^m)^*E$ and let $G_i = E_i/E_{i-1}$. By arguing as in the proof of [N1, Lemma 1], for 0 < i < s we obtain a non-trivial \mathcal{O}_X -homomorphism

$$f_i: T_X \to \mathcal{H}om_{\mathcal{O}_X}(E_1, (F^m)^*E/E_1).$$

It follows that we can find $0 < i < j \le s$ and a non-zero map

$$f: T_X \to \mathcal{H}om_{\mathcal{O}_X}(G_i, G_i).$$

Since at least one of G_i and G_j is of rank one, the latter sheaf is μ -semistable. Hence we obtain $\mu_H(X) \leq \mu_H(G_j) - \mu_H(G_i) < 0$, which is a contradiction. This completes the proof.

Remark. The condition $\mu_H(X) \geq 0$ is satisfied for varieties with nef tangent bundle T_X (that is, the tautological bundle $\mathcal{O}(1)$ on $\mathbb{P}(T_X)$ is nef). Another example is a Fano n-fold X such that T_X is μ -semistable with respect to $H = -K_X$: we have $\mu_H(X) = (-K_X)^n/n > 0$ in this case. If X is a del Pezzo surface, the μ -semistability of T_X has been proved ([Fa]).

Corollary (1.3). Let X be a Fano threefold. If the tangent bundle of X is μ -semistable with respect to $-K_X$, then $c_1(X)^3 \leq 72$.

Proof. Since we have $\mu_H(X) = \mu_H(T_X) = (-K_X)^3/3 > 0$, Proposition (1.2) yields $\{3c_2(X) - c_1(X)^2\} \cdot c_1(X) \ge 0$.

We have $H^3(X, \mathcal{O}_X) \cong H^0(X, K_X) = 0$. Further, by [N1, Corollary 3]

$$H^2(X, \mathcal{O}_X) \cong H^1(X, K_X) = 0.$$

Hence $\chi(\mathcal{O}_X) = 1 - h^1(\mathcal{O}_X) \le 1$ and, by the Riemann-Roch formula,

$$1 \ge \frac{1}{24}c_1(X)c_2(X).$$

Therefore we obtain $c_1(X)^3 \leq 72$, as desired.

In view of Proposition (1.1), the following can be proved as in [N1, Theorem 1].

Proposition (1.4). Let X be a nonsingular projective variety of dimension $n \ge 2$. Let E be a rank two torsion-free sheaf which is μ -semistable with respect to H. Then

- 1. If $\mu_H(X) \geq 0$, then $\delta_H(E) \geq 0$.
- 2. If $\mu_H(X) < 0$, then

$$\delta_H(E) \ge -\frac{\mu_H(X)^2}{p^2 H^n}.$$

The rest of this section is devoted to proving an inequality of the above type for rank three μ -semistable sheaves. The following lemma is elementary but very useful

Lemma (1.5). Let E be a torsion-free sheaf of rank r on X. Assume that E has a filtration

$$0 = E_0 \subset E_1 \subset \cdots \subset E_{s-1} \subset E_s = E$$

such that $G_i = E_i/E_{i-1}$ is torsion-free of rank r_i for each i. We put

$$\alpha_i = \frac{r(\mu_H(G_i) - \mu_H(E))}{H^n}.$$

Then

$$\delta_H(E) \ge \sum_{i=1}^s \left\{ \frac{r}{r_i} \delta_H(G_i) - \frac{r_i}{r} \alpha_i^2 H^n \right\}.$$

Proof. We have

$$2c_2(E) \cdot H^{n-2} = \left\{ 2 \sum_{i=1}^s c_2(G_i) + 2 \sum_{i < j} c_1(G_i) c_1(G_j) \right\} \cdot H^{n-2}$$

$$= \left\{ 2 \sum_{i=1}^s c_2(G_i) + c_1(E)^2 - \sum_{i=1}^s c_1(G_i)^2 \right\} \cdot H^{n-2}$$

$$\geq \sum_{i=1}^s \left(\frac{\delta_H(G_i)}{r_i} - \frac{c_1(G_i)^2 \cdot H^{n-2}}{r_i} \right) + c_1(E)^2 \cdot H^{n-2}.$$

