ON CERTAIN CO-H SPACES RELATED TO MOORE SPACES

MANFRED STELZER

ABSTRACT. We show that certain co-H spaces, constructed by Anick and Gray, carry a homotopy co-associative and co-commutative co-H structure.

1. Introduction and statement of results

In a series of papers, Anick and Gray constructed and studied a family of co–H spaces $G_k^{2n}(p^r)$, $p \geq 5$, with some remarkable properties [1], [2], [7], [8]. The limit space, or rather its loop space $\Omega G_{\infty}^{2n}(p)$, shows up in a secondary version of the EHP sequence. Furthermore, Gray used the $G_k^{2n}(p^r)$ to construct v_2 -periodic families in the homotopy groups of Moore spaces [8], and Anick used them to decompose loop spaces of finite complexes [1]. It is the aim of this paper to prove the following theorem, which was conjectured in part in [2]:

Theorem 1. The spaces $G_k^{2n}(p^r)$ carry a co-associative and co-commutative co-H structure.

In section 2 we define the notions of co-A and co-C deviation. Some properties are established, which are used in section 3 to prove Theorem 1.

After the results in this paper were obtained, I learned of Stephen Theriault's thesis, in which he proved the homotopy co–associtivity of G_k (and much more) by using Ganea's characterisation of co–associtivity. But the argument given there has a gap. It is assumed during the proof that, given a homotopy commutative square of co–H spaces and co–H maps, the map induced on the cofibers is also a co–H map. But this is clearly false (see for example the discussion of Zabrodsky's formula in [10], p. 228).

2. The CO-A and CO-C deviation

The co-A deviation was first defined by Harper [10]. It is an obstruction for the existence of a co-associative co-H structure on the mapping cone of a co-H map between co-associative co-H spaces. The dual A-deviation and C-deviation were studied by Zabrodsky in [13].

Let $f: X, \tau \to Y, \sigma$ be a co-H map between the co-H spaces X, Y with structure maps τ, σ . So there are based homotopies

Received by the editors December 1, 2001.

2000 Mathematics Subject Classification. Primary 55P45; Secondary 55S35.

Here \triangle is the diagonal, and j the inclusion of the wedge into the product.

Suppose X, τ and Y, σ are co–associative resp. co–commutative up to homotopy. In this case we have based homotopies:

$$L_x: (1 \vee \tau) \circ \tau \longrightarrow (\tau \vee 1) \circ \tau, \quad L_y: (1 \vee \sigma) \circ \sigma \longrightarrow (\sigma \vee 1) \circ \sigma$$

and

$$G_x: \tau \longrightarrow T \circ \tau$$
, $G_y: \sigma \longrightarrow T \circ \sigma$,

where T denotes the switch map.

We will use the following notation for stringing together a list of homotopies. Given $H_1, \ldots, H_n : Z \times I \to W$ such that $H_i(Z, 1) = H_{i+1}(Z, 0)$, define

$$\{H_1, \dots, H_n\}(z, t) = H_i(z, nt - i + 1), \text{ if } (i - 1) \le nt \le i.$$

We also write H^{-1} for the homotopy with $H^{-1}(z,t) = H(z,1-t)$.

Suppose X, τ and Y, σ are homotopy co–associative, and fix L_x, L_y . Following Harper we define the co–A deviation with respect to F as follows: let

$$A(f, F) = \{ (f \vee F) \circ \tau, \ (1 \vee \sigma) \circ F, \ L_y \circ f, \ (\sigma \vee 1) \circ F^{-1},$$
$$(F^{-1} \vee f) \circ \tau, \ f_{(3)} \circ L_x^{-1} \} \ .$$

This defines a map

$$A(f,F):X,*\longrightarrow \Lambda Y_{(3)},c$$

where Λ denotes the free loop space, c is the map sending the whole circle to the base point, and $X_{(k)}$ and $f_{(k)}$ denote the k-fold wedge of the space and the map, respectively.

