TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 356, Number 9, Pages 3545–3556 S 0002-9947(03)03405-6 Article electronically published on December 15, 2003

NONLINEARIZABLE ACTIONS OF DIHEDRAL GROUPS ON AFFINE SPACE

KAYO MASUDA

ABSTRACT. Let G be a reductive, non-abelian, algebraic group defined over $\mathbb C$. We investigate algebraic G-actions on the total spaces of non-trivial algebraic G-vector bundles over G-modules with great interest in the case that G is a dihedral group. We construct a map classifying such actions of a dihedral group in some cases and describe the spaces of those non-linearizable actions in some examples.

1. Introduction

Let G be a reductive complex algebraic group. When G is non-abelian, it is well-known that there exist non-linearizable actions of G on complex affine space \mathbb{A}^n for $n \geq 4$, i.e., algebraic actions of G on \mathbb{A}^n which are not conjugate to linear actions under polynomial automorphisms of \mathbb{A}^n . It is remarkable that non-linearizable actions on \mathbb{A}^n known so far are all obtained from non-trivial algebraic G-vector bundles over G-modules. An algebraic G-vector bundle over a G-variety X is defined to be an algebraic vector bundle $p: E \to X$, where E is a G-variety, the projection p is G-equivariant, and the morphism induced by $g \in G$ from $p^{-1}(x)$ to $p^{-1}(gx)$ is linear for all g and $x \in X$. An algebraic G-vector bundle is called trivial if it is isomorphic to a product bundle $X \times Q \to X$ for some G-module Q. A total space of an algebraic G-vector bundle over a G-module is an affine space by the affirmative solution to the Serre conjecture by Quillen [19] and Suslin [21]. Thus, the G-action on a total space E of a non-trivial G-vector bundle over a G-module is a candidate for a non-linearizable action on affine space. There are a couple of known conditions for such an action to be non-linearizable (Bass and Haboush [1], M. Masuda and Petrie [15]). Schwarz [20] (Kraft and Schwarz [7] for details) first showed that an algebraic G-vector bundle over a G-module P can be non-trivial when the algebraic quotient of P is of one dimension, and that there exist families of non-linearizable actions on affine space, by using the above conditions. After Schwarz, lots of examples of non-trivial algebraic G-vector bundles have been presented, and it turns out that many of the G-actions on their total spaces are non-linearizable (Knop [5], M. Masuda, Moser-Jauslin and Petrie [11], M. Masuda and Petrie [16]). For abelian groups, there are no known examples of non-linearizable actions on complex affine space. In fact, for an abelian group G, every algebraic G-vector bundle over

Received by the editors April 3, 2003.

²⁰⁰⁰ Mathematics Subject Classification. Primary 14R20; Secondary 14L30, 14D20.

Key words and phrases. Algebraic group action, linearization problem.

Supported by Grant-in-Aid for Young Scientists, The Ministry of Education, Culture, Sports, Science and Technology, Japan.

a G-module becomes trivial by the result of M. Masuda, Moser-Jauslin and Petrie [12], so, we cannot obtain non-linearizable actions from G-vector bundles. There are some affirmative results for the linearizability for torus actions (e.g. Bialynicki-Birula [2], Kaliman, Koras, Makar-Limanov and Russell [4]); however, it remains open whether or not every algebraic action of an abelian group on \mathbb{A}^n $(n \geq 4)$ is linearizable. Especially for a finite abelian group G, e.g. for a cyclic group $\mathbb{Z}/n\mathbb{Z}$, we never know even whether any G-action on \mathbb{A}^3 is linearizable or not.

For finite groups, M. Masuda and Petrie [16] showed that there exists a family of non-linearizable actions of a dihedral group $D_n = \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ for n even and ≥ 18 on \mathbb{A}^4 . They considered D_n -actions derived from algebraic D_n -vector bundles which become trivial by adding certain trivial bundles, and showed that those actions form a family in some cases. Later, Mederer [18] showed that non-trivial algebraic D_n -vector bundles form a huge family of infinite dimension for n odd and ≥ 3 . In this article, we investigate G-actions derived from non-trivial algebraic G-vector bundles. We are most interested in the case that G is a dihedral group. We present a new condition for such D_n -actions to be non-linearizable and construct a map which classifies such non-linearizable D_n -actions without imposing triviality on D_n -vector bundles under the addition of certain trivial bundles. We also describe the spaces of those non-linearizable D_n -actions in some examples.

2. Families of non-linearizable actions

Let G be a reductive, non-abelian algebraic group and let Z be an affine Gvariety. We denote by $\mathbb{C}[Z]$ the coordinate ring of Z and by $\mathbb{C}[Z]^G$ the ring of invariants. The algebraic quotient Z//G is the affine variety defined by Z//G =Spec $\mathbb{C}[Z]^G$ and the quotient morphism $\pi_Z:Z o Z/\!/G$ is the morphism corresponding to the inclusion $\mathbb{C}[Z]^G \hookrightarrow \mathbb{C}[Z]$. Let P and Q be G-modules and let $X \subseteq P$ be a G-subvariety containing the origin of P. We denote by $\text{Vec}_G(X,Q)$ the set of algebraic G-vector bundles over X whose fiber over the origin is isomorphic to Q, and by $Vec_G(X,Q)$ the set of G-isomorphism classes in $Vec_G(X,Q)$. An element $E \to X$ of $\operatorname{Vec}_G(X,Q)$ is represented by the total space E, and the isomorphism class of $E \in \text{Vec}_G(X,Q)$ is denoted by [E]. The set $\text{Vec}_G(X,Q)$ is called trivial if $\operatorname{Vec}_G(X,Q)$ consists of the unique class $[\Theta_Q]$, where Θ_Q denotes the product bundle with fiber Q. When dim P//G = 1, Schwarz [20] showed that $Vec_G(P,Q)$ has an additive group structure and is isomorphic to a vector group \mathbb{C}^q for a nonnegative integer q. Mederer [18] (cf. [8]) extended the result of Schwarz to the case where the base space is a G-equivariant affine cone X with $\dim X//G = 1$. When $\dim P//G \geq 2$, $\operatorname{Vec}_G(P,Q)$ can be non-trivial and of countably or uncountably infinite dimension ([9], [10], [18]).

We assume that $\operatorname{Vec}_G(P,Q)$ is non-trivial. Let $E \in \operatorname{Vec}_G(P,Q)$. The following are the known conditions for the G-action on the total space E to be non-linearizable.

Proposition 2.1. Let $E, E' \in \text{Vec}_G(P, Q)$.