On the other hand, since for each i we have

$$\left\{\frac{r}{r_i}c_1(G_i) - c_1(E) - \alpha_i H\right\} \cdot H^{n-1} = 0,$$

the Hodge index theorem yields

$$\left\{\frac{r}{r_i}c_1(G_i) - c_1(E) - \alpha_i H\right\}^2 \cdot H^{n-2} \le 0.$$

Hence

$$-\frac{c_1(G_i)^2 \cdot H^{n-2}}{r_i} \ge \left\{ -\frac{2}{r}c_1(G_i) \cdot c_1(E) + \frac{r_i}{r^2}c_1(E)^2 \right\} \cdot H^{n-2} - \frac{r_i}{r^2}\alpha_i^2 H^n.$$

Since $\sum_{i=1}^{s} c_1(G_i) = c_1(E)$ and $\sum_{i=1}^{s} r_i = r$, after summing up these inequalities for $1 \le i \le s$, we obtain

$$\sum_{i=1}^{s} -\frac{c_1(G_i)^2 \cdot H^{n-2}}{r_i} \ge -\frac{c_1(E)^2 \cdot H^{n-2}}{r} - \sum_{i=1}^{s} \frac{r_i}{r^2} \alpha_i^2 H^n.$$

Combining this with the inequality for $2c_2(E) \cdot H^{n-2}$, we obtain the claimed bound for $\delta_H(E)$.

Assume that $\mu_H(X) < 0$. Let E be a μ -semistable torsion-free sheaf of rank three such that F^*E is not μ -semistable. Let

$$0 = E_0 \subset E_1 \subset \cdots \subset E_{s-1} \subset E_s = F^*E$$

be the H-N filtration (s = 2 or 3). Let $G_i = E_i/E_{i-1}$ and $r_i = \operatorname{rk} G_i$. There are three types of (r_i) : (2, 1), (1, 2), (1, 1, 1). We have the following estimates for α_i .

Lemma (1.6). $\alpha_1 > 0$, and

$$\begin{split} &\frac{2\mu_H(X)}{H^n} \leq \alpha_2 < \alpha_1 \leq -\frac{\mu_H(X)}{H^n} & \text{in case of type } (2,\,1), \\ &\frac{\mu_H(X)}{H^n} \leq \alpha_2 < \alpha_1 \leq -\frac{2\mu_H(X)}{H^n} & \text{in case of type } (1,\,2), \\ &\frac{3\mu_H(X)}{H^n} \leq \alpha_3 < \alpha_2 < \alpha_1 \leq -\frac{3\mu_H(X)}{H^n} & \text{in case of type } (1,\,1,\,1). \end{split}$$

Proof. The inequality $\alpha_1 > 0$ is clear. As in the proof of Proposition (1.2), for each i = 1, 2, we have a non-trivial \mathcal{O}_X -homomorphism

$$f_i: T_X \to \mathcal{H}om_{\mathcal{O}_X}(E_i, F^*E/E_i) =: H_i.$$

Since the slope of the maximal destabilizing subsheaf of H_i is $\mu_H(G_{i+1}) - \mu_H(G_i)$, we see that $\mu_H(X) \leq \mu_H(G_{i+1}) - \mu_H(G_i)$ for i = 1, 2. Then it is easy to deduce the following estimates for $\mu_H(E_1)$:

$$\mu_H(E_1) \le \mu_H(F^*E) - \frac{2}{3}\mu_H(X)$$
 in case of type $(2, 1)$,
 $\mu_H(E_1) \le \mu_H(F^*E) - \frac{1}{3}\mu_H(X)$ in case of type $(1, 2)$,
 $\mu_H(E_1) \le \mu_H(F^*E) - \mu_H(X)$ in case of type $(1, 1, 1)$.

The claim follows immediately from the above inequalities.

Theorem (1.7). Let X be a nonsingular projective variety of dimension $n \geq 2$ with an ample line bundle H. Let E be a μ -semistable torsion-free sheaf of rank three on X.

