SCRAMBLED SETS OF CONTINUOUS MAPS OF 1-DIMENSIONAL POLYHEDRA

JIEHUA MAI

ABSTRACT. Let K be a 1-dimensional simplicial complex in R^3 without isolated vertexes, X=|K| be the polyhedron of K with the metric d_K induced by K, and $f:X\to X$ be a continuous map. In this paper we prove that if K is finite, then the interior of every scrambled set of f in X is empty. We also show that if K is an infinite complex, then there exist continuous maps from X to itself having scrambled sets with nonempty interiors, and if X=R or R_+ , then there exist C^∞ maps of X with the whole space X being a scrambled set.

1. Introduction

Chaotic behavior is a manifestation of the complexity of nonlinear dynamical systems. There are some distinct definitions given by different authors. The following definition of chaos mainly stems from Li and Yorke [11].

Definition 1.1. Let (X, d) be a metric space, and $f: X \to X$ be a continuous map. A subset S of X containing at least two points is called a *scrambled set* of f if for any $x, y \in S$ with $x \neq y$,

(1.1)
$$\limsup_{n \to \infty} d(f^n(x), f^n(y)) > 0,$$

and

$$\liminf_{n\to\infty} d(f^n(x),f^n(y))=0.$$

f is said to be *chaotic* (in the sense of Li and Yorke) if f has an uncountable scrambled set.

Remark 1.2. Let P(f) denote the set of all periodic points of f. In Definition 1.1, we do not insist that

$$\limsup_{n \to \infty} d(f^n(x), f^n(p)) > 0$$

holds for any $x \in S$ and any $p \in P(f)$ because condition (1.3) is not important. In fact, if (1.1) and (1.2) hold for any $x, y \in S$ with $x \neq y$, then the set

$$\{x \in S: \limsup_{n \to \infty} d(f^n(x), f^n(p)) = 0 \text{ for some } p \in P(f)\}$$

Received by the editors January 30, 1997.

1991 Mathematics Subject Classification. Primary 58F13; Secondary 58F08, 54H20.

Key words and phrases. Chaos, 1-dimensional polyhedron, scrambled set, totally chaotic map. This work supported by National Natural Science Foundation of China.

contains at most one point. Also we do not insist that $S \cap P(f) = \emptyset$ because if (1.2) holds, then $S \cap P(f)$ also contains at most one point (see (ii) of Lemma 2.1 below).

Let I be a compact interval. For the case X=I, Li and Yorke in [11] first showed that if $f:I\to I$ has a periodic point of period 3, then it is chaotic, i.e. "period three implies chaos". Kuchta and Smital in [9] indicated that if $f:I\to I$ has a two point scrambled set, then it has an uncountable scrambled set. In [5]–[8], [12], [13] and [15], scrambled sets of some maps were further discussed from the point of view of measure.

In this paper we will consider the case of X being a 1-dimensional polyhedron. The tree is a particular kind of 1-dimensional polyhedron. In [1], [2], [3] and [10], the sets of periods of periodic orbits and the topological entropies of tree maps were discussed. Now we will study scrambled sets of continuous maps for general 1-dimensional polyhedra from the point of view of topology. Our main result is the following theorem.

Theorem A. Let K be a finite 1-dimensional simplicial complex in \mathbb{R}^3 without isolated vertexes, and let X = |K| be the polyhedron of K. Suppose $f: X \to X$ is a continuous map. Then the interior of any scrambled set of f in X is empty.

In addition, we will show that if K is an infinite 1-dimensional complex, then Theorem A is not true. Particularly, if K is a triangulation of R or R_+ , i.e., if X is the real line R or the real half-line R_+ , then there exist C^{∞} maps from X to itself with the whole space X being a scrambled set.

2. Some elementary properties of scrambled sets

Let (X,d) be a metric space, and $f:X\to X$ be a continuous map. A point $x\in X$ is called an *eventually periodic point* of f if there are integers $n>m\geq 0$ such that $f^n(x)=f^m(x)$. If m=0, i.e. $f^n(x)=x$, then x is called a *periodic point*.

The following lemma will be useful, of which the proof is easy and is omitted.

Lemma 2.1. Let S be a scrambled set of $f: X \to X$. Then

- (i) f|S is an injection.
- (ii) There is at most one eventually periodic point of f in S.
- (iii) For any integer $n \geq 0$, $f^n(S)$ is also a scrambled set of f.
- (iv) Let $S' \subset X$ contain at least two points. If $f(S') \subset S$ and f|S' is injective, then S' is also a scrambled set of f.
- (v) If f is uniformly continuous, then S is also a scrambled set of f^n for any integer n > 0.