- (1) ([15]) Suppose that there exists a subgroup H of G such that $(P \oplus Q)^H = P$. Then E and E' are isomorphic as G-varieties if and only if E and the pullback φ^*E' are isomorphic as G-vector bundles for some G-automorphism φ of P.
- (2) ([1]) If the Whitney sum $E \oplus \Theta_P$ is non-trivial, then the G-action on E is non-linearizable.

Let $VAR_G(P,Q)$ be the set of G-isomorphism classes of affine G-spaces represented as the total spaces of elements of $Vec_G(P,Q)$. The group $Aut(P)^G$ of G-equivariant automorphisms of P acts on $Vec_G(P,Q)$ by pull-backs. There exists a surjection Ψ from the orbit space of $Vec_G(P,Q)$ under the action of $Aut(P)^G$ to $VAR_G(P,Q)$. Under the assumption in Proposition 2.1 (1), Ψ is an isomorphism.

Example 2.1. Let $G = O(2) = \mathbb{C}^* \rtimes \mathbb{Z}/2\mathbb{Z}$ and let V_m $(m \geq 1)$ be a two-dimensional O(2)-module such that

$$\begin{array}{lll} \lambda(x,y) & = & (\lambda^m x, \lambda^{-m} y) & \text{ for } \lambda \in \mathbb{C}^*, \\ \tau(x,y) & = & (y,x) & \text{ for the generator } \tau \in \mathbb{Z}/2\mathbb{Z}. \end{array}$$

Then $V_m/\!/O(2) = \operatorname{Spec} \mathbb{C}[t] = \mathbb{A}^1$, where t = xy, and $\operatorname{Aut}(V_m)^G = \mathbb{C}^*$, namely, $\operatorname{Aut}(V_m)^G$ consists of scalar multiplications.

Let n be odd. Then $\operatorname{Vec}_G(V_2,V_n)\cong\mathbb{C}^{(n-1)/2}$ and the Whitney sum with Θ_{V_2} induces an isomorphism between $\operatorname{Vec}_G(V_2,V_n)$ and $\operatorname{Vec}_G(V_2,V_n\oplus V_2)$ ([20]). By Proposition 2.1 (1) or (2), if $E\in\operatorname{Vec}_{O(2)}(V_2,V_n)$ is non-trivial, then the O(2)-action on E is non-linearizable. We shall describe $\operatorname{VAR}_{O(2)}(V_2,V_n)$. Since $(V_2\oplus V_n)^{\mathbb{Z}/2\mathbb{Z}}=V_2$, where $\mathbb{Z}/2\mathbb{Z}$ is a subgroup of $\mathbb{C}^*\subset O(2)$, it follows from Proposition 2.1 (1) that

$$VAR_{O(2)}(V_2, V_n) \cong Vec_{O(2)}(V_2, V_n)/\mathbb{C}^*.$$

In order to look at the action of $\operatorname{Aut}(V_2)^G=\mathbb{C}^*$ on $\operatorname{Vec}_G(V_2,V_n)$, recall the isomorphism $\operatorname{Vec}_G(V_2,V_n)\cong\mathbb{C}^{(n-1)/2}$. For the details, we refer to Kraft and Schwarz [7]. Let $F=\pi_{V_2}^{-1}(1)$, which is the G-subvariety of V_2 defined by xy=1. Then $F\cong G/H$, where $H=\mathbb{Z}/2\mathbb{Z}\rtimes\mathbb{Z}/2\mathbb{Z}$, and V_n is multiplicity-free with respect to H, namely, each irreducible H-module occurs in V_n with multiplicity at most one when V_n is viewed as an H-module. We set $\mathfrak{m}=\operatorname{Mor}(F,\operatorname{End}V_n)^G$, the module of G-equivariant morphisms from F to $\operatorname{End}V_n$. Let $\mathbb{B}=\operatorname{Spec}\mathbb{C}[s]$ be the double cover of $\mathbb{A}^1=\operatorname{Spec}\mathbb{C}[t]$, where $s^2=t$. Then the group $\Gamma:=\{\pm 1\}$ acts on \mathbb{B} and on F by scalar multiplication. We denote by $\mathbb{B}\times_{\Gamma}F$ the quotient of $\mathbb{B}\times F$ by Γ which acts by $(b,f)\mapsto (b\gamma,\gamma^{-1}f)$ for $\gamma\in\Gamma$, $b\in\mathbb{B}$, and $f\in F$. The group G acts on $\mathbb{B}\times_{\Gamma}F$ through F. We define a G-equivariant morphism φ by

$$\varphi: \mathbb{B} \times_{\Gamma} F \quad \to \quad V_2,$$
$$[b, f] \quad \mapsto \quad bf,$$

which is a G-isomorphism from $(\mathbb{B} - \{0\}) \times_{\Gamma} F$ onto $V_2 - \pi_{V_2}^{-1}(0)$. Note that $\mathbb{C}[\mathbb{B} \times_{\Gamma} F]^G \cong \mathbb{C}[\mathbb{B}]^{\Gamma} = \mathbb{C}[t] = \mathbb{C}[V_2]^G$. The morphism φ induces a homomorphism

$$\varphi_{\#} : \operatorname{Mor}(V_2, \operatorname{End} V_n)^G \to \operatorname{Mor}(\mathbb{B} \times_{\Gamma} F, \operatorname{End} V_n)^G$$
$$= \operatorname{Mor}(\mathbb{B}, \mathfrak{m})^{\Gamma} =: \mathfrak{m}(\mathbb{B})^{\Gamma}.$$

The modules $\operatorname{Mor}(V_2,\operatorname{End} V_n)^G$ and $\mathfrak{m}(\mathbb{B})^\Gamma$ are finite free modules over $\mathbb{C}[t]$. In fact, a basis of $\operatorname{Mor}(V_2,\operatorname{End} V_n)^G\cong (\mathbb{C}[V_2]\otimes\operatorname{End} V_n)^G$ over $\mathbb{C}[t]$ is written in a matrix form as

$$\left\{ A_0 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), A_1 = \left(\begin{array}{cc} 0 & x^n \\ y^n & 0 \end{array} \right) \right\}$$

and a basis of $\mathfrak{m}(\mathbb{B})^{\Gamma} \cong (\mathbb{C}[s] \otimes \mathfrak{m})^{\Gamma}$ over $\mathbb{C}[t]$ is

$$\left\{C_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, C_1 = s(A_1|_F)\right\}.$$