- 1. If $\mu_H(X) \geq 0$, then $\delta_H(E) \geq 0$.
- 2. If $\mu_H(X) < 0$, then

$$\delta_H(E) > -\frac{9\mu_H(X)^2}{p^2 H^n}.$$

Proof. (1) follows from Proposition (1.2). Assume $\mu_H(X) < 0$. Let m denote the smallest integer such that $(F^m)^*E$ is not μ -semistable. Let

$$0 = E_0 \subset E_1 \subset \cdots \subset E_{s-1} \subset E_s = (F^m)^* E$$

be the H-N filtration of $(F^m)^*E$ and put $G_i = E_i/E_{i-1}$. We will give the lower bounds for $\delta_H(E)$ according to the three types of $r_i = \operatorname{rk} G_i$. In case of type (2,1), we have $\delta_H(G_1) \geq -\mu_H(X)^2/(p^2H^n)$ by Proposition (1.4) and $\delta_H(G_2) \geq 0$. Applying Lemmas (1.5) and (1.6) to $(F^{m-1})^*E$, we obtain

$$\delta_H((F^m)^*E) = p^{2m}\delta_H(E) > -\left(2 + \frac{3}{2p^2}\right)\frac{\mu_H(X)^2}{H^n}.$$

Hence

$$\delta_H(E) > -\left(2 + \frac{3}{2p^2}\right) \frac{\mu_H(X)^2}{p^2 H^n}.$$

Similarly, in case of type (1, 2)

$$\delta_H(E) > -\left(4 + \frac{3}{2p^2}\right) \frac{\mu_H(X)^2}{p^2 H^n}.$$

Finally, in case of type (1, 1, 1) we obtain

$$\delta_H(E) > -\frac{9\mu_H(X)^2}{p^2H^n}.$$

Comparing the above bounds for $\delta_H(E)$, we get the theorem.

Corollary (1.8). Assume that X is a threefold with the ample canonical bundle K_X . If the tangent bundle of X is μ -semistable with respect to K_X , then the following inequality holds:

$$\{3c_2(X) - c_1(X)^2\} \cdot (-c_1(X)) \ge 0.$$

Proof. Applying Theorem (1.7) to $E = T_X$ and $H = K_X$, we obtain

$${3c_2(X) - c_1(X)^2} \cdot (-c_1(X)) > -\frac{3}{2p^2} > -1.$$

The claim is clear, since the left-hand side is an integer.

2. The restriction theorem

Let X be a nonsingular projective variety of dimension $n \geq 2$ and let H be an ample line bundle on X. In this section we will prove the restriction theorem mentioned in the introduction. We will treat the two cases r=2 and r=3 separately. Let $\delta = \delta_H(E)$, $\mu = \mu_H(X)$ and $h=H^n$.

Theorem (2.1). Let E be a rank two vector bundle on X which is μ -stable with respect to H. Let $D \subset X$ be a smooth irreducible divisor with $D \in |mH|$. Then $E_{|D}$ is μ -stable with respect to $H_{|D}$ under either one of the following conditions:

- 1. $\mu \geq 0$ and $m > \frac{1}{2} \left(\delta + \frac{1}{h} \right)$;
- 2. $\mu < 0$ and

$$m > \max \left\{ \sqrt{\frac{1}{h} \left(\delta + \frac{\mu^2}{p^2 h} \right)}, \, \frac{1}{2} \left(\delta + \frac{1}{h} \right) \right\}.$$

Proof. Assume that $E_{|D}$ is not μ -stable with respect to $H_{|D}$. Then there exist a rank one torsion-free sheaf Q on D satisfying $\mu_{H_{|D}}(Q) \leq \mu_{H_{|D}}(E_{|D})$ and a surjection $E_{|D} \to Q$. Let E' be the rank two torsion-free sheaf on X defined by the exact sequence

$$0 \to E' \to E \to Q \to 0.$$

Then we have $c_1(E') = c_1(E) - D$ and $c_2(E') = c_2(E) - c_1(E) \cdot D + c_1(Q) \cdot H_{|D}$. Hence

$$\delta_H(E') \le \delta_H(E) - m^2 H^n.$$

By Proposition (1.4), it follows that under assumption (1) or (2), E' is unstable with respect to H. Consider the H-N filtration of E':