Let $u: X, * \to \Lambda Y_{(3)}$, c be the map which sends x to the constant map

$$f_{(3)} \circ (1 \vee \tau) \circ \tau(x).$$

Then A(f, F) - u factors uniquely over a map from X, * to $\Omega Y_{(3)}, *$, and the homotopy class of the adjoint of this map

$$A_*(f,F) \in [\Sigma X, Y_{(3)}]$$

is the co-A deviation.

The homotopy F is called primitive, if

$$j \circ F = \{ (f \times f) \circ M_x, \ M_y^{-1} \circ f \}$$

as tracks, i.e., as homotopy classes relative to $X \times \partial I$. Berstein and Harper proved in [5] that one can choose F to be primitive.

The map f is called a co-A map, if there is a primitive homotopy F such that $A_*(f;F)$ is the class of the constant map.

The definition of the co-C deviation is similar. Suppose X, τ and Y, σ are homotopy co-commutative, and fix G_x, G_y . Define

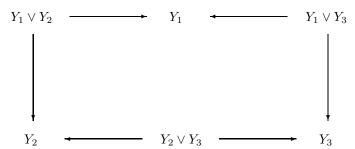
$$C(f,F)=\{F,G_y\circ f,T\circ F^{-1},(f\vee f)\circ G_x^{-1}\}.$$

This gives us a map $C(f, F): X, * \to \Lambda Y_{(2)}, c$.

Again there is a map unique up to homotopy from X to $\Omega Y_{(2)}$ such that the composite with the inclusion $\Omega Y_{(2)} \hookrightarrow \Lambda Y_{(2)}$ is C(f,F) - v with v(x) constant of value $(f \vee f) \circ \tau(x)$. The homotopy class of the adjoint $C_*(f,F) \in [\Sigma X, Y_{(2)}]$ is called the co-C deviation of f,F.

The map f is called a co-C map, if there is a primitive homotopy F such that $C_*(f, F)$ is the class of the constant map.

A result from [13], which we wish to dualize, is that the A-deviation, which is a map from $X \times X \times X$ to ΩY , can be chosen to be constant on the fat wedge in $X \times X \times X$. The proof used the existence of a strict unit for H-spaces. Since there is never a strict counit for a co-H space unless the space is a point, we have not been able to prove the strictly dual theorem, i.e., that $A_*(f,F)$ lifts to the homotopy fiber of $Y_{(3)} \longrightarrow R$, where R is the homotopy limit of the diagram



with the obvious maps. However, the following weak version will suffice for the applications which we have in mind.

Theorem 2.1. The homotopies L_x, L_y and G_x, G_y can be chosen such that

a)
$$j \circ A_*(f, F) \simeq *$$
, where $j: Y_{(3)} \to Y \times Y \times Y$, and

b)
$$j \circ C_*(f, F) \simeq *$$
, where $j: Y_{(2)} \to Y \times Y$.

For a map $g: X \to Y_{(k)}$ we denote the projection onto the i-th component by g_i .

The proof of Theorem 2.1 will need

Lemma 2.2. One can choose L_x and L_y such that

$$\begin{array}{lclcl} L_{y,1} & = & \sigma_1 \circ M_{y,1}^{-1}, & L_{x,1} & = & M_{x,1}^{-1} \circ \tau_1, \\ L_{y,2} & = & \{M_{y,1} \circ \sigma_2, \, \sigma_2 \circ M_{y,1}^{-1}\}, & L_{x,2} & = & \{M_{x,1} \circ \tau_2, \tau_2 \circ M_{x,1}^{-1}\}, \\ L_{y,3} & = & \sigma_2 \circ M_{y,2}, & L_{x,3} & = & M_{x,2} \circ \tau_2 \end{array}$$

as tracks, i.e., as homotopy classes relative to $Y \times \partial I$ and $X \times \partial I$.