The module $\operatorname{Mor}(V_2,\operatorname{End} V_n)^G$ (resp. $\mathfrak{m}(\mathbb{B})^\Gamma$) inherits a grading from $\mathbb{C}[V_2]$ (resp. $\mathbb{C}[s]$), and $\varphi_\#$ is a homomorphism of degree 0. Let $\operatorname{Mor}(V_2,\operatorname{End} V_n)_1^G$ (resp. $\mathfrak{m}(\mathbb{B})_1^\Gamma$) be the submodule of $\operatorname{Mor}(V_2,\operatorname{End} V_n)^G$ (resp. $\mathfrak{m}(\mathbb{B})^\Gamma$) consisting of elements with positive degrees. Then $\operatorname{Vec}_G(V_2,V_n)$ is isomorphic to the quotient module $\mathfrak{m}(\mathbb{B})_1^\Gamma/\varphi_\#\operatorname{Mor}(V_2,\operatorname{End} V_n)_1^G$. Since

$$\varphi_{\#}(A_0) = C_0$$
 and $\varphi_{\#}(A_1) = t^{\frac{n-1}{2}}C_1$,

 $\{t^{i-1}C_1; 1 \leq i \leq \frac{n-1}{2}\}$ forms a \mathbb{C} -basis of $\mathfrak{m}(\mathbb{B})_1^{\Gamma}/\varphi_\# \operatorname{Mor}(V_2, \operatorname{End} V_n)_1^G$, and hence

$$\operatorname{Vec}_G(V_2,V_n) \cong \mathfrak{m}(\mathbb{B})_1^{\Gamma}/\varphi_{\#}\operatorname{Mor}(V_2,\operatorname{End}V_n)_1^G \cong \mathbb{C}^{\frac{n-1}{2}}.$$

Note that $\deg(t^{i-1}C_1) = 2i - 1$. The scalar multiplication on V_2 corresponds to a scalar multiplication on \mathbb{B} via φ . Hence $\operatorname{Vec}_G(V_2, V_n) \cong \bigoplus_{i=1}^{(n-1)/2} W(2i-1)$ as a module of $\operatorname{Aut}(V_2)^G = \mathbb{C}^*$, where W(i) denotes the representation space of \mathbb{C}^* with weight i. Thus we obtain by Proposition 2.1 (1) that

$$VAR_{O(2)}(V_2, V_n) \cong (\bigoplus_{i=1}^{(n-1)/2} W(2i-1))/\mathbb{C}^*$$

$$=: \mathbb{P}_*(2i-1; 1 \le i \le \frac{n-1}{2}).$$

Here $\mathbb{P}_*(2i-1;1 \leq i \leq (n-1)/2)$ consists of the "vertex" * and the weighted projective space $\mathbb{P}(2i-1;1 \leq i \leq (n-1)/2)$ of dimension (n-3)/2 with weight 2i-1 for $1 \leq i \leq (n-1)/2$. The "vertex" corresponds to the linearizable action and the weighted projective space to non-linearizable actions (cf. [16]).

Example 2.2. Let $G = SL_2$ and let R_n be the SL_2 -module of binary forms of degree $n \geq 1$. Then $\operatorname{Vec}_G(R_2, R_n) \cong \mathbb{C}^{[(n-1)^2/4]}$ and $\operatorname{Aut}(R_2)^G = \mathbb{C}^*$ ([20], [7]). As a module of $\mathbb{C}^* = \operatorname{Aut}(R_2)^G$, $\operatorname{Vec}_G(R_2, R_n)$ is isomorphic to $\bigoplus_{i=1}^{n-2} m_i W(i)$ with multiplicity $m_i = [\frac{n-i}{2}]$. Suppose n is odd. Then $(R_2 \oplus R_n)^{\mathbb{Z}/2\mathbb{Z}} = R_2$. Hence by Proposition 2.1 (1),

$$VAR_{SL_2}(R_2, R_n) \cong (\bigoplus_{i=1}^{n-2} m_i W(i))/\mathbb{C}^*$$
$$=: \mathbb{P}_*(i, m_i; 1 \le i \le n-2).$$

In this case, the space of non-linearizable SL_2 -actions is isomorphic to the weighted projective space of dimension $[(n-1)^2/4]-1$ with weight i of multiplicity m_i for $1 \le i \le n-2$.

Example 2.3. Let G be semisimple and let \mathfrak{g} be the adjoint representation of G. Let Σ be a system of simple roots of G and F an irreducible G-module with the highest weight χ . Knop [5] constructed a map associated with $\alpha \in \Sigma$,

$$\Phi_{\alpha}: \operatorname{Vec}_{G}(\mathfrak{g}, F) \to \operatorname{Vec}_{SL_{2}}(R_{2}, R_{m}),$$

where $m = \langle \chi, \alpha \rangle$. The map Φ_{α} is surjective if the α -string of χ is regular ([5], [14]). We recall the construction of Φ_{α} . Let $T \subset G$ be a maximal torus with the Lie algebra $\mathfrak{t} \subset \mathfrak{g}$. Let L be the subgroup of G generated by T and the root subgroups U_{α} and $U_{-\alpha}$. We denote by L' the commutator subgroup of L and by L' the center of L. Then L = L'Z, and L' is isomorphic to L' or L' as an L'-module,

where $n=\mathrm{rank}\ \mathfrak{t}$. For $E\in\mathrm{Vec}_G(\mathfrak{g},F)$, the restricted bundle $E|_{\mathfrak{l}}$ is an L-vector bundle with fiber F' which is F viewed as an L-module. Take a $\xi_0\in\mathfrak{t}$ so that the centralizer of ξ_0 is exactly L, and fix it. Then $\mathfrak{a}:=\xi_0+\mathrm{Lie}L'\subseteq\mathfrak{g}$ is L-stable and isomorphic to $\mathfrak{sl}_2\cong R_2$ as an L'-variety. Since Z acts trivially on \mathfrak{l} , hence on $\mathfrak{a}, E|_{\mathfrak{a}}$ decomposes to a Whitney sum of eigenbundles of Z. Let $(E|_{\mathfrak{a}})_\chi$ be the eigenbundle corresponding to the restricted weight of χ onto Z. Then the L'-vector bundle $(E|_{\mathfrak{a}})_\chi$ is considered as an element of $\mathrm{Vec}_{SL_2}(R_2,R_m)$. The map Φ_α is defined by $\Phi_\alpha(E)=(E|_{\mathfrak{a}})_\chi$. By the construction of Φ_α , Φ_α decomposes to the maps

$$\phi_{\alpha}: \operatorname{Vec}_{G}(\mathfrak{g}, F) \to \operatorname{Vec}_{L}(\mathfrak{l}, F') \to \operatorname{Vec}_{SL_{2}}(R_{2} \oplus \mathbb{C}^{n-1}, R_{m})$$

and

$$\phi_{\xi_0}: \operatorname{Vec}_{SL_2}(R_2 \oplus \mathbb{C}^{n-1}, R_m) \to \operatorname{Vec}_{SL_2}(R_2, R_m).$$

