ON ZETA FUNCTIONS AND IWASAWA MODULES

JANGHEON OH

ABSTRACT. We study the relation between zeta-functions and Iwasawa modules. We prove that the Iwasawa modules $X_k^-(\zeta_p)$ for almost all p determine the zeta function ζ_k when k is a totally real field. Conversely, we prove that the λ -part of the Iwasawa module X_k is determined by its zeta-function ζ_k up to pseudo-isomorphism for any number field k. Moreover, we prove that arithmetically equivalent CM fields have also the same μ^- -invariant.

0. Introduction

Let $\zeta_k(s)$ be the zeta function attached to a number field k. When two number fields share a common zeta function, they are said to be arithmetically equivalent. Isomorphic fields have identical zeta functions. The first non-isomorphic arithmetically equivalent fields were discovered in 1925 by Gassmann [3]. If k is isomorphic to any field L with the same zeta function, that is, if $\zeta_k = \zeta_L \Rightarrow k \simeq L$, then k is said to be arithmetically solitary. Robert Perlis [9] proved that any field k of degree $[k:\mathbb{Q}] \leq 6$ is solitary. However, there are infinite families of k, k' of non-isomorphic arithmetically equivalent fields (see Perlis [9]).

In 1958, with the motivation from the theory of function fields, Iwasawa introduced his theory of \mathbb{Z}_p -extensions, and a few years later Kubota and Leopoldt invented p-adic L-functions. Iwasawa [5] interprets these p-adic L-functions in terms of \mathbb{Z}_p -extensions. In 1979, Mazur and Wiles proved the Main Conjecture, showing that p-adic L-functions are essentially the characteristic power series of certain Galois actions arising in the theory of \mathbb{Z}_p -extensions.

In Tate [12] and Turner [13], the following result is proved: let k and k' be function fields in one variable over a finite constant field F and ζ_k , $\zeta_{k'}$ be Dedekind zeta functions of k, k', respectively. Let C, C' be complete non-singular curves defined over F with function fields isomorphic to k, k', and J(C), J(C') the Jacobian varieties of C, C'. Then the following are equivalent:

$$(1) \zeta_k = \zeta_{k'},$$

(2) J(C) and J(C') are F-isogenous.

Received by the editors April 16, 1996 and, in revised form, June 7, 1996 and October 23, 1996.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11R23.

 $Key\ words\ and\ phrases.$ Iwasawa module, zeta function, $p\text{-adic}\ L\text{-function}.$

This paper is part of the author's Ph.D thesis. I would like to thank my adviser, W. Sinnott, for introducing me to this subject, for pointing out to me the key idea and for many valuable comments.

Komatsu [8] proved analogous results in the number field case. More explicitly, he proved the following result: Let p be a rational prime number, k and k' be number fields. Let k_{∞} and k'_{∞} be the basic \mathbb{Z}_p -extensions of k and k', respectively. Let X_k the Galois group of the maximal unramified abelian p-extension of k_{∞} over k_{∞} . Then $\zeta_k = \zeta_{k'}$ implies that X_k and $X_{k'}$ are isomorphic as Λ -modules for almost all prime numbers p. Adachi and Komatsu [1] proved a weaker converse statement of the above result: Let k and k' be totally real number fields. Let K_{∞} be the cyclotomic \mathbb{Z}_p -extension of $k(\zeta_p)$, Ω the maximal abelian p-extension of K_{∞} unramified outside p, and $Y_{k(\zeta_p)}$ the Galois group of Ω over K_{∞} . If $Y_{k(\zeta_p)}$ is isomorphic to $Y_{k'(\zeta_p)}$ for every prime p, then $\zeta_k = \zeta_{k'}$.

In this paper, we will improve their results. First, we will prove that the Iwasawa modules $X_{k(\zeta_p)}$ for almost all primes p determine the field k up to arithmetic equivalence when k is a totally real number field. In this case, the Main Conjecture relates the p-adic L-functions of k and the Iwasawa module X_k . The p-adic L-functions give us enough information on the values of the zeta function of k at negative integers. Combining this information and the functional equation, we can reconstruct the zeta function ζ_k . The improvements in this paper of the result of Adachi and Komatsu are as follows: In this paper, we use a pseudo-isomorphism instead of an isomorphism, which seems to be natural in Iwasawa theory, and use the module $X_{k(\zeta_p)}^-$ (see §2 for its definition), contained in the torsion part of $Y_{k(\zeta_p)}$, instead of $Y_{k(\zeta_p)}$. It is well-known that the rank of the free part of $Y_{k(\zeta_p)}$ determines the degree $[k:\mathbb{Q}]$ which we need in the proof of Theorem 1 of this paper. Here we prove that the smaller module $X_{k(\zeta_p)}^-$ determines the degree $[k:\mathbb{Q}]$. The Main Conjecture is proved for odd primes, so the main point of Theorem 1 (see §1) is to prove the result of Adachi and Komatsu under the condition "for almost all prime p " instead of "for every prime p".

Secondly, we will prove that the λ -parts of X_k and $X_{k'}$ are pseudo-isomorphic for any prime p if number fields k and k' are arithmetically equivalent. It is well-known that arithmetically equivalent number fields k and k' have the same normal closure L over \mathbb{Q} .

Let $G = Gal(L/\mathbb{Q})$, and L_n be the n-th layer of the basic \mathbb{Z}_p -extension L_∞ . Komatsu proved that X_k is isomorphic to $X_{k'}$ when p does not divide $[L:\mathbb{Q}]$. The real obstruction in the case $p \mid [L:\mathbb{Q}]$ occurs when the basic \mathbb{Z}_p -extension \mathbb{Q}_∞ of \mathbb{Q} and L are not linearly disjoint over \mathbb{Q} , since then the Galois group G does not act on $X_{L,\lambda}$. To overcome the obstruction, we make $X_{L,\lambda}$ into a $\mathbb{Z}_p[G]$ -module by tensoring so that we can show that $X_{k,\lambda}$ and $X_{k',\lambda}$ are pseudo-isomorphic as $\mathbb{Z}_p[[Gal(L_\infty/L)]]$ -modules. (Here the λ -part $X_{k,\lambda}$ is defined to be X_k/\mathbb{Z}_p -torsion(X_k).) Further, we can show that X_k is isomorphic to $X_{k'}$ as an Iwasawa module when p does not divide the order [L:k] = [L:k']. Moreover, we can strengthen our result when k is a CM field. In fact, we prove that the characteristic polynomials of the modules X_k^- are the same for arithmetically equivalent CM fields k. This implies at least that their μ^- -invariants are the same.

1. Statement of the main theorems

Let k be a number field, and S be a finite set of rational primes. Let p be a prime not in S, let ζ_p be a p-th root of unity, denote $Gal(k(\zeta_p)/k)$ by Δ , and write $\mathbb{Z}_p[[Gal(k(\mu_{p^{\infty}})/k)]]$ by $\Lambda[\Delta]$, where $k(\mu_{p^{\infty}})$ is the field obtained by adjoining all the p-power roots of unity to k.

Theorem 1. Let S be a finite set of primes. Let k be a totally real number field. Suppose we know $X_{k(\zeta_p)}^-$ as a $\Lambda[\Delta]$ -module up to pseudo-isomorphism for all $p \notin S$; then we can determine the zeta function ζ_k of k.

Arithmetically equivalent fields k and k' have the same normal closure L, and $k \cap \mathbb{Q}_{\infty} = k' \cap \mathbb{Q}_{\infty}$, so that the Galois groups of the basic \mathbb{Z}_p -extensions k_{∞}/k and k'_{∞}/k' can be identified. Let

$$\Lambda = \mathbb{Z}_p[[Gal(k_{\infty}/k)]] = \mathbb{Z}_p[[Gal(k_{\infty}'/k')]] = \mathbb{Z}_p[[T]],$$

and denote $\mathbb{Z}_p[[(1+T)^{p^t}-1]]$ by Λ_t . By the structure theorem of Λ -modules, every finitely generated torsion Λ -module X is pseudo-isomorphic to a module of the form $\bigoplus_i \Lambda/p^{m_i} \bigoplus_j \Lambda/f_j^{n_j}(T)$, where $f_j \in \Lambda$ is a distinguished and irreducible polynomial prime to p. Define

$$X_{\lambda} = X/(\mathbb{Z}_p - torsion(X))$$
.