Definition 2.2. Let (X,d) and (X',d') be two metric spaces, and $h: X \to X'$ be a homeomorphism. h is called a *uniform homeomorphism* if both h and h^{-1} are uniformly continuous. X and X' are said to be *uniformly homeomorphic* if there exists a uniform homeomorphism $h: X \to X'$.

Obviously, every homeomorphism between two compact metric spaces must be a uniform homeomorphism, and we have

Lemma 2.3. Let $h: X \to Y$ be a uniform homeomorphism, and $S \subset X$, T = h(S). Suppose $f: X \to X$ is a continuous map, and $g = h \circ f \circ h^{-1}$. Then T is a scrambled set of g if and only if S is a scrambled set of f.

3. Scrambled sets of continuous maps of 1-dimensional polyhedra

Let K be a 1-dimensional simplicial complex in \mathbb{R}^3 . Every 0-dimensional simplex of K is called a *vertex*, and every 1-dimensional simplex of K is called an *edge*. Denote by K_0 the set of all vertexes of K. Let X = |K| be the polyhedron of K (see [4]). Define the metric d_K on X as follows:

- (i) If points x and y lie on the same edge E, the two vertexes of E are u and v, and x = ru + (1-r)v, y = su + (1-s)v for some $r, s \in [0, 1]$, then $d_K(x, y) = |r-s|$.
 - (ii) If there is a connected subcomplex K' of K such that $\{x,y\} \subset |K'|$, then

$$d_K(x,y) = \min \left\{ \sum_{i=1}^n d_K(x_{i-1},x_i) : (x_0,x_1,...,x_n) \text{ is a sequence of points} \right.$$

in X with $x_0 = x$, $x_n = y$, and x_{i-1} and x_i lying

on the same edge of
$$K$$
 for $i = 1, ..., n$.

(iii) If there is no connected subcomplex K' of K such that $\{x,y\} \subset |K'|$, then $d_K(x,y) = \infty$.

Remark 3.1. In order to avoid that the case $d_K(x,y) = \infty$ arises, we can give another metric d_K' on X by

$$d_K'(x,y) = \left\{ \begin{array}{ll} \operatorname{arctg} d_K(x,y), & \text{if} \ d_K(x,y) < \infty; \\ 1, & \text{if} \ d_K(x,y) = \infty. \end{array} \right.$$

However, it is easy to see that the identical map $id:(X,d_K)\to (X,d_K')$ is a uniform homeomorphism. Thus, for convenience, we use d_K rather than d_K' .

Remark 3.2. If for any bounded subset B of R^3 , the number of the simplexes of K intersecting B is finite, then the topology on X induced by d_K coincides with that as subspace of the Euclidean space R^3 .

Recall that an arc is a space homeomorphic to the unit interval [0,1]. Let $A \subset X$ be an arc. Denote by ∂A the two endpoints of A, and write $\overset{\circ}{A} = A - \partial A$. Let x and y be two points on arc A. Denote by A[x,y] the subarc of A from x to y. If A[x,y] is a straight line segment, then it is simply written as [x,y], and put $(x,y]=[x,y]-\{x\},(x,y)=(x,y]-\{y\}$. Let u and v be the two endpoints of A. We denote by (A;u,v) the directed arc A from u to v. In addition, we denote by l(A) the length of arc A under metric d_K .

Lemma 3.3. Let (A; u, v) be a directed arc on X = |K|. Suppose $\{u, v\} \cap K_0 = \emptyset$. Then there is a unique sequence (w_0, w_1, \dots, w_n) of vertexes of K with $n \ge 1$ satisfying the following four conditions:

- (i) For $i = 1, 2, \dots, n$, $[w_{i-1}, w_i]$ is an edge of K.
- (ii) $u \in [w_0, w_1), v \in (w_{n-1}, w_n].$
- (iii) If n = 1, then $u \in [w_0, v]$ and A = [u, v]. If n > 1, then

$$A = [u, w_1] \cup (\bigcup_{i=2}^{n-1} [w_{i-1}, w_i]) \cup [w_{n-1}, v].$$

(iv)
$$w_i \neq w_j \text{ for } 1 \leq i < j \leq n-1.$$

Lemma 3.3 is evident. The sequence (w_0, w_1, \dots, w_n) in Lemma 3.3 will be called the *carrier sequence* of the directed arc (A; u, v) and we write $CS(A; u, v) = (w_0, w_1, \dots, w_n)$.

Theorem A. Let K be a finite 1-dimensional simplicial complex in R^3 without isolated vertexes, and let X = |K| be the polyhedron of K. Suppose $f: X \to X$ is a continuous map. Then the interior of any scrambled set of f in X is empty.