From the choice of ξ_0 , ϕ_{ξ_0} is surjective. In fact, $\phi_{\xi_0} \circ pr^* = id$, where

$$pr^*: \operatorname{Vec}_{SL_2}(R_2, R_m) \to \operatorname{Vec}_{SL_2}(R_2 \oplus \mathbb{C}^{n-1}, R_m)$$

is the induced map from the projection $R_2 \oplus \mathbb{C}^{n-1} \to R_2$. When Φ_{α} is surjective, ϕ_{α} is also surjective since ϕ_{ξ_0} is surjective. By [9],

$$\operatorname{Vec}_{SL_2}(R_2 \oplus \mathbb{C}^{n-1}, R_m) \cong \operatorname{Vec}_{SL_2}(R_2, R_m) \otimes_{\mathbb{C}} \mathbb{C}[\mathbb{C}^{n-1}].$$

Hence we obtain the following.

Theorem 2.2. Under the nontation above, if the α -string of χ is regular, then

$$\phi_{\alpha} : \operatorname{Vec}_{G}(\mathfrak{g}, F) \to \operatorname{Vec}_{SL_{2}}(R_{2} \oplus \mathbb{C}^{n-1}, R_{m})$$

$$\cong \mathbb{C}^{[(m-1)^{2}/4]} \otimes_{\mathbb{C}} \mathbb{C}[y_{1}, \cdots, y_{n-1}]$$

is surjective. Furthermore, if there is a subgroup H such that $(\mathfrak{g} \oplus F)^H = \mathfrak{g}$, then ϕ_{α} induces a surjection

$$VAR_G(\mathfrak{g}, F) \to (\mathbb{C}^{[(m-1)^2/4]} \otimes_{\mathbb{C}} \mathbb{C}[y_1, \cdots, y_{n-1}])/\mathbb{C}^*,$$

where \mathbb{C}^* acts on $\mathbb{C}^{[(m-1)^2/4]}$ with weight i of multiplicity $m_i = [(m-i)/2]$ and on y_i with weight 1.

Proof. The first assertion follows from the above observation. For the second assertion, note that $\operatorname{Aut}(\mathfrak{g})^G = \mathbb{C}^*$ ([7]). From Proposition 2.1 (1), there is an isomorphism $\operatorname{VAR}_G(\mathfrak{g}, F) \cong \operatorname{Vec}_G(\mathfrak{g}, F)/\mathbb{C}^*$. Hence ϕ_α induces a surjection

$$VAR_G(\mathfrak{g}, F) \to Vec_{SL_2}(R_2 \oplus \mathbb{C}^{n-1}, R_m)/\mathbb{C}^*.$$

The assertion follows from the statement in Example 2.2.

Remark. When the α -string of χ is singular, the image of Φ_{α} contains a subspace of dimension [m/2]([m/2]-1)/2 ([14]).

By Theorem 2.2 and its remark, $\operatorname{Vec}_G(\mathfrak{g}, F)$ is of infinite dimension if $m \geq 4$ and $n \geq 2$. Furthermore, if $(\mathfrak{g} \oplus F)^H = \mathfrak{g}$ for a subgroup H, then $\operatorname{VAR}_G(\mathfrak{g}, F)$ is of infinite dimension.

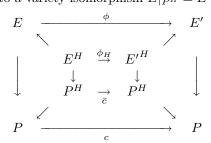
Now, we give a new condition for the G-action on $E \in \text{Vec}_G(P, Q)$ to be non-linearizable, which is used as a basic fact in the next section.

Proposition 2.3. Let $E, E' \in Vec_G(P, Q)$. Suppose that there exist reductive subgroups H and K such that $H \subset K$ and satisfying the following conditions;

- (1) $Q^K = Q^H$,
- (2) $\dim P^H = 1$ and $\dim P^K = 0$.

If $E \cong E'$ as G-varieties, then the restricted bundles $E|_X$ and $(c^*E')|_X$ are isomorphic as G-vector bundles, where $X = \overline{G \cdot P^H}$ and c is a scalar multiplication on P. In particular, if $E|_X$ is a non-trivial G-vector bundle, then the G-action on E is non-linearizable.

Proof. Let $\phi: E \cong E'$ be an isomorphism of G-varieties. Then ϕ restricts to an isomorphism $\phi_H: E^H \cong {E'}^H$. Since E^H and ${E'}^H$ are trivial (H-)vector bundles over P^H with fiber Q^H (cf. [6]), it follows that $E^H \cong {E'}^H \cong P^H \times Q^H$. Similarly, $E^K \cong {E'}^K \cong Q^K = Q^H$ since $\dim P^K = 0$. Since E^K (resp. ${E'}^K$) is a subbundle of E^H (resp. ${E'}^H$), we get $E^H = E^K \times P^H$ and ${E'}^H = {E'}^K \times P^H$. Let x be a coordinate variable of $P^H \times Q^H$ such that $P^H = \operatorname{Spec} \mathbb{C}[x]$. Then the ideal corresponding to E^K is (x), and the ideal for ${E'}^K$ is the same. Since ϕ , hence ϕ_H , maps E^K to ${E'}^K$ isomorphically, the ideal (x) must be fixed by the algebra isomorphism corresponding to ϕ_H . This implies that ϕ_H , hence ϕ , induces an isomorphism \bar{c} on P^H such that $p'_H \circ \phi_H = \bar{c} \circ p_H$, where $p_H : E^H \to P^H$ and $p'_H : {E'}^H \to P^H$ are projections. Note that \bar{c} is a scalar multiplication on P^H . Hence \bar{c} extends to a scalar multiplication c on P. Since the following diagram commutes, ϕ restricts to a variety isomorphism $E|_{P^H} \cong E'|_{P^H}$:



where the diagonal arrows are inclusions. Furthermore, since ϕ is a G-isomorphism, ϕ in fact restricts to a G-isomorphism $\phi_X: E|_X \to E'|_X$ such that $p'_X \circ \phi_X = (c|_X) \circ p_X$, where $p_X: E|_X \to X$ and $p'_X: E'|_X \to X$ are projections. Thus $E|_X \cong (c^*E')|_X$ as G-vector bundles, and the assertion follows. \square

Proposition 2.3 enables us to classify elements of $VAR_G(P,Q)$.