$$0 \to G_1 \to E' \to G_2 \to 0$$

where the G_i are rank one torsion-free sheaves. For i = 1, 2, let

$$\alpha_i = \frac{2(\mu_H(G_i) - \mu_H(E'))}{H^n}.$$

Since G_1 is a subsheaf of E which is μ -stable, we have

$$0 < \alpha_1 \le m - \frac{1}{H^n},$$

and we have $\alpha_2 = -\alpha_1$. Applying Lemma (1.5) to E', we have $\delta_H(E') \ge -\alpha_1^2 H^n \ge -(m-1/(H^n))^2 H^n$. It follows that

$$m \le \frac{1}{2} \left(\delta_H(E) + \frac{1}{H^n} \right).$$

This contradicts the assumption on m. Hence the theorem is proved.

Theorem (2.2). Let X, H be as before and let E be a rank three vector bundle on X which is μ -stable with respect to H. Then for every smooth irreducible $D \in |mH|$, $E_{|D}$ is μ -stable under one of the following conditions:

1. $\mu \geq 0$ and

$$m > \max \left\{ \sqrt{\frac{\delta}{2h}}, \sqrt{\frac{2}{3h} \left(\delta + \frac{2}{h}\right)}, \frac{1}{12} \left(\delta + \frac{1}{2h}\right), \frac{1}{2} \left(\frac{\delta}{2} + \frac{1}{h}\right) \right\};$$

2. $\mu < 0$ and

$$m > \max\left\{\sqrt{\frac{1}{2h}\left(\delta + \frac{9\mu^2}{p^2h}\right)}, \sqrt{\frac{2}{3h}\left(\delta + \frac{2}{h} + \frac{\mu^2}{p^2h}\right)}, \frac{1}{4}\left(\frac{\delta}{3} + \frac{\mu^2}{2p^2h}\right), \frac{1}{2}\left(\frac{\delta}{2} + \frac{1}{2h}\right)\right\}.$$

Proof. The proof is similar to the rank two case. Assume that $E_{|D}$ is not μ -stable and let Q be its destabilizing torsion-free quotient. First we treat the case when Q is of rank one. Let E' be the kernel of the surjection $E_{|D} \to Q$. As before, we have

$$\delta_H(E') \le \delta_H(E) - 2m^2 H^n$$
.

By Theorem (1.7), E' is unstable if m satisfies the inequality

$$m > \max \left\{ \sqrt{\frac{\delta_H(E)}{2H^n}}, \sqrt{\frac{1}{2H^n} \left(\delta_H(E) + \frac{9\mu_H(X)^2}{p^2H^n} \right)} \right\}.$$

We shall give upper bounds for m according to the types of the H-N filtration of E'. For $1 \le i \le 3$, define

$$\alpha_i = \frac{3(\mu_H(G_i) - \mu_H(E'))}{H^n}.$$

Assume that we are in case of type (2,1). Then we have

$$0 < \alpha_1 \le m - \frac{1}{2H^n}$$

since G_1 is a subsheaf of E. Using Proposition (1.4) and Lemma (1.5), we obtain

$$m \le \begin{cases} \frac{1}{12} \left(\delta_H(E) + \frac{1}{2H^n} \right) & \text{if } \mu_H(X) \ge 0, \\ \frac{1}{4} \left(\delta_H(E) + \frac{\mu_H(X)^2}{2p^2H^n} \right) & \text{if } \mu_H(X) < 0. \end{cases}$$

Similarly, in case of type (1,2) we have $0 < \alpha_1 \le m - 1/(H^n)$. Hence

$$m \le \begin{cases} \sqrt{\frac{2}{3H^n} \left(\delta_H(E) + \frac{2}{H^n}\right)} - \frac{1}{H^n} & \text{if } \mu_H(X) \ge 0, \\ \sqrt{\frac{2}{3H^n} \left(\delta_H(E) + \frac{2}{H^n} + \frac{\mu_H(X)^2}{p^2H^n}\right)} - \frac{1}{H^n} & \text{if } \mu_H(X) < 0. \end{cases}$$