Proof. If not, there is a scrambled set S of f having a nonempty interior in X. Then S contains an arc L. By (ii) of Lemma 2.1, we may assume that L contains no eventually periodic points of f. By (i) of Lemma 2.1, $f^k(L)$ is also an arc in $X(k=1,2,\cdots)$. Let the two endpoints of L be x' and y'. By Definition 1.1, we have $\limsup_{k\to\infty} d_k(f^k(x'), f^k(y')) > 0$. Thus $\sum_{k=0}^{\infty} l(f^k(L)) = \infty$. This implies that $f^{\mu}(L) \cap f^m(L) \neq \emptyset$ for some integers $\mu > m \geq 0$. Write $A' = f^m(L)$. Take $u, v \in A'$ such that $v = f^{\mu-m}(u)$ and l(A'[u, v]) achieves the minimum. Let A = A'[u, v], and $g = f^{\mu-m}$. By (iii) and (v) of Lemma 2.1 we know that $A \subset A'$ is a scrambled set of g. Write $A_k = g^k(A)$ and $u_k = g^k(u)$ for $k = 0, 1, \cdots$. Then $v = g(u) = u_1$. It follows from (i) of Lemma 2.1 that A_k is an arc and the two endpoints of A_k are u_k and u_{k+1} . Since $A \cap P(g) = \emptyset$, we have

(3.1)
$$A_i \not\subset A_i$$
, for any nonnegative integers $i \neq j$.

From (3.1) we get the following

Claim 1. Let $k \geq 0$. If there exist edges E and E' of K such that $A_k \subset E$ and $A_{k+1} \subset E'$, then $A_k \cap A_{k+1} = \{u_{k+1}\}$, and E = E' if $u_{k+1} \notin K_0$.

Since K_0 is a finite set and A contains no eventually periodic points of g, there is a $k_0 \geq 0$ such that $u_k \notin K_0$ for all $k \geq k_0$. Noting $\limsup_{k \to \infty} l(A_k) > 0$, by (3.1) and Claim 1 we have

Claim 2. Write $Z_0 = \{k : k \ge k_0 + 2, \text{ and } A_k \cap K_0 \ne \emptyset\}$. Then Z_0 is an infinite set.

By (iv) of Lemma 3.3, the number of carrier sequences of all directed arcs in X is finite. Hence there exist integers a and $b \in Z_0$ with $|a - b| \ge 3$ such that

(3.2)
$$CS(A_a; u_a, u_{a+1}) = CS(A_b; u_b, u_{b+1}),$$

(3.3)
$$CS(A_{a+1}; u_{a+1}, u_{a+2}) = CS(A_{b+1}; u_{b+1}, u_{b+2}).$$

Suppose the carrier sequence $CS(A_a; u_a, u_{a+1})$ is (v_0, v_1, \dots, v_n) . Then $n \geq 2$. By (3.2), we have $u_a \in (v_0, u_b)$ or $u_b \in (v_0, u_a)$. By the symmetry, we may assume that

$$(3.4) u_a \in (v_0, u_b).$$

It follows from (3.4), (3.2) and (3.1) that $u_b \in (u_a, v_1)$, and $u_{a+1} \in (v_{n-1}, u_{b+1})$, $u_{b+1} \in (u_{a+1}, v_n)$. We now claim

$$(3.5) g([u_a, u_b]) = [u_{a+1}, u_{b+1}].$$

In fact, if (3.5) does not hold, then $g([u_a, u_b])$ is an arc in X with endpoints u_{a+1} and u_{b+1} which does not intersect (u_{a+1}, u_{b+1}) . Noting $A_{a+1} = g(A_a) = g([u_a, u_b]) \cup g(A_a[u_b, u_{a+1}])$ is an arc and $g|A_a$ is injective, we have

$$(3.6) g(A_a[u_b, u_{a+1}]) \subset [u_{b+1}, u_{a+1}), \text{ and } u_{a+2} \in (u_{b+1}, u_{a+1}).$$



Figure 3.1

By (3.6) and (3.3) we get

$$CS(g([u_a, u_b]); u_{a+1}, u_{b+1}) = CS(A_{a+1}; u_{a+1}, u_{a+2})$$

$$= CS(A_{b+1}; u_{b+1}, u_{b+2}) = CS(g([u_{a+1}, u_{b+1}]); u_{a+2}, u_{b+2})$$

$$= (v_n, v_{n-1}, w_1, \dots, w_m, v_n, v_{n-1}), \text{ for some } \{w_1, \dots, w_m\} \subset K_0.$$

(see Fig. 3.1). This implies that there is a point $x \in (u_{a+1}, u_{b+1})$ such that $g([u_{a+1}, x]) = [u_{a+2}, v_{n-1}]$ and $g(x) = v_{n-1}$, and hence there is a fixed point p of g in (u_{a+1}, x) . However, $(u_{a+1}, x) \subset [u_{a+1}, u_{b+1}] \subset A_{b+1}$, which contains no fixed points of g. This leads to a contradiction. Thus (3.5) must hold.