Corollary 2.4. Under the assumption and notation in Proposition 2.3, there exists a map

$$\Phi: VAR_G(P, Q) \to Vec_G(X, Q)/\mathbb{C}^*$$

where the target space is the orbit space of $\operatorname{Vec}_G(X,Q)$ under the action of \mathbb{C}^* , which is a subgroup of $\operatorname{Aut}(X)^G$ consisting of scalar multiplications.

When H is an isotropy group of a point $x \in P$ whose orbit is closed, then $X = \overline{G \cdot P^H}$ is a G-equivariant affine cone in P with $\dim X//G = 1$. In this case, $\operatorname{Vec}_G(X,Q)$ is isomorphic to a finite-dimensional module of $\mathbb{C}^* \subset \operatorname{Aut}(X)^G$ ([18]). Hence $\operatorname{Vec}_G(X,Q)/\mathbb{C}^*$ is isomorphic to a weighted projective space with a "vertex".

Example 2.4. Let G = O(2) and consider $\operatorname{Vec}_{O(2)}(V_1, V_m)$. Then applying Proposition 2.3 for $H = \mathbb{Z}/2\mathbb{Z}$ (the reflection subgroup) and $K = \mathbb{Z}/m\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$, we obtain $X = V_1$, and hence, a map $\operatorname{VAR}_{O(2)}(V_1, V_m) \to \operatorname{Vec}_{O(2)}(V_1, V_m)/\mathbb{C}^*$, which is an isomorphism. Since $\operatorname{Vec}_{O(2)}(V_1, V_m) \cong \bigoplus_{i=1}^{m-1} W(2i)$ ([7]), we have

(cf. [16], [17])

$$VAR_{O(2)}(V_1, V_m) \cong (\bigoplus_{i=1}^{m-1} W(2i))/\mathbb{C}^*$$
$$= \mathbb{P}_*(2i; 1 \le i \le m-1).$$

We apply Proposition 2.3 and its corollary for dihedral groups and classify non-linearizable actions of dihedral groups in the next section.

3. Non-linearizable actions of dihedral groups

In this section, we investigate non-linearizable actions of dihedral groups. Let G be a dihedral group $D_n = \mathbb{Z}/n\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$ for n>2. By considering D_n as a finite subgroup of $O(2)=\mathbb{C}^*\rtimes \mathbb{Z}/2\mathbb{Z}$, an O(2)-module V_m is naturally considered as a D_n -module. Since $V_m\cong V_{|m-n|}$ as a D_n -module, we may assume $m\leq n/2$; otherwise m=n. Let k be a positive integer such that (k,n)=1 and $k\leq n/2$. Let $\{x,y\}$ be a coordinate system of V_k as in Example 2.1. Then $V_k//D_n=\operatorname{Spec}\mathbb{C}[t,u]$, where t=xy and $u=x^n+y^n$. Let $X_k=D_n\cdot V_k^{\mathbb{Z}/2\mathbb{Z}}$, where $\mathbb{Z}/2\mathbb{Z}$ is the reflection subgroup. Then X_k is the D_n -subvariety of V_k defined by $x^n-y^n=0$ for n odd, and $x^{n/2}-y^{n/2}=0$ for n even. The algebraic quotient of X_k is

$$X_k/\!/D_n = \left\{ \begin{array}{ll} \operatorname{Spec} \mathbb{C}[t,u]/(u^2 - 4t^n) & \text{for } n \text{ odd,} \\ \operatorname{Spec} \mathbb{C}[t] & \text{for } n \text{ even.} \end{array} \right.$$

The variety X_k is the D_n -equivariant affine cone in V_k with one-dimensional quotient. Hence $\operatorname{Vec}_{D_n}(X_k, V_m) \cong \mathbb{C}^q$ for some q ([18], [8]).

We shall classify elements of $VAR_{D_n}(V_k, V_m)$ under a certain condition.

Proposition 3.1. Let $E, E' \in \text{Vec}_{D_n}(V_k, V_m)$ and let X_k be as above. Suppose that (m, n) > 1. Then, if $E \cong E'$ as D_n -varieties, then the restricted bundles $E|_{X_k}$ and $(c^*E')|_{X_k}$ are isomorphic as D_n -vector bundles, where c is a scalar multiplication on V_k .

Proof. By taking $H = \mathbb{Z}/2\mathbb{Z}$ (the reflection subgroup) and $K = \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, where p = (m, n) in Proposition 2.3, the assertion follows.

Under the assumption in Proposition 3.1, there exists a map

$$\Phi_{k,m}: \mathrm{VAR}_{D_n}(V_k, V_m) \to \mathrm{Vec}_{D_n}(X_k, V_m)/\mathbb{C}^*.$$

Let $i_k^* : \operatorname{Vec}_{D_n}(V_k, V_m) \to \operatorname{Vec}_{D_n}(X_k, V_m)$ be the restriction induced by the inclusion $i_k : X_k \hookrightarrow V_k$. There exists a sequence

$$\operatorname{Vec}_{O(2)}(V_k, V_m) \stackrel{d_n}{\to} \operatorname{Vec}_{D_n}(V_k, V_m) \stackrel{i_k^*}{\to} \operatorname{Vec}_{D_n}(X_k, V_m),$$

where d_n is the group restriction.

Theorem 3.2 (cf. [16]). Let n be odd, and let k = 2 and m = n in the notation above.

(1) The composite map $i_2^* \circ d_n : \operatorname{Vec}_{O(2)}(V_2, V_n) \to \operatorname{Vec}_{D_n}(X_2, V_n)$ is injective

$$\operatorname{Im}(i_2^* \circ d_n) \cong \mathbb{C}^{\frac{n-1}{2}}.$$

(2) The image of $\Phi_{2,n}$ is isomorphic to $\mathbb{P}_*(2i-1;1\leq i\leq (n-1)/2)$.

(3) The map $VAR_{O(2)}(V_2, V_n) \to VAR_{D_n}(V_2, V_n)$ is injective. Hence, if $E \in Vec_{O(2)}(V_2, V_n)$ is a non-trivial O(2)-vector bundle, then the D_n -action on E is non-linearizable.