Note that X_{λ} is pseudo-isomorphic to $\bigoplus_{i} \Lambda / f_{i}^{n_{j}}(T)$.

Theorem 2. Let p be a prime number. Let k and k' be number fields such that $\zeta_k = \zeta_{k'}$. Then the Iwasawa modules $X_{k,\lambda}$ and $X_{k',\lambda}$ are pseudo-isomorphic as Λ_t -modules for some t. Moreover, X_k is isomorphic to $X_{k'}$ as a Λ -module if p does not divide the degree [L:k] = [L:k']. If k is a CM field and $\zeta_k = \zeta_{k'}$ for a number field k', then k' is also a CM field and $\operatorname{char} X_k^- = \operatorname{char} X_{k'}^-$ for any odd prime p.

2. The Main Conjecture

A \mathbb{Z}_p -extension of a number field k is an extension k_{∞}/k with

$$Gal(k_{\infty}/k) = \Gamma \simeq \mathbb{Z}_p$$

the additive group of p-adic integers. Let γ be a topological generator of Γ . Let A_n be the p-Sylow subgroup of the ideal class group of the unique n-th layer k_n of the \mathbb{Z}_p -extension k_∞/k . Then $X_k = \lim_{\longleftarrow} A_n$ is isomorphic to the Galois group of the maximal unramified abelian p-extension $L_{\infty,k}$ over k_∞ . Extend γ to $\tilde{\gamma} \in Gal(L_{\infty,k}/k)$. Let $x \in X_k$. Then γ acts on x by $x^\gamma = \tilde{\gamma}x\tilde{\gamma}^{-1}$. Since $Gal(L_{\infty,k}/k_\infty)$ is abelian, x^γ is well-defined. In some cases, we will use the additive notation γx instead of the multiplicative one x^γ . We make X_k into a $\Lambda = \mathbb{Z}_p[[T]]$ -module in the following way;

$$(1+T)x = \gamma x .$$

Iwasawa proved the following theorem. The idea to prove the theorem is to make X_k into a Λ -module.

Theorem 3 (L. Washington [14, page 67]). Let k_{∞}/k be a \mathbb{Z}_p -extension. Let p^{e_n} be the exact power of p dividing the class number of k_n . Then there exist integers $\lambda \geq 0$, $\mu \geq 0$, and ν , all independent of n, and an integer n_0 , such that

$$e_n = \lambda n + \mu p^n + \nu$$

for all $n > n_0$.

Let $\mathbb{Q}_{\infty}/\mathbb{Q}$ be the unique \mathbb{Z}_p -extension of \mathbb{Q} . Then the compositum $k\mathbb{Q}_{\infty}$ is a \mathbb{Z}_p -extension of k, which is said to be the basic \mathbb{Z}_p -extension of k. Ferrero and Washington [2] proved that the μ -invariant is zero for the basic \mathbb{Z}_p -extension k_{∞}/k when k is abelian over \mathbb{Q} . Iwasawa [7] constructed a non-basic \mathbb{Z}_p -extension whose μ -invariant is not zero. It has been conjectured that we always have $\mu = 0$ for the basic \mathbb{Z}_p -extension.

Two Λ -modules M and M' are pseudo-isomorphic, written $M \sim M'$, if there is a Λ -module map between them with finite kernel and cokernel. The relation \sim is not reflexive in general. However, it can be shown that it is reflexive for finitely generated Λ -torsion modules. A non-constant polynomial $g(T) \in \Lambda$ is called distinguished if

$$g(T) = T^n + a_{n-1}T^{n-1} + \dots + a_0, p|a_i, 0 \le i \le n-1.$$

By the structure theorem of Λ -modules, every finitely generated Λ -module M is pseudo-isomorphic to a module of the form

$$\Lambda^r \oplus (\bigoplus\nolimits_{i=1}^s \Lambda/p^{n_i}) \oplus (\bigoplus\nolimits_{i=1}^t \Lambda/f_j^{m_j}(T)) \; ,$$

where $r, s, t, n_i, m_j \in \mathbb{Z}$, and f_j is distinguished and irreducible. The characteristic ideal $(\prod f_j^{m_j})(\prod p^{n_i})\Lambda$ is an invariant of M, which we will denote by char(M). Define the μ -invariant of M by $\mu = \sum_{i=1}^s n_i$, and the λ -invariant of M by $\sum_{j=1}^t m_j deg(f_j)$.

Theorem 4. Suppose k_{∞}/k is a \mathbb{Z}_p -extension and assume $\mu = 0$. Then

$$X_k \simeq \mathbb{Z}_p^{\lambda} \oplus (finite\ p\ group)$$

as a \mathbb{Z}_p -module.

Proof. See Washington [14, page 286].

Let k be a totally real number field. Fix a rational odd prime p, and for every integer $n \geq 0$, let $K_n = k(\zeta_{p^{n+1}})$, $K_\infty = \bigcup K_n$, where ζ_{p^n} is a p^n -th root of unity. Put $\Delta = Gal(K_0/k)$ and $\Gamma = Gal(K_\infty/K_0) \simeq \mathbb{Z}_p$ then $Gal(K_\infty/k) = \Delta \times \Gamma$. Let A_n be the Sylow p-subgroup of the ideal class group of K_n , and Y_n be the Galois group M_n/K_n , where M_n is the maximal abelian p-extension of K_n unramified outside primes above p. Define

$$X_{k(\zeta_p)} = \lim_{\leftarrow} A_n ,$$

$$Y_{k(\zeta_p)} = \lim_{\leftarrow} Y_n ,$$

$$A_{\infty} = \lim_{\longrightarrow} A_n ,$$

all inverse limits with respect to the norm maps, the direct limit with respect to the induced map of lifting of ideals. The Iwasawa module $X_{k(\zeta_p)}$ is isomorphic to the Galois group of the maximal unramified abelian p-extension of K_{∞} over K_{∞} and $Y_{k(\zeta_p)} \simeq Gal(M_{\infty}/K_{\infty})$, where M_{∞} is the maximal abelian p-extension of K_{∞} unramified outside primes above p.

Define the Iwasawa algebra

$$\mathbb{Z}_p[[\Gamma]] = \lim_{\leftarrow} \mathbb{Z}_p[Gal(K_n/K_0)] .$$

Fix a topological generator γ_0 of Γ . We identify $\mathbb{Z}_p[[\Gamma]]$ with formal power series ring $\Lambda = \mathbb{Z}_p[[T]]$ by $\gamma_0 \to 1 + T$. Write θ for the character with values in \mathbb{Z}_p^{\times} giving the action of Δ on ζ_p . Let κ be the character giving the action of Γ on the group of p-power roots of unity. Put

$$u = \kappa(\gamma_0).$$

For any integer $i = 0, 1, \ldots, |\Delta| - 1$, define θ^i -idempotent

$$e_i = \frac{1}{|\Delta|} \sum_{\delta \in \Delta} \theta^{-i}(\delta) \delta$$
.

The Iwasawa module $Y_{k(\zeta_p)}$ is a finitely generated Λ -module and $X_{k(\zeta_p)}$ is a finitely generated torsion Λ -module.