From (3.5) and (i) of Lemma 2.1 it is easy to see that, for sufficiently small $\varepsilon > 0$, $g(u_b + \varepsilon(v_1 - u_b)) \in (u_{b+1}, v_n) - A_b$. Thus we have $u_b + \varepsilon(v_1 - u_b) \notin A_{b-1}$ and hence

$$[u_a, u_b] \subset A_{b-1}.$$

There are two cases to consider:

Case 1. b > a. In this case, let $Q = \bigcup_{k=a}^{b} A_k$. By (3.5) and (3.7) we can easily verify that g(Q) = Q. Let $S^1 = \{e^{2\pi it} : t \in R\}$ be the unit circle in the complex plane, and d be the usual metric on S^1 . Take a sequence $t_a < t_{a+1} < \cdots < t_b$ of real numbers such that $t_{b-1} < t_a + 1 < t_b < t_{a+1} + 1$. Put $z_k = e^{2\pi it_k}$ for $k = a, a+1, \cdots, b$. Let $C_k = \{e^{2\pi it} : t_k \le t \le t_{k+1}\}$ for $k = a+1, \cdots, b-2, b-1$, and let $C_b = \{e^{2\pi it} : t_b \le t \le t_{a+1} + 1\}$ (see Fig. 3.2). Then C_j is an arc on S^1 $(j = a+1, \cdots, b)$. For $k = a+1, \cdots, b-1$, choose a homeomorphism $h_k : C_k \to A_k$ such that $h_k(z_k) = u_k$, $h_k(z_{k+1}) = u_{k+1}$, and $h_{b-1}(z_a) = u_a$. Choose again a homeomorphism $h_b : C_b \to A_b[u_b, u_{a+1}]$ such that $h_b(z_b) = u_b$, $h_b(z_{a+1}) = u_{a+1}$. Define a projection $h : S^1 \to Q$ by $h|C_k = h_k$ for $k = a+1, \cdots, b$. Then h is continuous, and $h(S^1) = Q$. Define $\varphi : S^1 \to S^1$ by

$$\begin{split} \varphi|C_k &= h_{k+1}^{-1} \circ g \circ h_k, \quad \text{for } k = a+1, \cdots, b-2; \\ \varphi|C_{b-1}[z_{b-1}, z_a] &= h_b^{-1} \circ g \circ h_{b-1}|C_{b-1}[z_{b-1}, z_a]; \\ \varphi|C_{b-1}[z_a, z_b] &= h_{a+1}^{-1} \circ g \circ h_{b-1}|C_{b-1}[z_a, z_b]; \\ \varphi|C_b &= h_{a+1}^{-1} \circ g \circ h_b. \end{split}$$

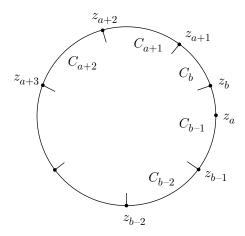


Figure 3.2

Then φ is also continuous, and $h \circ \varphi = g \circ h$. We say that φ is the lift of g|Q relative to the projection h, or relative to the sequence $(h_{a+1}, h_{a+2}, \dots, h_b)$ of homeomorphisms. Note that $\varphi : S^1 \to S^1$ is both injective and surjective. Thus φ is a homeomorphism.

 φ has no periodic points because g|Q has no periodic points and $h \circ \varphi = g \circ h$. This implies that the rotation number of φ is irrational. If φ has wandering points, then we know (for example, see [14, Chap.1]) that the wandering set $W(\varphi)$ of φ is an open set dense in S^1 . Let z and w be two different points on the same connected component of $W(\varphi) \cap C_{a+1}$. Then $\lim_{k \to \infty} d(\varphi^k(z), \varphi^k(w)) = 0$ (see [14]). Since S^1 is compact, $h: S^1 \to Q$ is uniformly continuous. Thus

$$\lim_{k \to \infty} d_K(g^k(h(z)), g^k(h(w))) = \lim_{k \to \infty} d_K(h(\varphi^k(z)), h(\varphi^k(w))) = 0.$$

This implies that the points h(z) and $h(w) (\neq h(z))$ of A_{a+1} can not lie in the same scrambled set of g. However, as indicated above, A is a scrambled set of g, and hence $A_{a+1} = g^{a+1}(A)$ is also a scrambled set. This reduces to a contradiction.