Proof. Since the loop of the homotopy fiber sequence $F \to Y_{(3)} \to Y \times Y \times Y$ splits, the lemma follows from [5, 1.8].

Lemma 2.3. One can choose G_x and G_y such that

$$\begin{split} G_{x,1} &= \{M_{x,1}, M_{x,2}^{-1}\}, \ G_{y,1} = \{M_{y,1}, M_{y,2}^{-1}\}, \\ G_{x,2} &= \{M_{x,2}, M_{x,1}^{-1}\}, \ G_{y,2} = \{M_{y,2}, M_{y,1}^{-1}\}. \end{split}$$

Proof. Same argument as above.

Proof of Theorem 2.1. a) We choose F primitive and L_x, L_y as in Lemma 2.2. We show that in this case $A(f, F)_i = u_i$, $i \in \{1, 2, 3\}$. (By a slight abuse of notation we also denote by g_i the composition of a map to $\Lambda(Y_{(k)})$ with the i-th projection to $\Lambda(Y)$.)

We first have a hard look at $A(f, F)_1$:

$$A(f,F)_{1} = \{f \circ M_{x,1}, M_{y,1}^{-1} \circ f, \sigma_{1} \circ M_{y,1}^{-1} \circ f, \sigma_{1} \circ M_{y,1} \circ f, \sigma_{1} \circ f \circ M_{x,1}^{-1}, M_{y,1} \circ f \circ \tau_{1}, f \circ M_{x,1}^{-1} \circ \tau_{1}, f \circ M_{x,1} \circ \tau_{1}\}$$

$$= \{f \circ M_{x,1}, M_{y,1}^{-1} \circ f, \sigma_{1} \circ f \circ M_{x,1}^{-1}, M_{y,1} \circ f \circ \tau_{1}\}.$$

Claim.

$$\{f \circ M_{x,1}, M_{y,1}^{-1} \circ f\} = M_{y,1}^{-1} \circ f \circ M_{x,1}, \{\sigma_1 \circ f \circ M_{x,1}^{-1}, M_{y,1} \circ f \circ \tau_1\} = M_{y,1} \circ f \circ M_{x,1}^{-1}.$$

Here $M_{y,1}^{-1} \circ f \circ M_{x,1}$ is shorthand for $M_{y,1}^{-1}(f \circ M_{x,1}, \operatorname{id}_I)$, and similarly for $M_{y,1} \circ f \circ M_{x,1}^{-1}$.

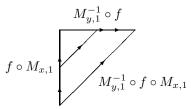
Moreover, for compositions, the first argument may be replaced by – if the expression is complicated and forced by contest.

To see this, consider the homotopies of tracks

$$K_1(x,t,s) := \begin{cases} f \circ M_{x,1}(x,2t) & \text{if } 0 \le t \le \frac{s}{2}, \\ M_{y,1}^{-1}(f \circ M_{x,1}(x,t+\frac{s}{2}), t-\frac{s}{2}) & \text{if } \frac{s}{2} \le t \le 1 - \frac{s}{2}, \\ M_{y,1}^{-1}(f(x),2t-1) & \text{if } 1 - \frac{s}{2} \le t \le 1, \end{cases}$$

$$K_2(x,t,s) := \begin{cases} \sigma_1 \circ f \circ M_{x,1}^{-1}(x,2t) & \text{if } 0 \le t \le \frac{s}{2}, \\ M_{y,1}(f \circ M_{x,1}^{-1}(x,t+\frac{s}{2}), t - \frac{s}{2}) & \text{if } \frac{s}{2} \le t \le 1 - \frac{s}{2}, \\ M_{y,1}(f(x), 2t - 1) & \text{if } 1 - \frac{s}{2} \le t \le 1. \end{cases}$$