For every odd integer i, there exists a fraction of power series $G(T, \theta^i)$ in the field of fractions of Λ satisfying

$$G(u^s - 1, \theta^i) = L_p(\theta^{1-i}, s),$$

where $L_p(\theta^{1-i}, s)$ is the *p*-adic *L*-function of θ^{1-i} . Hence $G(T, \theta^i)$ is characterized by the following relation:

$$G(u^s - 1, \theta^i) = L_k(\theta^{-i+s}, s) \prod_{\mathfrak{p}|n} (1 - \theta^{-i+s}(\mathfrak{p}) N \mathfrak{p}^{-s})$$

for every negative integer s. For every odd integer i, let

$$H(T, \theta^i) = \begin{cases} G(T, \theta^i), & i \not\equiv 1 \mod |\Delta|, \\ (1 + T - u)G(T, \theta), & i \equiv 1 \mod |\Delta|. \end{cases}$$

Let

$$\tau = \lim_{\longleftarrow} \mu_{p^n} .$$

By Kummer theory, we can prove that

$$e_{1-i}Y_{k(\zeta_p)}(-1) \stackrel{\text{def}}{=} e_{1-i}Y_{k(\zeta_p)} \otimes_{\mathbb{Z}_p} Hom_{\mathbb{Z}_p}(\tau, \mathbb{Z}_p) \simeq Hom(e_i A_{\infty}, \mathbb{Q}_p/\mathbb{Z}_p) .$$

Let $G_i(T)$ be a power series such that $G_i((1+T)^{-1}-1)$ is a characteristic power series of $Hom(e_iA_\infty, \mathbb{Q}_p/\mathbb{Z}_p)$. The following theorem is proved by Wiles [15](the "Main Conjecture").

Theorem 5. For each odd integer i, $H(T, \theta^i)\Lambda = G_i(T)\Lambda$.

Let $char(e_iX_{k(\zeta_p)})=F_i(T)\Lambda$. By Iwasawa [6], $char(Hom(e_iA_\infty,\mathbb{Q}_p/\mathbb{Z}_p))=char(e_iX_{k(\zeta_p)})$. Hence we have the following equivalent form of the Main Conjecture.

Theorem 6. For each odd integer i, $F_i((1+T)^{-1}-1)\Lambda = H(T,\theta^i)\Lambda$.

3. Proof of theorems

Notations are the same as in section 1. We define the minus-part of $X_{k(\zeta_n)}$ by

$$X_{k(\zeta_p)}^- = \sum_{i=1 \text{ odd}}^{|\Delta|} e_i X_{k(\zeta_p)}.$$

We state the main theorem of this chapter.

Theorem 7 (= Theorem 1). Let S be a finite set of primes. Let k be a totally real number field. Suppose we know $X_{k(\zeta_p)}^-$ as a $\Lambda[\Delta]$ -module up to pseudo-isomorphism for all $p \notin S$; then we can determine the zeta function ζ_k of k.

We let ord_p denote the usual valuation on $\overline{\mathbb{Q}_p}$, normalized by $ord_p(p) = 1$, and let $|x| = p^{-ord_p(x)}$.

Lemma 1. Let $\{x_n\}$ be a sequence in \mathbb{C}_p , which converges to $x_0 \neq 0$. Then $ord_p(x_n) = ord_p(x_0)$ for n sufficiently large.

Proof. Since x_n approaches x_0 , $|x_n - x_0|$ is strictly less than $|x_0|$ for n sufficiently large . Therefore $|x_n| = \max\{|x_n - x_0|, |x_0|\} = |x_0|$ for n sufficiently large. \square

Let $\delta_i = \#Gal(k(\zeta_{p_i})/k)$ for an odd prime p_i . Then δ_i is an even integer since k is a totally real number field. When p = 2, $\Delta = Gal(k(\zeta_4)/k)$ so that $\delta = 2$. Let S be a finite set of primes which contains the prime number 2.

Proposition 1. The Iwasawa modules $X_{k(\zeta_p)}^-$, for all primes not in S, determine the absolute value of ζ_k at negative integers, up to primes in S.

Proof. If n is a negative even integer, then $\zeta_k(n) = 0$. Fix a negative odd integer n. Let p be a prime number not in S. Then $n \equiv i_n \mod |\Delta|$, for some odd integer i_n , $0 \le i_n \le |\Delta| - 1$. It is well-known that the values $\zeta_k(n)$ are in \mathbb{Q} . By Theorem 6, we know the value

$$ord_p(G(u^n - 1, \theta^{i_n})) = ord_p L_k(\theta^{-i_n + n}, n) \prod_{\mathfrak{p}|p} (1 - \theta^{-i_n + n}(\mathfrak{p}) N \mathfrak{p}^{-n})$$
$$= ord_p L_k(1, n) = ord_p \zeta_k(n).$$

Hence the absolute value of $\zeta_k(n)$ is determined up to primes in S.

Remark. By definition, the p-adic L-function $L_p(\theta^i, s)$ of θ^i is the continuous function from $\mathbb{Z}_p \setminus \{1\}$ to \mathbb{C}_p satisfying $L_p(\theta^i, s) = L_k(\theta^i, s) \prod_{\mathfrak{p}|p} (1 - \theta^i(\mathfrak{p}) N \mathfrak{p}^{-s})$ for all rational integers $s \leq 0$ with $s \equiv 1 \mod \delta$, where $\delta = \#Gal(k(\zeta_p)/k)$, for an odd integer p. For all integers i and n > 1, $L_k(\theta^i, 1 - n)$ is non-zero if and only if i and n have the same parity.

Let $\sigma_i = p_i - 1$ for an odd prime p_i , and $\sigma_i = 2$ if $p_i = 2$. Then δ_i divides σ_i .

Proposition 2. Let $S = \{p_1, \ldots, p_t\}$ be any finite set of primes. Then there is a sequence $\{a_n\}$ of odd integers such that $ord_p(\zeta_k(a_n))$ is constant for n sufficiently large for all primes p in S.

Proof. Let $a_n = 1 - 2\sigma_1 \cdots \sigma_t - 2\sigma_1 \cdots \sigma_t p_1^n \cdots p_t^n$; then

$$L_{p_i}(1, a_n) = (\prod_{\mathfrak{p}|p_i} (1 - N\mathfrak{p}^{-a_n}))\zeta_k(a_n) ,$$

so we know that $\zeta_k(a_n)$ approaches $L_{p_i}(1, 1 - 2\sigma_1 \cdots \sigma_t)$ p_i -adically with n. By the remark above, $L_{p_i}(1, 1 - 2\sigma_i \cdots \sigma_t) \neq 0$. Therefore there exists a positive integer N such that $ord_{p_i}\zeta_k(a_n) = ord_{p_i}\zeta_k(1 - 2\sigma_1 \cdots \sigma_t)$ for every integer n > N, and $i = 1, \dots, t$. This completes the proof.

By the functional equation, we have the following equation.

$$A^{s}\Gamma(s/2)^{N}\zeta_{k}(s) = A^{1-s}\Gamma((1-s)/2)^{N}\zeta_{k}(1-s) ,$$

where $A = d_k^{1/2} \pi^{-N/2}$, $N = [k : \mathbb{Q}]$, and d_k is the absolute value of the discriminant of k. Hence we have

(1)
$$\zeta_k(1-s) = A^{2s-1}\Gamma(s/2)^N\Gamma((1-s)/2)^{-N}\zeta_k(s)$$

$$= A^{2s-1}(\Gamma(s/2)/\Gamma((1-s)/2))^N\zeta_k(s)$$

$$= A^{2s-1}(\Gamma(s)2^{1-s}\pi^{-1/2}\cos((s\pi/2))^N\zeta_k(s) .$$

Finally, we get the following equation.

(2)
$$|\zeta_k(1-\ell)| = A^{2\ell-1} \Gamma(\ell)^N (2^{1-\ell})^N \pi^{-N/2} |\zeta_k(\ell)|$$

for any positive even integer ℓ .