Therefore, φ has no wandering points. Thus φ is topologically conjugate to an irrational rotation of S^1 , i.e. there exist an irrational number c and an orientation preserving homeomorphism $\eta: S^1 \to S^1$ such that

(3.8)
$$\eta^{-1}\varphi\eta(e^{2\pi it}) = e^{2\pi i(t+c)}, \quad \text{for any } t \in R.$$

Let $\psi = \eta^{-1}\varphi \eta: S^1 \to S^1$, and $\xi = h\eta: S^1 \to Q$. Then ξ is a continuous surjection, and

$$(3.9) \xi \circ \psi = q \circ \xi.$$

For any given positive number r, if there exists $s \in R$ such that $\xi(e^{2\pi i(s+r)}) = \xi(e^{2\pi is})$, then it follows from (3.8) and (3.9) that

(3.10)
$$\xi(e^{2\pi i(s+kc+r)}) = \xi \psi^k(e^{2\pi i(s+r)}) = g^k \xi(e^{2\pi i(s+r)})$$
$$= g^k \xi(e^{2\pi is}) = \xi \psi^k(e^{2\pi is}) = \xi(e^{2\pi i(s+kc)})$$

holds for all $k=0,1,\cdots$. Since the point set $\{e^{2\pi i(s+kc)}: k=0,1,\cdots\}$ is dense in S^1 , by (3.10) and the continuity of ξ we have

(3.11)
$$\xi(e^{2\pi i(t+r)}) = \xi(e^{2\pi it}), \text{ for any } t \in R.$$

Let $T=\{r:r\in(0,1], \text{ and there exists }s=s(r)\in R \text{ such that }\xi(e^{2\pi i(s+r)})=\xi(e^{2\pi is})\}$. Then T is evidently a nonempty closed set in (0,1]. Let $r_0=\inf T$. Then $r_0>0$ since $\xi|\eta^{-1}(C_{a+1})$ is a homeomorphism from $\eta^{-1}(C_{a+1})$ to $A_{a+1}\subset Q$. It is easy to see that there is an integer $q\geq 1$ such that $r_0=1/q$. By (3.11) and the definition of r_0 we know that, for any $t,t'\in R$, $\xi(e^{2\pi it})=\xi(e^{2\pi it'})$ if and only if q(t'-t) is an integer. Thus we can define $\zeta:S^1\to Q$ by

$$\zeta(e^{2\pi it}) = \xi(e^{2\pi it/q}), \quad \text{for any} \quad t \in R.$$

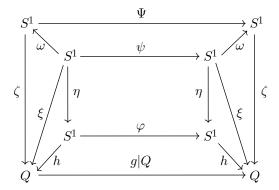
Obviously, this ζ is injective, surjective and continuous. Hence ζ is a homeomorphism. Define $\omega:S^1\to S^1$ by

$$\omega(e^{2\pi it}) = e^{2\pi iqt}, \quad \text{ for any } t \in R.$$

Then $\zeta \circ \omega = \xi$. Define $\Psi : S^1 \to S^1$ by

$$\Psi(e^{2\pi it}) = e^{2\pi i(t+qc)}, \quad \text{for any } t \in R.$$

Then $\Psi \circ \omega = \omega \circ \psi$. Therefore, we have the following commutative diagram.



Thus $\zeta \Psi \omega = \zeta \omega \psi = \xi \psi = g\xi = g\zeta \omega$, and hence $\zeta \circ \Psi = g \circ \zeta$ because ω is a surjection. This implies that g|Q and Ψ are topologically conjugate. Since the irrational rotation Ψ has no scrambled set, by Lemma 2.3, g|Q also has no scrambled set. However, as indicated above, $A_{a+1}(\subset Q)$ is a scrambled set of g. This is still a contradiction.

Case 2. a > b. Analogous to Case 1, Case 2 also leads to a contradiction.

Thus, the interior of any scrambled set of f in X must be empty. Theorem A is proven. \Box

If complex K is not finite, then Theorem A is not true. In fact, we have

Theorem 3.1. Let K be an infinite 1-dimensional simplicial complex in \mathbb{R}^3 , and let X = |K| be the polyhedron of K with the metric d_K . Then there exists a continuous map $f: X \to X$ which has a scrambled set containing a nonempty interior in X.