The picture is:



where the path in the middle is $K_1(\ldots, s)$. In conclusion, we have shown that $A(f, F)_1 \simeq A(f, F)_1(0) = u_1$. $A(f, F)_2$ is a little more complex:

$$\begin{split} A(f,F)_2 &= & \{F_1 \circ \tau_2,\, \sigma_1 \circ F_2,\, L_{y,2} \circ f,\, \sigma_2 \circ F_1^{-1},\, F_2^{-1} \circ \tau_1,\, f \circ L_{x,2}^{-1}\} \\ &= & \{f \circ M_{x,1} \circ \tau_2,\, M_{y,1}^{-1} \circ f \circ \tau_2,\, \sigma_1 \circ f \circ M_{x,2},\, \sigma_1 \circ M_{y,2}^{-1} \circ f,\\ &M_{y,1} \circ \sigma_2 \circ f,\, \sigma_2 \circ M_{y,1}^{-1} \circ f,\, \sigma_2 \circ M_{y,1} \circ f,\, \sigma_2 \circ f \circ M_{x,1}^{-1},\\ &M_{y,2} \circ f \circ \tau_1,\, f \circ M_{x,2}^{-1} \circ \tau_1,\, f \circ \tau_2 \circ M_{x,1},\, f \circ M_{x,1}^{-1} \circ \tau_2\} \\ &= & \{\{M_{y,1}^{-1} \circ f \circ \tau_2,\, \sigma_1 \circ f \circ M_{x,2},\, \sigma_1 \circ M_{y,2}^{-1} \circ f,\, M_{y,1} \circ \sigma_2 \circ f\}\,,\\ &\{\sigma_2 \circ f \circ M_{x,1}^{-1},\, M_{y,2} \circ f \circ \tau_1,\, f \circ M_{x,2}^{-1} \circ \tau_1,\, f \circ \tau_2 \circ M_{x,1}\}\}\,. \end{split}$$

As in the case above, one sees that

$$\begin{cases} \sigma_1 \circ f \circ M_{x,2}, \ \sigma_1 \circ M_{y,2}^{-1} \circ f \} & = \ \sigma_1 \circ M_{y,2}^{-1} \circ f \circ M_{x,2}, \\ \{ M_{y,2} \circ f \circ \tau_1, \ f \circ M_{x,2}^{-1} \circ \tau_1 \} & = \ M_{y,2} \circ f \circ M_{x,2}^{-1} \circ \tau_1. \end{cases}$$

So it remains to show that

$$\begin{aligned} \{M_{y,1}^{-1} \circ f \circ \tau_2, \ \sigma_1 \circ M_{y,2}^{-1} \circ f \circ M_{x,2}, \ M_{y,1} \circ \sigma_2 \circ f\} \\ &= \{\sigma_2 \circ f \circ M_{x,1}^{-1}, \ M_{y,2} \circ f \circ M_{x,2}^{-1} \circ \tau_1, \ f \circ \tau_2 \circ M_{x,1}\}^{-1}. \end{aligned}$$

To see this, consider the homotopy between tracks:

$$H_1(x,t,s) := \begin{cases} M_{y,1}^{-1}(f \circ \tau_2(x), 3t) & \text{if } 0 \le t \le \frac{s}{3}, \\ M_{y,1}^{-1}(-,s) \circ M_{y,2}^{-1}\left(-, \frac{t - \frac{s}{3}}{1 - 2\frac{s}{3}}\right) \circ f \circ M_{x,2}\left(-, \frac{t - \frac{s}{3}}{1 - 2\frac{s}{3}}\right) \\ & \text{if } \frac{s}{3} \le t \le 1 - \frac{s}{3}, \\ \sigma_2 \circ M_{y,1}(f(x), 3t - 2) & \text{if } 1 - \frac{s}{3} \le t \le 1, \end{cases}$$

$$H_2(x,t,s) := \begin{cases} \sigma_2 \circ f \circ M_{x,1}^{-1}(x,3t) & \text{if } 0 \le t \le \frac{s}{3}, \\ M_{y,2}\left(-,\frac{t-\frac{s}{3}}{1-2\frac{s}{3}}\right) \circ f \circ M_{x,2}^{-1}\left(-,\frac{t-\frac{s}{3}}{1-2\frac{s}{3}}\right) \circ M_{x,1}^{-1}(x,s) \\ & \text{if } \frac{s}{3} \le t \le 1 - \frac{s}{3}, \\ f \circ \tau_2 \circ M_{x,1}(x,3t-2) & \text{if } 1 - \frac{s}{3} \le t \le 1. \end{cases}$$