Assume that we are in case of type (1,1,1). We have $0 < \alpha_1 \le m - 1/(H^n)$, since

$$\mu_H(G_1) \le \mu_H(E') + \frac{mH^n - 1}{3}.$$

Hence

$$\mu_H(G_2) = 2\mu_H(E_2) - \mu_H(G_1)$$

$$> 2\mu_H(E') - \left(\mu_H(E') + \frac{mH^n - 1}{3}\right)$$

$$= \mu_H(E') - \frac{mH^n - 1}{3}.$$

It follows that $\alpha_2 > -(m-1/(H^n))$. Finally, we have

$$\mu_H(G_3) = 3\mu_H(E') - \mu_H(G_2) - \mu_H(G_3)$$

$$> 3\mu_H(E') - 2\left(\mu_H(E') + \frac{mH^n - 1}{3}\right)$$

$$= \mu_H(E') - \frac{2(mH^n - 1)}{3}.$$

Hence we obtain $\alpha_3 > -2(m-1/(H^n))$. From these bounds for α_i , we obtain $\alpha_i^2 \leq (m-1/(H^n))^2$ for i=1, 2, and $\alpha_3^2 < 4(m-1/(H^n))^2$. Thus, by Lemma (1.5),

$$\delta(E') > -2\left(m - \frac{1}{H^n}\right)^2 H^n.$$

Therefore we obtain

$$m \le \frac{1}{2} \left(\frac{\delta_H(E)}{2} + \frac{1}{H^n} \right).$$

Putting these altogether, we conclude that $E_{|D}$ has no destabilizing rank one quotient sheaves. If Q is a sheaf of rank two, then let $\widetilde{Q} := \bigwedge^2 Q/tors$ denote the quotient of the exterior product $\bigwedge^2 Q$ by its torsion subsheaf. Then \widetilde{Q} is a rank one torsion-free sheaf, and there is a surjection

$$\bigwedge^2 E_{|D} \to \widetilde{Q}.$$

Since we have $\bigwedge^2 E \cong E^{\vee}(c_1(E))$, $\bigwedge^2 E$ is μ -stable and $\delta_H(\bigwedge^2 E) = \delta_H(E)$. Further, it is easy to see that \widetilde{Q} is a destabilizing quotient of $\bigwedge^2 E_{|D|}$. Thus we are reduced to the case Q is of rank one. This completes the proof of the theorem. \square

3. Application to the moduli space

In this section we consider some applications of the restriction theorem to the study of moduli spaces of μ -stable bundles.

Let S be a nonsingular projective surface with an ample line bundle H. For $L \in \operatorname{Pic}(S)$, we denote by $M = M_S(r, L, c_2)$ the moduli space of vector bundles of rank r on S with $\det(E) \cong L$, $c_2(E) = c_2$ which are μ -stable with respect to H. $M_S(r, L, c_2)$ has a natural compactification $\overline{M}_S(r, L, c_2)$, the moduli of Gieseker semistable torsion-free sheaves. We recall that $\overline{M}_S(r, L, c_2)$ is constructed as the geometric invariant theory quotient of a certain Quot scheme $\operatorname{Quot}^{ss}([G])$. Let $\pi: \operatorname{Quot}^{ss} \to \overline{M}_S(r, L, c_2)$ be the quotient morphism.

We fix a tautological sheaf \mathcal{F} on $S \times \operatorname{Quot}^{ss}$. For a smooth curve $C \subset S$ of genus g(C), we define $\mathcal{F}^C = \mathcal{F}_{|C \times \operatorname{Quot}^{ss}}$. Let $p_Q : C \times \operatorname{Quot}^{ss} \to \operatorname{Quot}^{ss}$ and $p_C : C \times \operatorname{Quot}^{ss} \to C$ be the natural projections. The proof of the following lemma is exactly the same as that of [N2, Proposition 1.3], where the result is stated in the case char k = 0.