Now we are ready to prove Theorem 7 by following the idea of Goss and Sinnott [4]. Let n be a rational number, S be a finite set of primes. We define $(n)_{S-part} = \prod_{p \in S} p^{ord_p(n)}$, and $(n)_{non-S-part} = n/(n)_{S-part}$. Let x > 0 be a real number. Then from the equation (2), we have the following equation;

(3)
$$|\zeta_k(1-\ell)|/\Gamma(\ell)^x = (A^2 2^{-N})^{\ell} \Gamma(\ell)^{N-x} 2^N \pi^{-N/2} A^{-1} |\zeta_k(\ell)| .$$

By Stirling's formula,

$$B^s/\Gamma(s) \to 0 \text{ as } s \to \infty$$

for any real B > 0. Moreover, $\zeta_k(\ell) \to 1$ as $\ell \to \infty$. Choose a sequence $\{a_n\}$ as in Proposition 2, and let $a_n = 1 - \ell_n$. By Propositions 1 and 2, we know the value of

$$(4) |\zeta_k(1-\ell_n)|/\Gamma(\ell_n)^x$$

up to an (unknown) constant independent of n, as long as n is sufficiently large. The right-hand side of the equation (3) approaches 0 as ℓ goes to ∞ if N < x, and goes to ∞ if N > x. Hence the same is true of (4). Hence we can read off N. Going back to the equation (2) with $\ell = \ell_n$, we can determine A;

$$A = \lim_{n \to \infty} \exp[[1/(2\ell_n - 1)] \log[\frac{|\zeta_k(1 - \ell_n)|_{non - S - part}|\zeta_k(1 - \ell_n)|_{S - part}}{\Gamma(\ell_n)^N(2^{1 - \ell_n})^N \pi^{-N/2}|\zeta_k(\ell_n)|}]]$$

$$= \lim_{n \to \infty} \exp[[1/(2\ell_n - 1)] \log[\frac{|\zeta_k(1 - \ell_n)|_{non - S - part}}{\Gamma(\ell_n)^N(2^{1 - \ell_n})^N \pi^{-N/2}|\zeta_k(\ell_n)|}]]$$

by Propositions 1 and 2. Hence we know the discriminant d_k . Here $1 - a_n$ is a multiple of 4 since σ_i is even. Since the value $\cos(4m\pi/2)$ for integer m and the values of zeta function at positive integers not equal to 1 are positive, we know, by the equation (1), the values $\zeta_k(a_n)$ are positive. By Proposition 1, we know the non-S-part of the values of zeta function at a_n , and by Proposition 2, the S-part is constant for n sufficiently large. Hence, with the functional equation, we can determine the S-part of the values of the zeta function at the sequence a_n for large n, i.e., we have:

$$\zeta_k (1 - \ell_n)_{S-part} = \lim_{m \to \infty} \frac{A^{2\ell_m - 1} (\Gamma(\ell_m) 2^{1 - \ell_m} \pi^{-1/2} \cos((\ell_m \pi)/2))^N \zeta_k(\ell_m)}{\zeta_k (1 - \ell_m)_{non - S - part}}$$

$$= \lim_{m \to \infty} \frac{A^{2\ell_m - 1} (\Gamma(\ell_m) 2^{1 - \ell_m} \pi^{-1/2})^N}{\zeta_k (1 - \ell_m)_{non - S - part}}$$

for n sufficiently large. Therefore, by Proposition 1, we know the values $\zeta_k(1-\ell_n)$ for n sufficiently large.

Let

$$\zeta_k(s) = \sum b_n/n^s \ .$$

Then we have

$$\sum_{m=1}^{\infty} b_m / m^{\ell_n} = A^{2(1-\ell_n)-1} \Gamma((1-\ell_n)/2)^N \Gamma((\ell_n)/2)^{-N} \zeta_k (1-\ell_n) .$$

We know the values of the right-hand side of the above equation for n sufficiently large, which will be denoted by c_n . We know $b_1 = 1$, and

$$b_2 = \lim_{n \to \infty} (c_n - 1) 2^{\ell_n} .$$

Continuing the above process, we can determine all the coefficients b_m 's, so we can determine the zeta function $\zeta_k(s)$. This completes the proof of Theorem 7.

Let k,k' be totally real number fields, and let S be a finite set of primes containing all the primes which are ramified in k and k'. Then the number fields k and k' are linearly disjoint with $\mathbb{Q}(\mu_{p^{\infty}})$ over \mathbb{Q} for $p \notin S$. Let $K_{\infty} = k(\mu_{p^{\infty}})$, and let $K'_{\infty} = k'(\mu_{p^{\infty}})$. Then we may identify $Gal(K_{\infty}/k)$ and $Gal(K'_{\infty}/k')$ (they are both naturally isomorphic to $Gal(\mathbb{Q}(\mu_{p^{\infty}})/\mathbb{Q})$, so that we may compare the Iwasawa modules $X^-_{k'(\zeta_p)}$ and $X^-_{k'(\zeta_p)}$ as $\Lambda[\Delta]$ -modules. Then, from Theorem 7, we have the following corollary.

Corollary 1. Let k and k' be totally real number fields. Let S be a finite set of primes containing all the primes which are ramified in k and k'. Assume that the two Iwasawa modules

$$X_{k(\zeta_p)}^- \sim X_{k'(\zeta_p)}^-$$

are pseudo-isomorphic as $\Lambda[\Delta]$ -modules for all $p \notin S$; then

$$\zeta_k = \zeta_{k'}$$
.

4. Arithmetic equivalence

Let k be a number field, and \mathfrak{o}_k be its ring of integers. Let $p\mathfrak{o}_k = \mathfrak{p}_g^{e_1} \cdots \mathfrak{p}_g^{e_g}$ be the decomposition of a prime number $p \in \mathbb{Z}$, let $f_i = [(\mathfrak{o}_k/\mathfrak{p}_i) : \mathbb{Z}/p]$ be the degree of \mathfrak{p}_i , and e_i be the ramification indices, numbered so that $f_i \leq f_{i+1}$. Then the tuple $A = (f_1, \ldots, f_g)$ is called the splitting type of p in k. We define a set $P_k(A)$ by $P_k(A) = \{p \in \mathbb{Z} : p \text{ has splitting type } A \text{ in } k\}$. The notation $S \doteq T$ will be used to indicate that these two sets differ by at most a finite number of elements. Two subgroups H, H' of a finite group G are said to be Gassmann equivalent in G when

$$|c^G \cap H| = |c^G \cap H'|$$

for every conjugacy class $c^G = \{gcg^{-1}|g \in G\}$ in G and c in G. Let k and k' be number fields, and L be a Galois extension of $\mathbb Q$ containing k and k'. Write H = Gal(L/k), H' = Gal(L/k') and $G = Gal(L/\mathbb Q)$. The normal core of k is the largest subfield of k normal over $\mathbb Q$. It is the fixed field of the subgroup $\langle H^{\sigma}|\sigma \in Gal(L/\mathbb Q)\rangle$ generated by all conjugates of H. We call k,k' arithmetically equivalent if H and H' are Gassmann equivalent in G. Note that this definition is independent of the choice of L and that if k,k' are arithmetically equivalent, then they have the same normal closure.

Lemma 2 (Perlis [10]). Two arithmetically equivalent number fields k and k' have the same normal core.

3040

With this notation we have the following theorem.

Theorem 8. The following are equivalent.

- (a) $\zeta_k(s) = \zeta_{k'}(s)$.
- (b) $P_k(A) = P_{k'}(A)$ for every tuple A.
- (c) $P_k(A) \doteq P_{k'}(A)$ for every tuple A.
- (d) H = Gal(L/k) and H' = Gal(L/k') are Gassmann equivalent in G.
- (e) $\mathbb{Q}[H\backslash G]$ is isomorphic to $\mathbb{Q}[H'\backslash G]$ as a $\mathbb{Q}[G]$ -module.

Proof. See Komatsu [8].

Let H and H' be Gassmann equivalent. Let $\{\rho_1,\cdots,\rho_t\}$ and $\{\rho'_1,\cdots,\rho'_t\}$ be right coset representatives of $H\backslash G$ and $H'\backslash G$, respectively. Then we have two homomorphisms π,π' from G into symmetric group S_t given by $\pi_g(i)=j$, where $H\rho_ig=H\rho_j$, and $\pi'_g(i)=j$, where $H'\rho'_ig=H'\rho'_j$. Let D and D' be the linear representations of G induced from the unit representations of H and H'. Their characters χ , χ' are given by

$$\chi(g) = |g^G \cap H||C_G(g)|/|H|,$$

$$\chi'(g) = |g^G \cap H'||C_G(g)|/|H'|$$
,

for $g \in G$, where $C_G(g)$ is the centralizer. By Theorem 8, $\chi = \chi'$ so that the representations $D, D' : G \to GL_t(\mathbb{Q})$ are isomorphic. Thus there is a rational $t \times t$ matrix $M \in GL_t(\mathbb{Q})$ satisfying the following relation :

$$D(g)M = MD'(g)$$

for every $g \in G$. By clearing the denominators, we may assume that M is in $GL_t(\mathbb{Z})$. A matrix $M = (m_{ij})$ satisfies the above equation if and only if $m_{ij} = m_{\pi_g(i), \pi'_g(j)}$ for all $g \in G$. With the same notation as in Theorem 8, we have the following proposition.