Since $H_1(x, t, 0) = H_2(x, 1 - t, 0) = M_{y,2}^{-1}(-, t) \circ f \circ M_{x,2}(x, t)$, the identity above is proved.

The case $A(f, F)_3$ is like the first one.

Next we prove b), which is easier. Using the primitivity of F and Lemma 2.3, we find that

$$\begin{split} \{F, G_y \circ f, T \circ F^{-1}, f \vee f \circ G_x^{-1}\}_{,1} \\ &= \{f \circ M_{x,1}, M_{y,1}^{-1} \circ f, M_{y,1} \circ f, M_{y,2}^{-1} \circ f, M_{y,2} \circ f, f \circ M_{x,2}^{-1}, f \circ M_{x,2}, f \circ M_{x,1}^{-1}\}, \end{split}$$
 which is the constant track.

A similar argument works for the second coordinate.

The following two lemmas were proved in [5].

Lemma 2.4. Let $(f, F): \Sigma X, \tau \to Y, \sigma$ be a co-H map with primitive homotopy F. Suppose Y, σ is homotopy co-associative and $\Sigma X, \tau$ is the suspension co-H structure. Then for each suspension $\Sigma g: \Sigma Z \to \Sigma X$ the co-A deviation satisfies

$$A_*(f\circ\Sigma g,F\circ\Sigma g)=A_*(f,F)\circ\Sigma^2 g\ .$$

Recall from [5] that for a co-H map $f: X, \tau \to Y, \sigma$ with primitive homotopy F, the mapping cone C_f carries a co-H structure $\overline{\sigma}$ defined by

$$\begin{array}{lcl} \overline{\sigma}(x,t) & = & \left\{ \begin{array}{ll} F^{-1}(x,2t) & \text{for} & 0 \leq 2t \leq 1, \\ \tau(x),2t-1 & \text{for} & 0 \leq 2t \leq 1, \end{array} \right. \\ \overline{\sigma}(y) & = & \sigma(y) \; . \end{array}$$

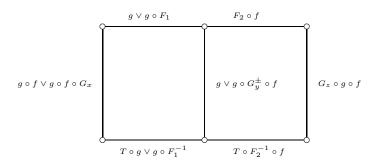
Lemma 2.5. Let (f, F) be a co-A map. Then $\overline{\sigma}$ is homotopy co-associative. \square

There are similar results for the co-C deviations:

Lemma 2.6. Let $(f, F_1): X, \tau \longrightarrow Y, \sigma$ and $(g, F_2): Y, \sigma \longrightarrow Z, \eta$ be co-H maps and primitive homotopies, and suppose all spaces are homotopy co-commutative. Then

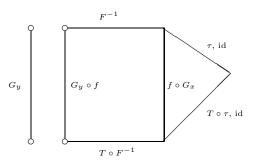
$$C_*(f \circ q, \{q \lor q \circ F_1, F_2 \circ f\}) = (q \lor q) \circ C_*(f, F_1) + C_*(q, F_2) \circ \Sigma f.$$

Proof. The proof is given by looking at the diagram



Lemma 2.7. Let (f, F) be a co-C map and a primitive homotopy. Then the co-H structure on C_f defined by F is homotopy co-commutative.

Proof. Consider the diagram



The square in the middle can be filled since f is a co-C map, and the triangle is extendable by the cone on G_* .