Proof. (1) By applying the method of Mederer, we can show that $\operatorname{Vec}_{D_n}(X_2,V_n)$ is isomorphic to a vector group \mathbb{C}^{n-1} . For the detailed argument, we refer to Mederer [18]. We shall give a basis of $\operatorname{Vec}_{D_n}(X_2,V_n)\cong\mathbb{C}^{n-1}$. We use the notation in Example 2.1 and denote X_2 simply by X. Let $\nu:\mathbb{B}=\operatorname{Spec}\mathbb{C}[s]\to X/\!/D_n=\operatorname{Spec}\mathbb{C}[t,u]/(u^2-4t^n)$ be the normalization, where $t=s^2$ and $u=2s^n$, and let $F_X=\pi_X^{-1}(\nu(1))$. Then $F_X\cong D_n/H'$, where $H'=\mathbb{Z}/2\mathbb{Z}$ (the reflection subgroup) and V_n is multiplicity free with respect to H'. There is a D_n -equivariant morphism

$$\varphi^X : \mathbb{B} \times F_X \to X,$$

 $(b, f) \mapsto bf,$

which is an isomorphism from $(\mathbb{B} - \{0\}) \times F_X$ onto $X - \pi_X^{-1}(\nu(0))$. Note that the following diagram commutes:

$$\mathbb{B} \times F_X \xrightarrow{\varphi^X} X \\
\downarrow \qquad \qquad \downarrow \\
\mathbb{B} \times_{\Gamma} F \xrightarrow{\varphi} V_2$$

where the vertical maps are inclusions. Let $\mathfrak{m}_X = \operatorname{Mor}(F_X, \operatorname{End} V_n)^{D_n}$. Then $\mathfrak{m}_X(\mathbb{B}) := \operatorname{Mor}(\mathbb{B}, \mathfrak{m}_X)$ is a free $\mathbb{C}[s]$ -module with a grading induced from $\mathbb{C}[s]$. The $\mathbb{C}[X]^{D_n}$ -module $\operatorname{Mor}(X, \operatorname{End} V_n)^{D_n} \cong (\mathbb{C}[X] \otimes \operatorname{End} V_n)^{D_n}$ inherits a grading from $\mathbb{C}[X] \subset \mathbb{C}[V_2]$. Note that $\mathfrak{m}_X(\mathbb{B})$ is considered as a $\mathbb{C}[X]^{D_n}$ -module via ν . The morphism φ^X induces

$$\varphi^X_\#:\operatorname{Mor}(X,\operatorname{End}V_n)^{D_n}\to\operatorname{Mor}(\mathbb{B}\times F_X,\operatorname{End}V_n)^{D_n}=\mathfrak{m}_X(\mathbb{B}),$$

which is a $\mathbb{C}[X]^{D_n}$ -homomorphism of degree 0. Note that $\operatorname{Mor}(X,\operatorname{End} V_n)^{D_n}$ is a finite free module over $\mathbb{C}[X]^{D_n}$. In fact, $\operatorname{Mor}(V_2,\operatorname{End} V_n)^{D_n}$ is free over $\mathbb{C}[t,u]$ with a basis

$$\left\{ \bar{A}_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \bar{A}_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \\
\begin{pmatrix} x^n - y^n & 0 \\ 0 & -(x^n - y^n) \end{pmatrix}, \begin{pmatrix} 0 & x^n - y^n \\ -(x^n - y^n) & 0 \end{pmatrix} \right\}.$$

Hence $\operatorname{Mor}(X,\operatorname{End} V_n)^{D_n}$ is a free module over $\mathbb{C}[t,u]/(u^2-4t^n)$ with a basis $\{\bar{A}_0,\bar{A}_1\}$. Let $\operatorname{Mor}(X,\operatorname{End} V_n)_1^{D_n}$ (respectively $\mathfrak{m}_X(\mathbb{B})_1$) be the submodule of $\operatorname{Mor}(X,\operatorname{End} V_n)^{D_n}$ (respectively $\mathfrak{m}_X(\mathbb{B})$) of elements with positive degrees. Then $\operatorname{Vec}_{D_n}(X,V_n)$ is isomorphic to the quotient module of $\mathfrak{m}_X(\mathbb{B})_1$ by

$$\varphi_{\#}^X \operatorname{Mor}(X, \operatorname{End} V_n)_1^{D_n}$$
.

The module $\mathfrak{m}_X(\mathbb{B})_1$ is free over $\mathbb{C}[s]$ with a basis

$$\left\{ \bar{C}_0 = s \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \bar{C}_1 = s \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}.$$

Since $\varphi_{\#}^X(t\bar{A}_i) = s\bar{C}_i$ and $\varphi_{\#}^X(u\bar{A}_i) = 2s^{n-1}\bar{C}_i$ for i = 0, 1,

$$\operatorname{Vec}_{D_n}(X, V_n) \cong \mathfrak{m}_X(\mathbb{B})_1/\varphi_{\#}^X \operatorname{Mor}(X, \operatorname{End} V_n)_1^{D_n} \cong \mathbb{C}^{n-1}$$

with a basis $\{s^{2(j-1)}\bar{C}_i; i=0,1,1\leq j\leq (n-1)/2\}$. The inclusions $\mathbb{B}\times F_X\hookrightarrow \mathbb{B}\times_{\Gamma} F$ and $X\hookrightarrow V_2$ give rise to a homomorphism

$$\iota: \mathfrak{m}(\mathbb{B})_{1}^{\Gamma}/\varphi_{\#}\operatorname{Mor}(V_{2},\operatorname{End}V_{n})_{1}^{O(2)} \to \mathfrak{m}_{X}(\mathbb{B})_{1}/\varphi_{\#}^{X}\operatorname{Mor}(X,\operatorname{End}V_{n})_{1}^{D_{n}},$$

which corresponds to $i_2^* \circ d_n$. Since $\iota(t^{i-1}C_1) = s^{2(i-1)}\bar{C}_1$, it follows that $i_2^* \circ d_n$ is injective and $\operatorname{Im}(i_2^* \circ d_n) \cong \mathbb{C}^{(n-1)/2}$ with a basis $\{s^{2(j-1)}\bar{C}_1; 1 \leq j \leq (n-1)/2\}$.

(2) From Proposition 3.1, there is a map

$$\Phi_{2,n}: \operatorname{VAR}_{D_n}(V_2, V_n) \to \operatorname{Vec}_{D_n}(X_2, V_n)/\mathbb{C}^*.$$

From (1), $\operatorname{Im} i_2^*$ contains a subspace

$$\bigoplus_{i=1}^{(n-1)/2} W(2i-1).$$

In fact, $\operatorname{Im} i_2^* \cong \bigoplus_{i=1}^{(n-1)/2} W(2i-1)$ (cf. [18, III 3,4]). Hence the assertion follows. (3) follows from (1) and Proposition 3.1.