Proposition 3. Let k and k' be arithmetically equivalent fields. Then there is an exact sequence of right $\mathbb{Z}_p[G]$ -modules

$$0 \to \mathbb{Z}_p[H \backslash G] \to \mathbb{Z}_p[H' \backslash G] \to A \to 0$$
,

where A is a finite right- $\mathbb{Z}_n[G]$ -module.

Proof. Let M be a matrix satisfying the condition

(5)
$$m_{ij} = m_{\pi_g(i), \pi'_g(j)} .$$

Define a map φ from $\mathbb{Z}_p[H\backslash G] \to \mathbb{Z}_p[H'\backslash G]$ by

$$\varphi(H\rho_i) = m_{i1}H'\rho'_1 + \dots + m_{it}H'\rho'_t, \ i = 1,\dots,t,$$

so φ may be represented by a matrix M with a basis $\{\rho_1, \dots, \rho_t\}$ and $\{\rho'_1, \dots, \rho'_t\}$. By the equation (5), φ is a right $\mathbb{Z}_p[G]$ -module homomorphism. Since M is invertible, φ is injective. Moreover, we have the following equation.

$$\det M \begin{pmatrix} H'\rho_1' \\ \vdots \\ H'\rho_t' \end{pmatrix} = (\det M)M^{-1} \begin{pmatrix} \varphi(H\rho_1) \\ \vdots \\ \varphi(H\rho_t) \end{pmatrix}$$

Hence cokernel φ is killed by det M, but cokernel φ is a finitely generated \mathbb{Z}_p -module. Therefore cokernel φ is finite. This completes the proof.

Remark. If p does not divide the order of H, then we can take A to be zero. In the case, both $\mathbb{Z}_p[H\backslash G]$ and $\mathbb{Z}_p[H'\backslash G]$ are projective $\mathbb{Z}_p[G]$ -modules. A projective module is determined by its character χ ; hence, they are isomorphic. For details, see Komatsu [8].

Write

$$\Lambda_t = \mathbb{Z}_p[[(1+T)^{p^t} - 1]],$$

where $\Lambda_0 = \Lambda = \mathbb{Z}_p[[T]]$. For the rest of this paper, p is a fixed prime number, and let L be a normal closure of k and k'. Let $L_0 \subset L_1 \subset L_2 \subset \cdots \subset L_\infty$ be the basic \mathbb{Z}_p -extension over the field $L = L_0$. Put $\Gamma = Gal(L_\infty/L) \simeq \mathbb{Z}_p$. When p does not divide $[L:\mathbb{Q}]$, we can identify the following Galois groups $Gal(k_\infty/k)$, $Gal(k'_\infty/k')$ and $Gal(L_\infty/L)$. Komatsu proved that two Iwasawa modules X_k and $X_{k'}$ are isomorphic as $\mathbb{Z}_p[[\Gamma]] = \Lambda_L$ -modules when p does not divide $[L:\mathbb{Q}]$. Let $\Lambda_k = \mathbb{Z}_p[[Gal(k_\infty/k)]]$. Now for any prime p including the above exceptional case, regarding Λ_L as a subring of Λ_k , we have $\Lambda_L = \Lambda_{k,t}$ for some $t \geq 0$. In this chapter, we will prove that the Iwasawa modules $X_{k,\lambda}$ and $X_{k',\lambda}$ are pseudo-isomorphic as Λ_L -modules for any prime p.

5. Proof of theorems

Let k be a number field, and let L be the Galois closure of k over \mathbb{Q} . In addition, we assume that $L \cap k_{\infty} = k$. Write Gal(L/k) = H. Since $L \cap k_{\infty} = k$, the group H can be considered as $Gal(L_n/k_n)$ for any $n \geq 0$, and it commutes with Γ . Hence the group H acts on X_L . Regard Λ_L as a subring of Λ_k , so that Λ_L acts on X_k . Recall that $X_{\lambda} = X/(\mathbb{Z}_p - torsion(X))$ for a Λ -module X.

Proposition 4. The Iwasawa modules $X_{L,\lambda}^H$ and $X_{k,\lambda}$ are pseudo-isomorphic as Λ_L -modules.

Proof. Let $|H| = [L:k] = p^{\alpha}m$, where (m,p) = 1. For each n, we choose $c_n|H| \equiv p^{\alpha} \mod p^{t_n}$, so that p^{t_n} exceeds the order of $A_{n,L}$ and $A_{n,k}$, where $A_{n,M}$ is the p-Sylow subgroup of the ideal class group of the n-th layer of the basic \mathbb{Z}_p -extension over a number field M. Let i be the lifting map from $A_{n,k}$ to $A_{n,L}^H$, and N be the norm map on ideal classes. Let β_n be an element of the kernel of the map i. Then

$$(6) 0 = c_n N \circ i(\beta_n) = p^{\alpha} \beta_n ,$$

so that the kernel of i is killed by p^{α} for any n. Let γ_n be in $A_{n,L}^H$. We have the following equation:

(7)
$$i(c_n N \gamma_n) = i(c_n |H|) \gamma_n = p^{\alpha} \gamma_n ,$$

so that the cokernel of i is killed by p^{α} for any n. The lifting map i commutes with the inverse limit, and the map $i: \lim_{\leftarrow} A_{n,k} \longrightarrow \lim_{\leftarrow} A_{n,L}^H$ is a Λ_L -homomorphism since H and Γ commute with each other. Define the induced map i^* of i from $X_{k,\lambda}$ to $X_{L,\lambda}^H$ by $i^*(\overline{x}) = \overline{i(x)}$, where \overline{x} is the reduction map from X to X_{λ} . The map i^* is well-defined since the image of the \mathbb{Z}_p -torsion of X_k is contained in the \mathbb{Z}_p -torsion of X_L^H . The map i^* is injective: if $i^*(\overline{x}) = 0$, then $p^m i(x) = 0$ for some integer m; hence, by (6), $p^t x = 0$ for some integer t, which means that x is in the \mathbb{Z}_p -torsion of X_k i.e. $x \equiv 0$ in $X_{k,\lambda}$. Let \overline{y} be any element of $X_{L,\lambda}^H$. Then, by the above formula

(7), $p^{\alpha}\overline{y} = \overline{p^{\alpha}y} = \overline{i(x)} = i^{*}(\overline{x})$ for some \overline{x} in $X_{k,\lambda}$. Since $X_{k,\lambda}$ and $X_{L,\lambda}^{H}$ are finitely generated \mathbb{Z}_{p} -modules, the induced map i^{*} is a pseudo-isomorphism.

Lemma 3. Let G be a group. For any prime number p, for any $\mathbb{Z}_p[G]$ -module A, and a subgroup H < G,

$$Hom_{\mathbb{Z}_p[G]}(\mathbb{Z}_p[H\backslash G], A) \simeq A^H,$$

where A^H is the subset of elements of A fixed under H.

Proof. The isomorphism is given by

$$\phi \longrightarrow \phi(He) \text{ for } \phi \in Hom_{\mathbb{Z}_p[G]}(\mathbb{Z}_p[H \backslash G], A) .$$

Remark. Let R be a ring, and assume that A is also a R-module. Assume R commutes with the action of G. Then $Hom_{\mathbb{Z}_p[G]}(\mathbb{Z}_p[H\backslash G], A) \simeq A^H$ as a R-module by making $(r\phi)(x) = r(\phi(x))$. The basic idea of the proof of the main theorem of this section is due to the above lemma which is used in Perlis and Colwell [11].