3. Review on $G_k^{2n}(\boldsymbol{p}^r)$ and proof of theorem 1

Recall from [2] that the space $G_k^{2n}(p^r)$ has a CW structure as follows:

$$G_k^{2n}(p^r) = S^{2n} \cup_{p^r} e^{2n+1} \cup_{g_1} \dots \cup_{g_k} S^{2np^k} \cup_{p^{r+k}} e^{2np^k+1};$$

the attaching maps g_i are divisible by p^{r+i-1} in homotopy. One also has $G_{k-1}^{2n}(p^r) \cup_{g_k} S^{2np^k} \cup e^{2np^k+1} = G_k^{2n}(p^r)$, and there is a compatible co-H structure on $G_k^{2n}(p^r)$. Denote by W_k^{r+k} the class of spaces that are of finite type and of the homotopy type of bouquets of Moore spaces of type p^{r+s} with $s\in\{0,\dots,k\}.$

Lemma 3.1. The following statements hold:

- $\begin{array}{ll} \mathbf{a}) & \Sigma^2 \Omega G_k^{2n}(p^r) \in W_r^{r+k}. \\ \mathbf{b}) & \Sigma \Omega G_k^{2n}(p^r) \wedge \Omega G_k^{2n}(p^r) \in W_r^{r+k}. \end{array}$

c) Let F be the homotopy fiber of

$$j: \bigvee_{i=1}^{3} G_k^{2n}(p^r) \longrightarrow \prod_{i=1}^{3} G_k^{2n}(p^r)$$
.

Then ΩF is homotopy equivalent to a weak product of spaces of the form ΩW_j , $W_j \in W_r^{r+k}$.

Proof. Parts a) and b) are in [2]. For c), recall the two homotopy equivalences

- i) $\Sigma(A \times B) \simeq \Sigma A \vee \Sigma B \vee \Sigma A \wedge B$,
- ii) $\Omega(X \vee Y) \simeq \Omega X \times \Omega Y \times \Omega(\Sigma \Omega X \wedge \Omega Y)$.

Apply i) to $\Omega(Y \vee Y \vee Y)$ to find that

$$\Omega F \simeq \Omega \Sigma (\Omega Y)^{\wedge 2} \times \Omega [\Sigma \Omega Y \wedge (\Omega Y \times \Omega Y \times \Omega \Sigma (\Omega Y)^{\wedge 2})],$$

and ii) to see that

$$\begin{split} & \Sigma(\Omega Y \times \Omega Y \times \Omega \Sigma(\Omega Y)^{\wedge 2}) \\ & \simeq \Sigma \Omega Y \vee \Sigma \Omega Y \vee \ \Sigma(\Omega Y)^{\wedge 2} \ \vee \ \Sigma \Omega \Sigma(\Omega Y)^{\wedge 2} \vee \Sigma \Omega Y \\ & \wedge \ \Omega \Sigma(\Omega Y)^{\wedge 2} \vee \Sigma \Omega Y \wedge \Omega \Sigma(\Omega Y)^{\wedge 2} \vee \Sigma(\Omega Y)^{\wedge 2} \wedge \Omega \Sigma(\Omega Y)^{\wedge 2}. \end{split}$$

By Hilton–Milnor, and the fact that W_r^{r+k} is closed under smash products [12], it is enough to show that each wedge factor is in W_r^{r+k} for $Y=G_k^{2n}(p^r)$. By b) $\Sigma(\Omega G_k^{2n}(p^r))^{\wedge 2}\in W_r^{r+k}$, and since this space is 2–connected it is a double suspension. By a) the smash with $\Omega G_k^{2n}(p^r)$ is in W_r^{r+k} . The splitting of $\Sigma\Omega\Sigma X$ shows that also $\Sigma\Omega\Sigma\Omega G_k^{2n}(p^r)^{\wedge 2}\in W_r^{r+k}$.