Lemma (3.1). Assume that $c_1(L) \cdot C = rd$ for some integer d, and let A be a line bundle of degree -d + g(C) - 1 on C. Then there exists a line bundle $\operatorname{Det}_{\mathcal{F}}(C)$ on $\overline{M}_S(r, L, c_2)$ such that

$$\pi^* \operatorname{Det}_{\mathcal{F}}(C) \cong \det(p_Q)_! (\mathcal{F}^C \otimes p_C^* A)^{\vee}.$$

Let $\overline{M}_C(r, L_{|C})$ denote the moduli of semistable rank r vector bundles F on C with det $F \cong L_{|C}$. Then we have

Proposition (3.2). If r=2 or 3, then there exists an explicit number m_0 such that for all $m \ge m_0$ and every smooth curve $C \in |rmH|$, we obtain the restriction morphism of moduli spaces

$$j_C: M_S(r, L, c_2) \to \overline{M}_C(r, L_{|C})$$

which satisfies $\operatorname{Det}_{\mathcal{F}}(C)_{|M} \cong j_C^* \mathcal{L}_C$ for an ample line bundle \mathcal{L}_C on $\overline{M}_C(r, L_{|C})$. Furthermore, if m is sufficiently large, j_C is an injective immersion (namely, an injective morphism with injective differential map).

Proof. We obtain the number m_0 immediately from Theorems (2.1) and (2.2). The existence of an ample line bundle \mathcal{L}_C with the required property follows from the description of Pic $\overline{M}_C(r, L_{|C})$ given in [D-N]. Thus the first claim is proved.

For the second claim, note that since $M_S(r, \mathcal{L}, c_2)$ is of finite type, if m is sufficiently large we have $H^q(S, \mathcal{H}om(E, F)(-C)) = 0$ for $q \leq 1$ and every $E, F \in M$ by Serre's vanishing theorem. It follows that

$$H^0(S, \mathcal{H}om(E, F)) \cong H^0(C, \mathcal{H}om(E_{|C}, F_{|C}))$$

and the natural map $H^1(S, \mathcal{H}om(E, F)) \to H^1(C, \mathcal{H}om(E_{|C}, F_{|C}))$ is injective. Therefore we deduce that j_C is an injective immersion.

Next we study μ -stable bundles on the projective space \mathbb{P}^n by restricting them to smooth complete intersections. Restrictions to hyperplanes have already been considered in [E] in the case char k > 0. The following approach to moduli spaces is similar to [P], which treats the case char k = 0.

For given integers $r \geq 2$ and c_i $(2 \leq i \leq r)$, let $M_{\mathbb{P}^n}(r, 0, c_i)$ be the moduli space of rank r μ -stable vector bundle E on \mathbb{P}^n with $c_1(E) = 0$ and $c_i(E) = c_i \in A^i(\mathbb{P}^n) \cong \mathbb{Z}$, where A^i denotes the Chow group of codimension i cycles. Similarly,

for a smooth subvariety $X \subset \mathbb{P}^n$, we denote by $M_X(r,0,c_i)$ the moduli space of rank r bundles E on X which are μ -stable with respect to $H = \mathcal{O}_X(1)$, with $c_1(E) = 0$, $c_i(E) = c_i H^i \in A^i(X)$. We notice that if $r \leq 3$, these moduli spaces are quasi-projective schemes ([Ma1], [Ma2]).

Lemma (3.3). Let $X \subset \mathbb{P}^n$ be a smooth complete intersection of type (d_1, \ldots, d_m) with $\sum_{j=1}^m d_j \geq n+1$. If $\dim(X) \geq 3$ or $\dim(X) = 2$ and $\operatorname{Pic}(X) \cong \mathbb{Z}[\mathcal{O}_X(1)]$, then T_X is μ -stable with respect to $\mathcal{O}_X(1)$.

Proof. It suffices to prove the μ -stability of the cotangent bundle Ω^1_X . Assume that Ω^1_X is not μ -stable, and let $F \subset \Omega^1_X$ be a destabilizing subsheaf of rank r with 0 < r < n-m. We may assume F to be reflexive by considering its double dual; hence we obtain an invertible subsheaf det $F \subset \Omega^r_X$. Since $\operatorname{Pic}(X) \cong \mathbb{Z}[\mathcal{O}_X(1)]$ if $\dim(X) \geq 3$, we have det $F = \mathcal{O}_X(l)$ for some integer l. Thus $H^0(X, \Omega^r_X(-l)) \neq 0$ and, moreover, the destabilizing condition yields

$$l \ge \frac{r(\sum_{j=1}^{m} d_j - n - 1)}{n - m} \ge 0.$$

However, this is a contradiction since we have $H^0(X, \Omega_X^r(-l)) = 0$ for $l \ge 0$ by [D, Théorème 1.5]. This completes the proof.