Let k and k' be two isomorphic number fields and ϕ be an automorphism of $\overline{\mathbb{Q}}$ such that $\phi(k)=k'$. Let γ be a topological generator of $Gal(k_{\infty}/k)$. Then $\gamma'=\phi\gamma\phi^{-1}$ is a topological generator of $Gal(k'_{\infty}/k')$. We make X_k and $X_{k'}$ into $\Lambda=\mathbb{Z}_p[[T]]$ -modules in the following way.

$$\gamma x = (1+T)x$$
 and $\gamma' x' = (1+T)x'$,

where $x \in X_k$ and $x' \in X_{k'}$.

Proposition 5. Let k and k' be two isomorphic number fields. Then the Iwasawa modules X_k and $X_{k'}$ are isomorphic as Λ -modules for any prime number p.

Proof. Let e be an integer such that $\mathbb{Q}_{\infty} \cap k = \mathbb{Q}_e$ and $k_n = k\mathbb{Q}_{n+e}$ be the n-th layer of the basic \mathbb{Z}_p -extension of k. Since \mathbb{Q}_{n+e} is the normal extension of \mathbb{Q} , $\phi(k_n) = k'_n$. Let $x = (x_1, \cdots, x_n, \cdots) \in X_k$. Let the fractional ideal \mathfrak{a}_n be a representative of x_n . Define $\phi(x_n)$ to be the class of \mathfrak{a}_n^{ϕ} . Then

$$N\gamma'_n \circ \phi(x_n) = (1 + \gamma'_n + \dots + {\gamma'_n}^{p-1})\phi(x_n)$$
$$= \phi(1 + \gamma_n + \dots + {\gamma_n}^{p-1})(x_n) = \phi \circ N\gamma_n(x_n) .$$

Hence ϕ induces a map from X_k to $X_{k'}$ which is also denoted by ϕ . Moreover, it is a Λ -module homomorphism;

$$\begin{split} T \cdot \phi(x) &= (\gamma' - 1)\phi(x) = \gamma' \phi(x)/\phi(x) \\ &= \phi(\gamma x)/\phi(x) = \phi((\gamma - 1)x) = \phi(T \cdot x) \;. \end{split}$$

The map ϕ is trivially bijective. This completes the proof.

Lemma 4 (Komatsu). Let k and k' be number fields such that $\zeta_k = \zeta_{k'}$. Let K be a finite Galois extension of \mathbb{Q} . Then we have $\zeta_{kK} = \zeta_{k'K}$.

Proof. See Komatsu [8] .
$$\Box$$

Let L be the Galois closure of k and k', and L_{∞}/L be the basic \mathbb{Z}_p -extension. Put $\Gamma = Gal(L_{\infty}/L)$ and $\Lambda_L = \mathbb{Z}_p[[\Gamma]]$.

Now we restate the main theorem of this section.

Theorem 9. Let p be a prime number. Let k and k' be number fields such that $\zeta_k = \zeta_{k'}$. Then the Iwasawa modules

$$X_{k,\lambda} \sim X_{k',\lambda}$$

as $\Lambda_L = \Lambda_{k,t}$ -modules for some integer $t \geq 0$.

Proof. Let L be the Galois closure of k and k'. Let e be an integer such that $k \cap \mathbb{Q}_{\infty} = \mathbb{Q}_{e}$. By Lemma 2, $k' \cap \mathbb{Q}_{\infty} = \mathbb{Q}_{e}$. Let m be the largest integer such that $\mathbb{Q}_{m} \subset L$, where \mathbb{Q}_{m} is the m-th layer of the basic \mathbb{Z}_{p} -extension \mathbb{Q}_{∞} of \mathbb{Q} . Put $k_{m} = k\mathbb{Q}_{m}$ and $k'_{m} = k'\mathbb{Q}_{m}$. By Lemma 4,

$$\zeta_{k_m} = \zeta_{k'_m} .$$

Let $G = Gal(L/\mathbb{Q})$, $K = Gal(L/\mathbb{Q}_m)$, $H = Gal(L/k_m)$, and $H' = Gal(L/k'_m)$. By the above equation (8) and Theorem 8, two subgroups H and H' of G are Gassmann equivalent in G. Hence we have an exact sequence by Proposition 3:

$$(9) 0 \to \mathbb{Z}_p[H\backslash G] \to \mathbb{Z}_p[H'\backslash G] \to A \to 0 ,$$

where A is a finite $\mathbb{Z}_p[G]$ -module. Also note that K is normal in G, and that H and H' act on X_L . Since $L \cap \mathbb{Q}_{\infty} = \mathbb{Q}_m$, K acts on $X_{L,\lambda}$ so that $X_{L,\lambda}$ is a right $\mathbb{Z}_p[K]$ -module. Consider $\mathbb{Z}_p[G]$ as a left $\mathbb{Z}_p[K]$ -module. Then we can form the tensor product:

$$X' = X_{L,\lambda} \otimes_{\mathbb{Z}_p[K]} \mathbb{Z}_p[G] .$$

Then X' is a right $\mathbb{Z}_p[G]$ -module via the action of $\mathbb{Z}_p[G]$ on the second factor. We have an exact sequence from the equation (9).

$$0 \to Hom_{\mathbb{Z}_p[G]}(A, X')$$

$$\to Hom_{\mathbb{Z}_p[G]}(\mathbb{Z}_p[H'\backslash G], X')$$

$$\to Hom_{\mathbb{Z}_p[G]}(\mathbb{Z}_p[H\backslash G], X')$$

$$\to Ext^1_{\mathbb{Z}_p[G]}(A, X') \to \cdots$$

First, we will prove that

$$Hom_{\mathbb{Z}_p[G]}(\mathbb{Z}_p[H\backslash G], X') \sim \bigoplus_{n^m-conjes} X_{k,\lambda}$$

as a $\Lambda = \mathbb{Z}_p[[Gal(L_{\infty}/L)]]$ -module, where $p^m = [G:K]$. Let $\{\rho_1, \dots, \rho_{p^m}\}$ be right coset representatives of $K \setminus G$ with $\rho_1 = 1$. Then

$$X' \simeq X_{L,\lambda} \otimes \rho_1 + \cdots + X_{L,\lambda} \otimes \rho_{p^m},$$

as a Λ_L -module. Note that this is a direct sum. Let $h \in H$. Since $h \in K$ and K is normal in G, $\rho_i h \rho_i^{-1} \in K$ for any $\rho_i \in G$. Let $x \in X_{L,\lambda}$.

(10)
$$(x \otimes \rho_i)h = x \otimes \rho_i h$$

$$= x \otimes \rho_i h \rho_i^{-1} \rho_i$$

$$= x^{\rho_i h \rho_i^{-1}} \otimes \rho_i \in X_{I, \lambda} \otimes \rho_i .$$

Let $x_1 \otimes \rho_1 + \cdots + x_{p^m} \otimes \rho_{p^m} \in X'$, $g \in G$ and $\gamma \in \Gamma$. Then $\rho_i g = k_i \rho_{\pi_g(i)}$ for some permutation π_g on $\{1, \ldots, p^m\}$, where $k_i \in K$. Since γ commutes with k_i ,

we have the following equation:

$$(\sum x_i \otimes \rho_i)g\gamma = (\sum x_i^{k_i} \otimes \rho_{\pi_g(i)})\gamma$$

$$= (\sum x_i^{k_i\gamma} \otimes \rho_{\pi_g(i)}) = (\sum x_i^{\gamma k_i} \otimes \rho_{\pi_g(i)})$$

$$= (\sum x_i^{\gamma} \otimes \rho_i)g = (\sum x_i \otimes \rho_i)\gamma g.$$

Therefore Λ commute with the action of G on X'. By Lemma 3, the remark below Lemma 3, and the above equation (10), we have:

$$Hom_{\mathbb{Z}_p[G]}(\mathbb{Z}_p[H\backslash G], X') = (X')^H = \sum (X_{L,\lambda} \otimes \rho_i)^H$$
.