Proof of Theorem 1. The proof is by induction on k. For k=0, $G_k^{2n}(p^r)$ is a simply connected Moore space of type p^r , p odd. Hence it is a suspension, and so homotopy co–associative. If $n \geq 2$ it is a double suspension, and the homotopy co–commutativity for n=1 was proved in [4]. So suppose the assertion holds for $k-1, k \geq 1$. We show that the co–A and the co–C deviations of g_k vanish. This suffices by Lemmas 2.5 and 2.7. Since g_k is divisible by p^{r+k-1} , it follows from Lemmas 2.4 and 2.6 that $A_*(g_k, F)$ and $C_*(g_k, F)$ are also divisible by p^{r+k-1} .

By Theorem 2.1 the maps $A_*(g_k, F)$ and $C_*(g_k, F)$ lift, uniquely up to homotopy, to the homotopy fibers F_1 and F_2 , respectively, of

$$j: \bigvee_{i=1}^{s} G_k^{2n}(p^r) \longrightarrow \prod_{i=1}^{s} G_k^{2n}(p^r), \quad s \in \{2,3\}.$$

Moreover, the lift is also divisible by p^{r+k-1} , since the loop of this fibration splits. We claim that in fact

$$p^{r+k-1}[P^{2np^k}(p^r), \Omega F_i] = 0.$$

The homotopy type of F_2 is well known to be $\Sigma\Omega G_{k-1}^{2n}(p^r)\wedge\Omega G_{k-1}^{2n}(p^r)$, and the type of ΩF_1 was determined during the proof of Lemma 3.1.

By [11] the homotopy exponent of $P^{\ell}(p^s)$ is p^{s+1} for p odd. It follows that the only factors in the product decomposition of ΩF_i which could contribute a class of order p^{r+k} are of the form $\Omega P^{\ell}(p^{r+k-1})$. So we have to determine the least ℓ for which such a factor occurs. The first class in $H_*(\Omega G_k^{2n}(p^r); \mathbb{Z})$ of order p^{r+k-1} shows up in dimension $2np^{k-1}-1$ by [2, p. 864].

shows up in dimension $2np^{k-1}-1$ by [2, p. 864]. Consequently the first class of order p^{r+k-1} in $H_*(\Omega\Sigma\Omega G_k^{2n}(p^r) \wedge \Omega G_k^{2n}(p^r); \mathbb{Z})$ shows up in dimension $4np^{k-1}-2$. Inspection of the proof of Lemma 3.1 shows that in the splitting of ΩF_1 each factor is of the form loop of $\Sigma(\Omega G_k^{2n}(p^r))^{\wedge 2} \wedge Z$. So also in $H_*(\Omega F_1, \mathbb{Z})$ and $H_*(\Omega F_2, \mathbb{Z})$ the first class of order p^{r+k-1} is in dimension $\geq 4np^{k-1}-2$. This class comes from a factor $\Omega P^{4np^{k-1}} \geq (p^{r+k-1})$.

By [6], the first element of order p^{r+k} in $\pi_*(P^{2m+1}(p^{r+k-1}))$, respectively $\pi_*(P^{2m}(p^{r+k-1}))$ is in dimension 2mp-1, resp. 4mp-2p-1.

The universal coefficient sequence for homotopy groups splits at an odd prime. So it is enough to show that $\pi_*(P^{\ell}(p^{r+k-1}))$ does not contain a class of order p^{r+k} for $* \leq 2np^k + 1$ and $\ell \geq 4np^{k-1} = 2m$. But this follows from what was said above and the trivial estimates

$$2np^k + 1 < 4mp - 2p - 1 = 8np^k - 2p - 1,$$

 $2np^k + 1 < 2mp - 1 = 4np^k - 1.$

The next two corollaries are just mild strengthenings of two results from [2].