Remark. From Theorem 3.2 (1), $d_n : \operatorname{Vec}_{O(2)}(V_2, V_n) \to \operatorname{Vec}_{D_n}(V_2, V_n)$ is an injection.

Let ε be the 1-dimensional sign representation and let ε^m be the direct sum of m copies of ε . One can show by direct calculation that the composite map $\widetilde{i_2}^* \circ \widetilde{d_n}$ given by

$$\operatorname{Vec}_{O(2)}(V_2, V_n \oplus \mathbb{C}^{m_1} \oplus \varepsilon^{m_2}) \stackrel{\widetilde{d_n}}{\to} \operatorname{Vec}_{D_n}(V_2, V_n \oplus \mathbb{C}^{m_1} \oplus \varepsilon^{m_2})$$
$$\stackrel{\tilde{i}_2^*}{\to} \operatorname{Vec}_{D_n}(X_2, V_n \oplus \mathbb{C}^{m_1} \oplus \varepsilon^{m_2})$$

is an injection. In fact, since the dimensions of $V_2//O(2)$ and $X_2//D_n$ are both equal to 1, the map $\widetilde{i_2^*} \circ \widetilde{d_n}$ is a homomorphism of \mathbb{C} -vector groups. Since the generators of the \mathbb{C} -vector group $\operatorname{Vec}_{O(2)}(V_2, V_n \oplus \mathbb{C}^{m_1} \oplus \varepsilon^{m_2})$, which is isomorphic to $\operatorname{Vec}_{O(2)}(V_2, V_n)$, do not vanish by the homomorphism $\widetilde{i_2^*} \circ \widetilde{d_n}$ (cf. [7, VII 4], [18, III 5]), so $\widetilde{i_2^*} \circ \widetilde{d_n}$ is injective. The map

$$\theta_2: \operatorname{Vec}_{D_n}(V_2, V_n) \to \operatorname{Vec}_{D_n}(V_2, V_n \oplus \mathbb{C}^{m_1} \oplus \varepsilon^{m_2})$$

sending [E] to $[E \oplus \Theta_{\mathbb{C}^{m_1} \oplus \varepsilon^{m_2}}]$ induces a map

$$VAR_{D_n}(V_2, V_n) \to VAR_{D_n}(V_2, V_n \oplus \mathbb{C}^{m_1} \oplus \varepsilon^{m_2})$$

which is the product map with $\mathbb{C}^{m_1} \times \varepsilon^{m_2}$.

Theorem 3.3. Let n be odd and let m_1 and m_2 be non-negative integers. Then the map

$$VAR_{O(2)}(V_2, V_n) \rightarrow VAR_{D_n}(V_2, V_n)$$

$$\rightarrow VAR_{D_n}(V_2, V_n \oplus \mathbb{C}^{m_1} \oplus \varepsilon^{m_2})$$

induced by $\theta_2 \circ d_n$ is an injection.

Proof. Let $E, E' \in \operatorname{Vec}_{O(2)}(V_2, V_n)$ be such that $E \times \mathbb{C}^{m_1} \times \varepsilon^{m_2} \cong E' \times \mathbb{C}^{m_1} \times \varepsilon^{m_2}$ as D_n -varieties. Then applying Proposition 2.3 to $E \oplus \Theta_{\mathbb{C}^{m_1} \oplus \varepsilon^{m_2}}$ and $E' \oplus \Theta_{\mathbb{C}^{m_1} \oplus \varepsilon^{m_2}}$ with $H = \mathbb{Z}/2\mathbb{Z}$ (the reflection subgroup) and $K = D_n$, we have

$$(E \oplus \Theta_{\mathbb{C}^{m_1} \oplus \varepsilon^{m_2}})|_{X_2} \cong (c^* E' \oplus \Theta_{\mathbb{C}^{m_1} \oplus \varepsilon^{m_2}})|_{X_2}$$

as D_n -vector bundles, where c is a scalar multiplication of V_2 . Since $\widetilde{i_2}^* \circ \widetilde{d_n}$ is injective, $E \oplus \Theta_{\mathbb{C}^{m_1} \oplus \varepsilon^{m_2}} \cong c^* E' \oplus \Theta_{\mathbb{C}^{m_1} \oplus \varepsilon^{m_2}}$ as O(2)-vector bundles. Since the Whitney sum with $\Theta_{\mathbb{C}^{m_1} \oplus \varepsilon^{m_2}}$ induces an isomorphism

$$\operatorname{Vec}_{O(2)}(V_2, V_n) \cong \operatorname{Vec}_{O(2)}(V_2, V_n \oplus \mathbb{C}^{m_1} \oplus \varepsilon^{m_2}),$$

it follows that $E \cong c^*E'$ as O(2)-vector bundles, and the assertion follows.

Remark. One of the first examples of non-linearizable actions by Schwarz is the O(2)-action on the total space of the non-trivial $E \in \mathrm{Vec}_{O(2)}(V_2, V_3)$. By Theorem 3.2 (3), the action of D_3 on E is non-linearizable. Furthermore, by Theorem 3.3, the D_3 -action on $E \times \mathbb{C}^{m_1} \times \varepsilon^{m_2}$ remains non-linearizable (cf. [3]). Since the map $\mathrm{Vec}_{O(2)}(V_2, V_n) \to \mathrm{Vec}_{O(2)}(V_2, V_n \oplus V_1)$ sending [E] to $[E \oplus \Theta_{V_1}]$ is trivial [20], the D_3 -action on $E \times V_1$ is linearizable.

By a method similar to the proof of Theorem 3.2, we can show the following.

Theorem 3.4 (cf. [16]). Let m and n be even and $m \le n/4$.

- (1) The composite map $i_1^* \circ d_n : \operatorname{Vec}_{O(2)}(V_1, V_m) \to \operatorname{Vec}_{D_n}(X_1, V_m)$ is an isomorphism. Hence, $d_n : \operatorname{Vec}_{O(2)}(V_1, V_m) \to \operatorname{Vec}_{D_n}(V_1, V_m)$ is injective and $i_1^* : \operatorname{Vec}_{D_n}(V_1, V_m) \to \operatorname{Vec}_{D_n}(X_1, V_m)$ is surjective.
- (2) The map

$$\Phi_{1,m}: VAR_{D_n}(V_1, V_m) \to \mathbb{P}_*(2i; 1 \le i \le m-1)$$

is surjective.