Theorem (3.4). Let $n \geq 3$, let c_i be integers and let r = 2 or 3. Let $X \subset \mathbb{P}^n$ be a smooth complete intersection of type (d_1, \ldots, d_m) with $\dim(X) \geq 2$. There exists an integer d_0 depending only on n, m, c_2 and p such that if $d_j > d_0$, then for all $E \in M_{\mathbb{P}^n}(r, 0, c_i)$, $E_{|X}$ is μ -stable with respect to $\mathcal{O}_X(1)$. Furthermore, for sufficiently large d_j and $d = \prod_{j=1}^m d_j$, the restriction morphism

$$j_X: M_{\mathbb{P}^n}(r, 0, c_i) \to M_X(r, 0, dc_i)$$

defines an open immersion.

Proof. We shall consider only the rank two case, since the proof in the rank three case is entirely similar. First we choose an integer d_1 such that

$$d_1 > \max\{2c_2, n+1\}$$

and let $X \subset \mathbb{P}^n$ be a smooth hypersurface of degree d_1 . By Theorem (2.1), every $E \in M_{\mathbb{P}^n}(2,0,c_2)$ restricts to a μ -stable bundle $E_{|X}$ with $c_1(E_{|X}) = 0$, $c_2(E_{|X}) = c_2d_1H^2$. Since the tangent bundle of X is μ -stable by Lemma (3.3), we have

$$\mu_H(X) = \mu_H(T_X) = \frac{(n+1-d_1)d_1}{n-1} < 0.$$

Let d_2 an integer such that

$$d_2 > \max \left\{ \sqrt{4c_2d_1 + \frac{(n+1-d_1)^2}{p^2(n-1)^2}}, \ 2c_2d_1^2 + \frac{1}{2d_1} \right\}.$$

Applying again Theorem (2.1) to $E_{|X}$, we see that for every smooth $Y \in |d_2H|$, $E_{|Y}$ is μ -stable. Repeating this process, we get the first assertion.

Let \mathcal{I}_X denote the ideal sheaf of X. We observe that if $\dim(X) \geq 2$ and d_j are sufficiently large, then we have $H^q(\mathbb{P}^n, \mathcal{H}om(E, F) \otimes \mathcal{I}_X) = 0$ for $q \leq 2$ and for all $E, F \in M_{\mathbb{P}^n}(2, 0, c_2)$. Indeed, since $M_{\mathbb{P}^n}(2, 0, c_2)$ is of finite type, we can use Serre's

vanishing theorem and the Koszul resolution of \mathcal{I}_X to prove the claim. Therefore the cohomology sequences induced by the exact sequence

$$0 \to \mathcal{H}om(E,F) \otimes \mathcal{I}_X \to \mathcal{H}om(E,F) \to \mathcal{H}om(E_{|X},F_{|X}) \to 0$$

yield the isomorphisms $H^q(\mathbb{P}^n, \mathcal{H}om(E, F)) \cong H^q(X, \mathcal{H}om(E_{|X}, F_{|X}))$ for $q \leq 1$. It follows that the restriction morphism defines an open immersion.

For the restriction to complete intersection curves, we have the following result.

Theorem (3.5). Let $n \geq 3$, c_i be integers and r = 2 or 3. For sufficiently large d_j and a general smooth complete intersection curve $C \subset \mathbb{P}^n$ of type (d_1, \ldots, d_{n-1}) , every $E \in M_{\mathbb{P}^n}(r, 0, c_i)$ restricts to a μ -stable bundle on C and the restriction morphism defines an injective immersion of moduli spaces

$$j_C: M_{\mathbb{P}^n}(r,0,c_i) \to M_C(r,0).$$

Proof. For sufficiently large d_j , a general complete intersection surface $S \subset \mathbb{P}^n$ of type (d_1, \ldots, d_{n-2}) satisfies $\operatorname{Pic}(S) \cong \mathbb{Z}[\mathcal{O}_S(1)]$ (cf. [M-R1, 2.2. Proposition]), and we have $H^q(\mathbb{P}^n, \mathcal{H}om(E, F) \otimes \mathcal{I}_C) = 0$ for $q \leq 1$. Hence the theorem follows as before.