Proof. If K has isolated vertexes, take an edge E of K, and let $f_0: E \to E$ be a continuous map which has an uncountable scrambled set S_0 . Suppose the set

of isolated vertexes of K is V. Choose a continuous map $g: X \to E$ such that g(x) = x for all $x \in E, g(V) \subset S_0$, and g|V is injective. Let $f = f_0 \circ g$, and let $S = S_0 \cup V - g(V)$. Then S is an uncountable scrambled set of f, the interior of S in X contains V, and is nonempty.

Now we assume that K has no isolated vertexes. Then K has infinitely many edges. Take countably infinitely many edges E_0, E_1, E_2, \cdots of K with $E_i \neq E_j$ for $i \neq j$ such that one of the following two conditions holds:

(C.1) If K has infinitely many connected components, then for any $0 \le i < j < \infty$, E_i and E_j belong to different components of K.

(C.2) If K has only finitely many connected components, then all of E_0, E_1, E_2, \cdots belong to the same component of K.

For $n = 0, 1, 2, \dots$, suppose $\partial E_n = \{v_n, w_n\}$. Let $x_n = (2v_n + w_n)/3, y_n = (v_n + 2w_n)/3$, and $A_n = [x_n, y_n]$. Denote by J the open interval (0, 1). For any rational number $r \in J$, write $u_n(r) = (1 - r)x_n + ry_n$. Put

$$W = \{(a,b,r,s): a,b,r,s \ \text{ are all rational numbers},$$
 and $0 < a < b < 1,\ 0 < r < s < 1\}.$

Then W is a countable set in $J^4(\subset R^4)$. Arrange all points in W to be an infinite sequence. Assume the sequence is

$$W = \{(a_n, b_n, r_n, s_n) : n = 0, 1, 2, \dots\}.$$

For $n=1,2,3,\cdots$, choose a homeomorphism $g_n:A_0\to A_n$ such that $g_n(x_0)=x_n,g_n(y_0)=y_n,g_n(u_0(a_n))=u_n(r_n)$, and $g_n(u_0(b_n))=u_n(s_n)$, and then define the homeomorphism $h_n:A_n\to A_{n+1}$ by $h_n=g_{n+1}\circ g_n^{-1}$. Let $h_0=g_1:A_0\to A_1$. Put $X_0=\bigcup_{n=0}^\infty A_n$. Define $f_0:X_0\to X_0$ by $f_0|A_n=h_n$ for $n=0,1,2,\cdots$. Then it is easy to see that A_0 is a scrambled set of f_0 .

If condition (C.1) holds, suppose the connected component of K containing E_n is $K^{(n)}$, and $Y_n = |K^{(n)}|, (n = 0, 1, 2, \cdots)$. Obviously, we can construct a continuous map $f: X \to X$ such that $f|X_0 = f_0, f(Y_n) = E_{n+1}$ for $n = 0, 1, 2, \cdots$, and f(z) = z for any $z \in X - \bigcup_{n=0}^{\infty} Y_n$. Clearly, A_0 is still a scrambled set of f.

If condition (C.2) holds, put $X_1 = X - \bigcup_{n=0}^{\infty} \stackrel{\circ}{E}_n$, and $X_2 = X_0 \cup X_1$. Define $f_2: X_2 \to X_2$ by $f_2|X_0 = f_0$, and $f_2(z) = z$ for any $z \in X_1$. Then f_2 is continuous. Evidently, f_2 can be extented to be a continuous map $f: X \to X$, and $\stackrel{\circ}{A}_0$ is also a scrambled set of this f.

Note that A_0 is a nonempty open set in X. Theorem 3.1 is proven.

4. Totally chaotic continuous maps of the real line

In the proof of Theorem 3.1 we construct a continuous map $f: X \to X$, which has a scrambled set with a nonempty interior in X. But this f is not a totally chaotic map defined as follows.

Definition 4.1. Let (X,d) be a metric space. A continuous map $f: X \to X$ is called *totally chaotic* if the whole space X is a scrambled set of f.

What metric space X can admit a totally chaotic map? This is an interesting problem. In this section we will consider the real line R and the real half-line $R_+ = [0, \infty)$, which can be regarded as the polyhadra of the infinite 1-dimensional

simplicial complexes K(R) and $K(R_+)$, respectively, where

$$K(R) = \{n, [n, n+1] : n \text{ is an integer}\},\$$

$$K(R_+) = \{n, [n, n+1] : n \text{ is a nonnegative integer}\}.$$

We have the following theorem.

Theorem 4.2. There exists a totally chaotic continuous map $f: R \to R$, which satisfies that $f(R_+) \subset R_+$, and $f|_{R_+}$ is also a totally chaotic map.