We have a Λ -module isomorphism: $\phi: X_{L,\lambda} \otimes \rho_i \to X_{L,\lambda}$ by sending $x \otimes \rho_i \to x$. Again by (10),

$$\sum (X_{L,\lambda} \otimes \rho_i)^H \simeq \sum X_{L,\lambda}^{\rho_i H \rho_i^{-1}} .$$

Since H and $\rho_i H \rho_i^{-1}$ are conjugate in G, their fixed fields are isomorphic. By Propositions 4 and 5, we have the following equation.

$$Hom_{\mathbb{Z}_p[G]}(\mathbb{Z}_p[H\backslash G], X') \sim \bigoplus_{p^m-copies} X_{k,\lambda}$$
.

By the same way, we have the following equation.

$$Hom_{\mathbb{Z}_p[G]}(\mathbb{Z}_p[H'\backslash G], X') \sim \bigoplus_{p^m-copies} X_{k',\lambda}$$
.

By Theorem 4,

$$X' \simeq \mathbb{Z}_p^{p^m \lambda} \oplus \text{ finite } p\text{-group.}$$

Denote by ψ the map from

$$Hom_{\mathbb{Z}_p[G]}(\mathbb{Z}_p[H'\backslash G], X')$$

to

$$Hom_{\mathbb{Z}_p[G]}(\mathbb{Z}_p[H\backslash G],X')$$
.

Since $Hom_{\mathbb{Z}_p[G]}(A, X') \subseteq Hom_{\mathbb{Z}_p}(A, X')$ and the right-hand side is finite, the kernel of the map ψ is finite. The cokernel of the map ψ , which is a finitely generated \mathbb{Z}_p -module, is contained in $Ext^1_{\mathbb{Z}_p[G]}(A, X')$. By definition, $Ext^1_{\mathbb{Z}_p[G]}(A, X')$ is killed by #A. Hence, the cokernel is finite. Therefore we proved that $\bigoplus_{p^m-copies} X_{k',\lambda}$ is pseudo-isomorphic to $\bigoplus_{p^m-copies} X_{k,\lambda}$. This implies, by the structure theorem of Λ -modules, $X_{k,\lambda}$ is pseudo-isomorphic to $X_{k',\lambda}$. Hence we proved the theorem for t=m-e.

Remark. If p does not divide [L:k] = [L:k'], then X_k is isomorphic to $X_{k'}$. In fact, p does not divide |H| = |H'| in the case, so α in Proposition 4 is zero, and $\mathbb{Z}_p[H\backslash G] \simeq \mathbb{Z}_p[H'\backslash G]$, so that A is zero in the proof of Theorem 9. Therefore pseudo-isomorphisms can be replaced by isomorphisms in the above theorems and we can work with X_k instead of $X_{k,\lambda}$. Moreover t=0 in the case; in other words, $X_k \simeq X_{k'}$ as $\Lambda_k = \Lambda_{k'}$ -modules.

Remark. The ring $\mathbb{Z}_p[Gal(L_{\infty}/L)] = \Lambda_L$ can be viewed as a subring $\Lambda_{k,t}$ of

$$\mathbb{Z}_p[Gal(k_{\infty}/k)] \simeq \mathbb{Z}_p[Gal(k_{\infty}'/k')] = \Lambda_k$$

for some integer $t \geq 0$. The Iwasawa modules X_k and $X_{k'}$ are actually Λ_k -modules. We showed that $X_{k,\lambda} \sim X_{k',\lambda}$ as a Λ_L -module, not as a Λ_k -module. In general, two

 Λ -modules which are pseudo-isomorphic as Λ_t -modules are not necessarily pseudo-isomorphic as Λ -modules. Here is an example; let

$$X = \bigoplus_{p^t \text{-copies}} \Lambda / T$$

and

$$Y = \Lambda/((1+T)^{p^t} - 1) .$$

They are pseudo-isomorphic to

$$\bigoplus_{p^t\text{-copies}} \Lambda_t/Z$$

as

$$\Lambda_t = \mathbb{Z}_p[[Z]]$$

modules, where $Z=(1+T)^{p^t}-1$. However, there is a relation between the characteristic polynomials of two $\Lambda=\mathbb{Z}_p[[T]]$ -modules which are pseudo-isomorphic as $\Lambda_t=\mathbb{Z}_p[[(1+T)^{p^t}-1]]$ -modules. By the Weierstrass Preparation Theorem, every power series $f(T)\in\Lambda$ can be expressed by the following way:

$$f(T) = p^m h(T) U(T) ,$$

where h(T) is a distinguished polynomial and U(T) is a unit in Λ . Let X be a finitely generated Λ -module. When X is considered as a Λ_t -module, we denote it by X_t , and its characteristic polynomial by $char_Z(X_t)$.

Proposition 6. Let X and Y be finitely generated Λ -modules and let $char(X) = p^{\mu_X} f_X(T)$ and $char(Y) = p^{\mu_Y} f_Y(T)$. Assume that they are pseudo-isomorphic as Λ_t modules. Then we have

$$\mu_X = \mu_Y \ \ and \ \prod_\zeta f_X(\zeta(1+T)-1) = \prod_\zeta f_Y(\zeta(1+T)-1) \ ,$$

where the product runs through all p^t -th roots of unity.

Proof. The Λ -module Λ/p^m is $(\Lambda_t/p^m)^{p^t}$ as a Λ_t -module. This proves $\mu_X = \mu_Y$. Hence, by the structure theorem of Λ -modules, it is sufficient to prove the theorem in the cyclic case: $X = \Lambda/f^n(T)$, where f(T) is irreducible. Let $Z = (1+T)^{p^t} - 1$. As a Λ_t -module, X_t is pseudo-isomorphic to a module of the form $\bigoplus_{i=1}^s \Lambda_t/f_i(Z)$. Consider $\prod_{\zeta} f(\zeta(1+T)-1)$. Then this function is in $\mathbb{Z}_p[Z]$. In fact, let $f(T) = \prod_{i=0}^n (T-\alpha_i)$; then

$$\prod_{\zeta} f(\zeta(1+T) - 1) = \prod_{i=0}^{n} (Z - w_i),$$

where $w_i = (1 + \alpha_i)^{p^t} - 1$. Then, we know that the w_i 's are conjugate to each other. Write $g(Z) = \prod_{\zeta} f(\zeta(1+T)-1)$. Note that $deg_T(f) = deg_Z(g)$ and $f^n(T)$ divides $g^n(Z)$. Since f(T) is irreducible, g(Z) is a power of an irreducible polynomial k(Z), that is, $g(Z) = k^d(Z)$. The module X_t is killed by $g^n(Z)$, so each $f_i(Z)$ divides $g^n(Z)$. Hence $f_i(Z)$ is a power of the polynomial k(Z). Therefore $char_Z(X_t) = f_1(Z) \cdots f_s(Z)$ is a power of k(Z). Let $char_Z(X_t) = k^r(Z)$. The \mathbb{Z}_p -rank of X is n[deg(f)]. As a Λ_t -module X_t , it has the same \mathbb{Z}_p -rank, that is, r[deg(k)]. Hence we have r[deg(k)] = n[deg(f)] = n[deg(g)] = nd[deg(k)]. From this, we have r = nd, so that $char_Z(X_t) = k^r(Z) = k^{nd}(Z) = g^n(Z) = \prod_{\zeta} f^n(\zeta(1+T)-1)$. This completes the proof, since X_t and Y_t are pseudo-isomorphic as Λ_t -modules, so their characteristic polynomials in Z are the same.

Remark. W. Sinnott pointed out to me

$$f_i(T) = k(Z)^n$$
 and $s = deg_T f(T)/deg_Z k(Z)$.

The μ -invariant is conjectured to be zero for every basic \mathbb{Z}_p -extension. Assuming the conjecture, we proved the following statement:

Theorem 10. Assume that μ is zero for every basic \mathbb{Z}_p -extension. Let k and k' be arithmetically equivalent fields, and p be a prime number. Then

$$X_k \sim X_{k'}$$
,

as $\Lambda_L = \Lambda_{k,t}$ -modules for some t.