References

- [B1] F.Bogomolov, Holomorphic tensors and vector bundles on projective varieties, Math. of the USSR, Izvestija 13 (1979), 499–555. MR 80j:14014
- [B2] F.Bogomolov, Stability of vector bundles on surfaces and curves, Einstein metrics and Yang-Mills connections, Lecture Notes Pure Appl. Math., vol. 145 Marcel Dekker, New York, 1993, 35–49. MR 94i:14021
- [D] P.Deligne, Cohomologie des intersections complètes, SGA7, exp.XI., Lecture Notes in Math., 340, Springer, 1973, 39-61. MR 50:7135
- [D-N] J.-M.Drezet, M.S.Narasimhan, Groupe de Picard des variétés de modules de fibrés semistables sur les courbe algébriques, Invent.Math. 97 (1989), 53–94. MR 90d:14008
- [E] L.Ein, Stable vector bundles on projective spaces in char p > 0, Math.Ann. 254 (1980),
 53-72. MR 81d:14010
- [F] H.Flenner, Restriction of semistable bundles on projective varieties, Comment.Math.Helvetici 59 (1984), 635–650. MR 86m:14014
- [Fa] R.Fahlaoui, Stabilité du fibré tangent des surfaces de del Pezzo, Math.Ann. 283 (1989), 171–176. MR 89k:14063
- [G] D.Gieseker, On the moduli of vector bundles on an algebraic surface, Ann.Math. 106 (1977), 45–60. MR 81h:14014
- [Ma1] M.Maruyama, Moduli of stable sheaves I, J.Math. Kyoto Univ. $\bf 17$ (1977), 91–126. MR $\bf 56:8567$
- [Ma2] M.Maruyama, On boundedness of families of torsion free sheaves, J.Math. Kyoto Univ. 21 (1981), 673-701. MR 83a:14019
- [Mo1] A.Moriwaki, A note on Bogomolov-Gieseker's inequality in positive characteristic, Duke Math.J 64 (1991), 361–375. MR 92m:14054
- [Mo2] A.Moriwaki, Frobenius pull-back of vector bundles of rank 2 over non-uniruled varieties, Math.Ann. 296 (1993), 441–451. MR 94j:14039
- [Mo3] A.Moriwaki, Arithmetic Bogomolov-Gieseker's inequality, Amer.J.Math. 117 (1995), 1325–1347. MR 96i:14022
- [M-R1] V.B.Mehta, A.Ramanathan, Semistable sheaves on projective varieties and their restriction to curves, Math.Ann. 258 (1982), 213–224. MR 83f:14013
- [M-R2] V.B.Mehta, A.Ramanathan, Restriction of stable sheaves and representations of the fundamental group, Invent.Math. 77 (1984), 163–172. MR 85m:14026
- [N1] T.Nakashima, Bogomolov-Gieseker inequality and cohomology vanishing in characteristic p, Proc.Amer.Math.Soc. 123 (1995), 3609–3613. MR 96b:14058
- [N2] T.Nakashima, Singularity of the moduli space of stable bundles on surfaces, Compositio Math. 100 (1996), 125–130. MR 97d:14018

- [P] R.Paoletti, Seshadri constants, gonality of space curves, and restriction of stable bundles,
 J.Diff.Geom. 40 (1994), 475–504. MR 95k:14046
- [S-B] N.I.Shepherd-Barron, Unstable vector bundles and linear systems on surfaces in positive characteristic, Invent.Math. 106 (1991), 243–262. MR 92h:14027

Department of Mathematics, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji-shi, Tokyo, 192-03 Japan

 $E ext{-}mail\ address: nakasima@math.metro-u.ac.jp}$