Proof. Let c_0, c_1, c_2, \cdots be a given infinite sequence of positive numbers with $c_k \leq 1/2$ for every even number $k \geq 0$. We first choose a C^{∞} map $f_0 : R \to R$ such that

- (0.1) $f_0(0) = 1$, $f_0(x) > x$ for any $x \le 0$, and $\lim_{x \to -\infty} f_0(x) = -\infty$;
- (0.2) $f_0'(x) \equiv 1 c_0$ for any $x \ge 1$ and $f_0'(x) > 0$ for all $x \in R$, where $f_0'(x)$ is the derivative of $f_0(x)$;
 - (0.3) $1 c_0 < f_0'(x) < 1$ for 0 < x < 1.

The equation $f_0(x) = x$ has a unique root. Suppose this root is a_0 . Then $a_0 > 2$. Obviously, there is an integer $n_0 \ge 2$ such that $f_0^{n_0}([-1,1]) \subset [a_0 - 1, a_0)$. Let $\varepsilon_0 = a_0 - f_0^{n_0}(1)$. Then $0 < \varepsilon_0 < 1$.

Next, we take a C^{∞} map $f_1: R \to R$ such that

- (1.1) $f_1(x) = f_0(x)$ for any $x \le a_0 \varepsilon_0$, and $f_1(x) > x$ for all $x \in R$;
- (1.2) the derivative $f'_1(x) \equiv 1 + c_1$ for any $x \geq a_0$;
- $(1.3) f_0'(x) < f_1'(x) < 1 + c_1 ext{ for } a_0 \varepsilon_0 < x < a_0.$

Evidently, there is an integer $n_1 > n_0$ such that $f_1^{n_1}(-a_0) > 2a_0$, and the derivative $d(f_1^{n_1}(x))/dx > 2$ for all $x \in [-a_0, a_0]$. Let $a_1 = f_1^{n_1}(a_0)$. Then $a_1 > 2a_0$. Put $\varepsilon_1 = \varepsilon_0$.

Now we choose again a C^{∞} map $f_2: R \to R$ such that

- (2.1) $f_2(x) = f_1(x)$ for any $x \le a_1 + 1$;
- (2.2) $f'_2(x) \equiv 1 c_2 \text{ for any } x \ge a_1 + 2;$
- $(2.3) \quad 1 c_2 < f_2'(x) < 1 + c_1 \text{ for } a_1 + 1 < x < a_1 + 2.$

It is easy to see that the equation $f_2(x) = x$ has a unique root. Suppose this root is a_2 . Then $a_2 > a_1 + 1$. Clearly, there is an integer $n_2 > n_1$ such that $f_2^{n_2}([-a_1, a_1]) \subset [a_2 - 2^{-2}, a_2)$. Let $\varepsilon_2 = a_2 - f_2^{n_2}(a_1)$. Then $0 < \varepsilon_2 < 2^{-2}$.

Continuing this process, for every positive integer $k = 1, 2, 3, \dots$, we can choose a C^{∞} map $f_k : R \to R$ and take a positive integer n_k and two positive numbers a_k, ε_k satisfying the following conditions:

- (a) If $k \ge 1$ is odd, then
- (k.1.a) $f_k(x) = f_{k-1}(x)$ for all $x \le a_{k-1} \varepsilon_{k-1}$, and $f_{k-1}(x) > x$ for all $x \in R$;
- (k.2.a) the derivative $f'_k(x) \equiv 1 + c_k$ for all $x \geq a_{k-1}$;
- (k.3.a) $f'_{k-1}(x) < f'_k(x) < 1 + c_k \text{ for } a_{k-1} \varepsilon_{k-1} < x < a_{k-1};$
- (k.4.a) $n_k > n_{k-1}$, $f_k^{n_k}(-a_{k-1}) > 2a_{k-1}$, and the derivative $d(f_k^{n_k}(x))/dx > 2^k$ for all $x \in [-a_{k-1}, a_{k-1}]$;
 - (k.5.a) $a_k = f_k^{n_k}(a_{k-1}) > 2a_{k-1}$, and $\varepsilon_k = \varepsilon_{k-1}$.
 - (b) If $k \geq 2$ is even, then
 - (k.1.b) $f_k(x) = f_{k-1}(x)$ for all $x \le a_{k-1} + 1$;
 - (k.2.b) $f'_k(x) \equiv 1 c_k \text{ for all } x \ge a_{k-1} + 2;$
 - (k.3.b) $1 c_k < f'_k(x) < 1 + c_{k-1} \text{ for } a_{k-1} + 1 < x < a_{k-1} + 2;$
- (k.4.b) the equation $f_k(x) = x$ has a unique root, and a_k is this root, $a_k > a_{k-1} + 1$;
 - (k.5.b) $n_k > n_{k-1}$, and $f_k^{n_k}([-a_{k-1}, a_{k-1}]) \subset [a_k 2^{-k}, a_k)$;