Corollary 3.2. Suppose X is an H space, and $\varphi_{k-1}: G_{k-1}^{2n}(p^r) \to \Sigma X$ is a map such that $\varphi_{k-1}|_K$, where K is a skeleton, is a co-H map. Suppose also that $p^{r+k-1}\pi_{2np^k-1}(X;\mathbb{Z}/p^{r+k})=0$. Then φ_{k-1} has an extension $\varphi_k:G_k^{2n}(p^r)\to\Sigma X$.

Proof. It was shown in [2, 4.1] that the corollary would follow if one could choose the coretraction $\sigma: G_k^{2n}(p^r) \to \Sigma\Omega G_k^{2n}(p^r)$ corresponding to the co-H structure to be a co-H map. Since every 1-connected co-associative co-H space is a cogroup [3], this follows from [9, 4.2] and Theorem 1.

Corollary 3.3. Let $0 \le s \le m \le \infty$, and suppose that X is an H-space such that $p^{r+k-1}\pi_{2np^k-1}(X;\mathbb{Z}/p^{r+k}) = 0$ for $s < k \le m$. Let $\varphi : P^{2mp^s}(p^{r+s}) \to X$ be a map. Then there is a map $\varphi_m : G_m^{2n}(p^s) \to \Sigma X$ which extends

$$G_s^{2n}(p^r) \stackrel{pinch}{\longrightarrow} G_s^{2n}(p^r)/G_{s-1}^{2n}(p^r) = P^{2np^s+1}(p^{r+s}) \stackrel{\Sigma\varphi}{\longrightarrow} \Sigma X$$
.

Proof. Since $G_{s-1}^{2n}(p^r)$ is a sub-co-H space of $G_s^{2n}(p^r)$ the pinch map is a co-H map for the induced co-H structure on the quotient space. This co-H structure is unique [4]. Thus the composite with $\Sigma \varphi$ is a co-H map, and the assertion follows from Corollary 3.2.

REFERENCES

- D. Anick: Differential algebras in topology, Research Notes in Mathematics, A.K. Peters Ltd. (1993). MR 94h:55020
- [2] D. Anick and B. Gray: Small H spaces related to Moore spaces, Topology **34** (1995), 859–881. MR **97a**:55011
- [3] M. Arkowitz: Co-H-spaces, Handbook of Algebraic Topology, ed. J.M. James, North Holland (1995). 1143–1173. MR 96m:55012
- [4] M. Arkowitz and M. Golasinski: Co-H structures on Moore spaces of type (G, 2), Canad. Jour. Math. 46 (1994), 673–686. MR 95e:55012
- I. Berstein and J. Harper: Cogroups which are not Suspensions, Algebraic Topology, Springer Lecture Notes in Math. 1370, Springer, Berlin (1989), 63–86. MR 90c:55006
- [6] F.R. Cohen, J.C. Moore and J. Neisendorfer: Torsion in homotopy groups, Ann. Math. 109 (1979), 121–168. MR 80e:55024
- [7] B. Gray: EHP Spectra and periodicity I: geometric constructions, Trans. Amer. Math. Soc. 340 No. 2 (1993), 595-616. MR 94c:55015
- [8] B. Gray: v_2 -periodic homotopy families, Contemp. Math. **146** (1993), 129–141. MR **95g:**55006
- [9] T. Ganea: Cogroups and suspensions, Invent. Math. 9 (1970), 185–197. MR 42:2484

- [10] J. Harper: $\it Co-H\text{-}maps$ to spheres, Israel Journal of Math. $\bf 66$ (1989), 223–237. MR $\bf 91b:55007$
- [11] J. Neisendorfer: The exponent of a Moore space, Algebraic topology and algebraic K–theory, ed. W. Browder, Annals of Mathematics Studies, Princeton University Press (1987), 35–71. MR $\bf 89e$:55029
- [12] J. Neisendorfer: Primary Homotopy Theory, Mem. Amer Math. Soc. No. 232, 1980. MR 81b:55035
- [13] A. Zabrodsky: Hopf Spaces, North Holland (1976). MR 55:13416

Sesenheimerstrasse 20, 10627 Berlin, Germany