6. In the CM field case

A CM field is a totally imaginary quadratic extension of a totally real number field. Let k be CM, k_+ its maximal real subfield. Let J denote complex conjugation. Fix an odd prime p. Recall that X_L is the Galois group of the maximal unramified abelian p-extension over the basic \mathbb{Z}_p -extension L_{∞} of a number field L, and $\Lambda = \mathbb{Z}_p[[T]]$. Define

$$X_k^- = (1 - J)X_k.$$

In this section, we will prove

Theorem 11. Let k be a CM field, and k' be a number field arithmetically equivalent to k. Then k' is a CM field, and

$$char(X_k^-)\Lambda = char(X_{k'}^-)\Lambda.$$

Let ε be an odd quadratic Artin character of $Gal(k/k_+)$. Write

$$\Delta = Gal(k(\zeta_n)/k),$$

$$e_0 = 1/|\Delta| \sum_{\delta \in \Delta} \delta.$$

Let γ be a topological generator for $Gal(k(\zeta_{p^{\infty}})/k(\zeta_{p}))$, and let $u \in \mathbb{Z}_{p}^{\times}$ be such that $\zeta^{\gamma} = \zeta^{u}$ for any p-power roots of unity. There exists a quotient of power series $G_{\varepsilon}(T) \in \Lambda$ such that

$$L_p(1-s,\varepsilon\theta) = G_{\varepsilon}(u^s-1),$$

for $s \in \mathbb{Z}_p - \{0\}$. Here the *p*-adic *L*-function $L_p(s, \varepsilon \theta)$ is characterized by the following interpolation property:

$$L_p(1-n,\varepsilon\theta) = L_{k_+}(1-n,\varepsilon) \prod_{\mathfrak{p} \in S} (1-\varepsilon(\mathfrak{p})N\mathfrak{p}^{n-1}) ,$$

for $n \equiv 1 \mod p - 1$, where S is the set of primes of k_+ above p. To make sense of this recall that for a complex character ε we can write $L_{k_+}(1-n,\varepsilon)$ as a sum

$$L_{k_{+}}(1-n,\varepsilon) = \sum_{\sigma \in Gal(k/k_{+})} \varepsilon(\sigma) \zeta_{k_{+}}(\sigma, 1-n) ,$$

where the partial zeta function $\zeta_{k_+}(\sigma, 1-n)$ is a rational number by a result of Klingen and Siegel. By a result of Wiles [15], we have the following

Theorem 12.

$$char(e_0X_{k(\zeta_p)})^-\Lambda = G_{\varepsilon}(u(1+T)^{-1}-1)\Lambda.$$

Lemma 5. Let k be a CM field, and k' be a number field arithmetically equivalent to k. Then k' is a CM field, and

$$\zeta_{k_+} = \zeta_{k'_+} \ .$$

Proof. Let L be the Galois closure of k. Then L is a CM field. Write H = Gal(L/k) and H' = Gal(L/k'). Since the complex conjugation J is a center of $Gal(L/\mathbb{Q})$, the fixed field of $H \times \langle J \rangle$ is the maximal real subfield k_+ . We know that k' is totally imaginary because k' is arithmetically equivalent to k. By assumption, H and H' are Gassmann equivalent; hence

$$|c^G \cap H| = |c^G \cap H'|,$$

for any $c \in G$. Note that $c^G \cap H \times \langle J \rangle$ is a disjoint union of $c^G \cap H$ and $c^G \cap HJ$ for any $c \in G$. Since the map given by $gcg^{-1} \to gcJg^{-1}$ is injective, we have

$$|c^G \cap H| = |(cJ)^G \cap HJ|.$$

Therefore

$$|c^{G} \cap HJ| = |((cJ)J)^{G} \cap HJ| = |(cJ)^{G} \cap H|$$

= |(cJ)^{G} \cap H'| = |(cJJ)^{G} \cap H'J| = |c^{G} \cap H'J|.

Hence

$$\begin{split} |c^G \cap H\langle J\rangle| &= |c^G \cap H| + |c^G \cap HJ| \\ &= |c^G \cap H'| + |c^G \cap H'J| = |c^G \cap H'\langle J\rangle|. \end{split}$$

Therefore, $H\langle J\rangle$, $H'\langle J\rangle$ are Gassmann equivalent, which means the number field k' has a totally real subfield k'_+ arithmetically equivalent to k_+ . This completes the proof.

Proof of Theorem 11. By Theorem 12 and the discussion above Theorem 12, $char(e_0X_{k(\zeta_n)})^-$ is determined by L-function $L_{k_+}(s,\varepsilon)$. By Lemma 5,

$$L_{k_{+}}(s,\varepsilon) = \zeta_{k}/\zeta_{k_{+}} = \zeta_{k'}/\zeta_{k'_{+}} = L_{k'_{+}}(s,\varepsilon).$$

This completes the proof by the lemma below.

Lemma 6.

$$e_0 X_{k(\zeta_n)} \simeq X_k$$
.

Proof. Let $L_{\infty,k(\zeta_p)}$ be the maximal unramified abelian p-extension of $k(\zeta_p)_{\infty}$. Let Y_0 be the subfield of $L_{\infty,k(\zeta_p)}$ fixed by the subgroup $e_0X_{k(\zeta_p)}$ of $X_{k(\zeta_p)}$. Since $Gal(k(\zeta_p)/k)$ acts trivially on $e_0X_{k(\zeta_p)}$, Y_0 is the maximal abelian extension of the basic \mathbb{Z}_p -extension k_{∞} of k contained in $L_{\infty,k(\zeta_p)}$. Hence the compositum $K_{\infty}L_{\infty,k}$ is contained in Y_0 . Suppose it is properly contained in Y_0 . Then we can construct an unramified abelian p-extension L' over k_{∞} properly containing $L_{\infty,k}$ since $p \nmid |Gal(k(\zeta_p)/k)|$, which contradicts the maximality of the extension $L_{\infty,k}$. This completes the proof.

References

- N.Adachi and K.Komatsu, The Maximal p-extensions and Zeta-Functions of Algebraic Number Fields, Memoirs of the School of Science & Engineering Waseda Univ. 51 (1987), 25–31.
 MR 90a:11135
- 2. B. Ferrero and L.Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. of Math. 109 (1979), 377–395. MR 81a:12005
- F.Gassmann, Bererkungen zu der vorstehenden arbeit von Hurwitz, Math.Z. 25 (1926), 124– 143.
- D.Goss and W.Sinnott, Special Values of Artin L-series, Math.Ann. 275 (1986), 529–537.
 MR 871-11127
- K.Iwasawa, On p-adic L-functions, Ann. of Math. 89 (1969), 198–205. MR 42:4522
- 6. K.Iwasawa, On \mathbb{Z}_ℓ -extensions of algebraic number fields, Ann. of Math. 98 (1973), 246–326. MR 15:509d
- K.Iwasawa, On the μ-invariants of Z_ℓ-extensions, Number Theory, Algebraic Geometry and Commutative Algebra (in honor of Y. Akizuki), Kinokuniya, Tokyo, 1973, pp. 1–11. MR 50:9839
- K.Komatsu, On Zeta-functions and cyclotomic Z_p-extensions of algebraic number fields, Tôhoku Math. Journ. 36 (1984), 555-562. MR 86a:11046
- 9. R.Perlis, On the equation $\zeta_k = \zeta_{k'}$, J. Number Theory 9 (1977), 342–360. MR **56:**5503
- R.Perlis, On the class numbers of arithmetically equivalent fields, J. Number Theory 10 (1978), 489–509. MR 80c:12014
- 11. R.Perlis and N.Colwell, Iwasawa Invariants and Arithmetic Equivalence, unpublished.
- J.Tate, Endomorphism of abelian varieties over finite fields, Invent. Math. 2 (1966), 134–144.
 MR 34:5829
- S.Turner, Adele rings of global field of positive characteristic, Bol. Soc. Brasil. Math. 9 (1978), 89–95. MR 80c:12017
- 14. L.Washington, *Introduction to Cyclotomic Fields*, Springer, Berlin, Heidelberg, New York, 1982. MR **85g**:11001
- A.Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. 131 (1990), 493–540.
 MR 91i:11163

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210 Current address: KIAS, 207-43 Cheongryangri-Dong, Dongdaemun-Gu, Seoul 130-012, Korea E-mail address: ohj@kias.kaist.ac.kr