(k.6.b)
$$\varepsilon_k = a_k - f_k^{n_k}(a_{k-1}) \in (0, 2^{-k}].$$

From these conditions we know that there exists a limit function $f = \lim_{k \to \infty} f_k$ with $f(x) = f_k(x)$ for $x \le a_k - \varepsilon_k$. Thus $f: R \to R$ is a C^∞ map. For any given $u, v \in R$ with $u \ne v$, take a positive integer $j \ge 1$ such that $\{u, v\} \subset [-a_j, a_j]$. Then by (k.4.a) we have $|f^{n_k}(u) - f^{n_k}(v)| > 2^k |u - v|$ for every odd k > j, and by (k.5.b) we have $|f^{n_k}(u) - f^{n_k}(v)| < 2^{-k}$ for every even k > j. This implies that

$$\liminf_{k\to\infty}|f^k(u)-f^k(v)|=0,\quad \text{ and } \limsup_{k\to\infty}|f^k(u)-f^k(v)|=\infty.$$

Hence f is totally chaotic.

Noting that f(x) > x for any $x \in R$, we have $f(R_+) \subset R_+$. Therefore, $f|_{R_+}$ is also totally chaotic. Theorem 4.2 is proven.

Remark 4.3. Let $f: R \to R$ be as in the proof of Theorem 4.2. Then f is a C^{∞} diffeomorphism. For any $n \geq 2$, define $F_n: R^n \to R^n$ by

$$F_n(x_1, x_2, \dots, x_n) = (f(x_1), f(x_2), \dots, f(x_n)), \text{ for any } (x_1, x_2, \dots, x_n) \in \mathbb{R}^n.$$

It is easy to see that F_n is also a C^{∞} diffeomorphism, and F_n is totally chaotic.

References

- Ll. Alseda, J. Llibre and M. Misiurewicz, Periodic orbits of maps of Y, Trans. Amer. Math. Soc. 313(1989), 475–538. MR 90c:58145
- [2] Ll. Alseda and J. M. Moreno, Linear orderings and the full periodicity kernel for the n-star,
 J. Math. Anal. Appl. 180(1993), 599-616. MR 95e:58141
- [3] Ll. Alseda and X. D. Ye, No division and the set of periods for tree maps, Ergod. Th. & Dynam. Sys. 15(1995), 221–237. MR 96d:58109
- M. A. Armstrong, Basic Topology, Springer-Verlag, New York, 1983. MR 84f:55001
- [5] A. Bruckner and T. Hu, On scrambled set and chaotic functions, Trans. Amer. Math. Soc. 301(1987), 289–297. MR 88f:26003
- [6] K. Jankova and J. Smital, A characterization of chaos, Bull. Austral. Math. Soc. 34(1986), 283–292. MR 87k:58178
- [7] V. Jimenez, Large chaos in smooth functions of zero topological entropy, Bull. Austral. Math. Soc. 46(1992), 271–285. MR 93h:58099
- [8] I. Kan, A chaotic function possessing a scrambled set of positive Lebesgue measure, Proc. Amer. Math. Soc. 92(1984), 45–49. MR 86b:26009a
- [9] M. Kuchta and J. Smital, Two point scrambled set implies chaos, European Conference on Iteration Theory(ECIT 87), World Sci. Publishing Co., Singapore, 1989, pp.427–430. MR 91j:58112
- [10] S. H. Li and X. D. Ye, Topological entropy for finite invariant subsets of Y, Trans. Amer. Math. Soc. 347(1995), 4651–4661. MR 96e:58052
- [11] T. Y. Li and J. Yorke, Period three implies chaos, Amer. Math. Monthly 82(1975), 985–992.
 MR 52:5898
- [12] V. J. Lopez, Paradoxical functions on the interval, Proc. Amer. Math. Soc. 120(1994), 465–473. MR 94g:58141
- [13] M. Misiurewicz, Chaos almost everywhere, Iteration Theory and its Functional Equations, Lecture Notes in Math., Vol.1163, Springer, Berlin, 1985, pp.125–130. MR 87e:58152
- [14] Z. Nitecki, Differentiable Dynamics, The M.I.T. Press, Cambridge Mass., 1971. MR 58:31210
- [15] J. Smital, A chaotic function with a scrambled set of positive Lebesgue measure, Proc. Amer. Math. Soc. 92(1984), 50–54. MR 86b:26009b

Institute of Mathematics, Shantou University, Shantou, Guangdong 515063, P. R. China

E-mail address: jhmai@mailserv.stu.edu.cn