(3) The map $VAR_{O(2)}(V_1, V_m) \to VAR_{D_n}(V_1, V_m)$ is injective. Hence, if $E \in Vec_{O(2)}(V_1, V_m)$ is a non-trivial O(2)-vector bundle, then the D_n -action on E is non-linearizable.

Proof. (1) By [20], $\operatorname{Vec}_{O(2)}(V_1, V_m) \cong \mathbb{C}^{m-1}$ and by [8], $\operatorname{Vec}_{D_n}(X_1, V_m) \cong \mathbb{C}^{m-1}$. We can show that $i_1^* \circ d_n$ is an isomorphism directly as in the proof of Theorem 3.2 (1).

(2) By [8], $\operatorname{Vec}_{D_n}(X_1, V_m) \cong \bigoplus_{i=1}^{m-1} W(2i)$. From this together with (1), the assertion follows.

(3) follows from (1) and Proposition 3.1.

Remarks. (1) When m and n are even and n/4 < m < n/2, one can show that $\operatorname{Vec}_{D_n}(X_1, V_m) \cong \bigoplus_{i=1}^{n/2-m-1} W(2i)$ ([8]), and $i_1^* \circ d_n$ is a surjection. Hence $\Phi_{1,m}$ is a surjection from $\operatorname{VAR}_{D_n}(V_1, V_m)$ onto $\mathbb{P}_*(2i; 1 \leq i \leq n/2-m-1)$.

(2) When n is even, the Whitney sum maps

$$\operatorname{Vec}_{O(2)}(V_1, V_m) \to \operatorname{Vec}_{O(2)}(V_1, V_m \oplus \mathbb{C}^{m_1} \oplus \varepsilon^{m_2})$$

and

$$\operatorname{Vec}_{D_n}(X_1, V_m) \to \operatorname{Vec}_{D_n}(X_1, V_m \oplus \mathbb{C}^{m_1} \oplus \varepsilon^{m_2})$$

are trivial (cf. [20], [8]).

(3) Suppose n is odd. Then the map

$$i_1^* \circ d_n : \operatorname{Vec}_{O(2)}(V_1, V_m) \to \operatorname{Vec}_{D_n}(X_1, V_m)$$

is injective and

$$\operatorname{Im}(i_1^* \circ d_n) \cong \bigoplus_{i=1}^{m-1} W(2i)$$

(cf. [18]). Hence, when (m,n) > 1, $VAR_{O(2)}(V_1,V_m) \to VAR_{D_n}(V_1,V_m)$ is injective.

Consider the commutative diagram for n odd:

$$\begin{array}{ccc} \operatorname{Vec}_{D_n}(V_1,V_m) & \xrightarrow{i_1^*} & \operatorname{Vec}_{D_n}(X_1,V_m) \\ & \downarrow & & \downarrow \\ \operatorname{Vec}_{D_n}(V_1,V_m \oplus \mathbb{C}^{m_1} \oplus \varepsilon^{m_2}) & \xrightarrow{\widetilde{i_1^*}} & \operatorname{Vec}_{D_n}(X_1,V_m \oplus \mathbb{C}^{m_1} \oplus \varepsilon^{m_2}) \end{array}$$

where the vertical maps are the Whitney sum maps with $\Theta_{\mathbb{C}^{m_1}\oplus \varepsilon^{m_2}}$. By [18].

Im
$$i_1^* \cong (\bigoplus_{i=1}^{2m-1} W(i)) \oplus (\bigoplus_{i=1}^{(n-1)/2-2m} W(2m-1+2i))$$

for m < n/4,

Im
$$i_1^* \cong (\bigoplus_{i=1}^{n-2m-1} W(i)) \oplus (\bigoplus_{i=1}^{2m-(n+1)/2} W(n-2m-1+2i))$$

for n/4 < m < n/2, and

$$\operatorname{Im}(\widetilde{i_1^*} \circ \theta_1) \cong \bigoplus_{i=1}^{(n-2m-1)/2} W(2i-1).$$

Hence we obtain the following by applying Proposition 2.3.

Theorem 3.5. Suppose that n is odd and (m,n) > 1. Then the image of $\Phi_{1,m}$ is isomorphic to the weighted projective space $\mathbb{P}_*((n-5)/2)$ with a vertex. The space $\mathbb{P}_*((n-5)/2)$ is of dimension (n-5)/2 and contains the weighted projective space $\mathbb{P}(2i-1;1 \leq i \leq (n-2m-1)/2)$ whose inverse image under $\Phi_{1,m}$ consists of elements E such that the D_n -action on $E \times \mathbb{C}^{m_1} \times \varepsilon^{m_2}$ is non-linearizable.

Remark. Mederer [18] showed that $\operatorname{Vec}_{D_3}(V_1,V_1)\cong\Omega_{\mathbb C}$, the module of Kähler differentials of $\mathbb C$ over $\mathbb Q$, and furthermore, there is a surjection from $\operatorname{Ker} i_1^*$ in the above diagram for $n\geq 5$ to $\operatorname{Vec}_{D_3}(V_1,V_1)$. Hence $\operatorname{Vec}_{D_n}(V_1,V_m)$ (n odd; $n\geq 5$) contains a space of uncountably-infinite dimension. Proposition 2.3 is, to our regret, not useful for classifying the D_n -actions derived from $\operatorname{Ker} i_k^*$ or $\operatorname{Vec}_{D_3}(V_1,V_1)$.

Suppose n is odd, and classify the D_n -actions derived from $\operatorname{Vec}_{D_n}(V_2 \oplus \varepsilon^m, V_n)$. By applying Proposition 2.3 for $H = \mathbb{Z}/2\mathbb{Z}$ and $K = D_n$, we obtain a surjection from $\operatorname{VAR}_{D_n}(V_2 \oplus \varepsilon^m, V_n)$ to the orbit space of $\operatorname{Im} i_{2,m}^*$ under the action of \mathbb{C}^* , where $i_{2,m}^* : \operatorname{Vec}_{D_n}(V_2 \oplus \varepsilon^m, V_n) \to \operatorname{Vec}_{D_n}(X_2, V_n)$ is the restriction induced by $i_{2,m} : X_2 \hookrightarrow V_2 \oplus \varepsilon^m$. Let $i_m : V_2 \to V_2 \oplus \varepsilon^m$ be the inclusion. Then $i_{2,m}^* = i_2^* \circ i_m^*$. Since i_m^* is a surjection, $\operatorname{Im} i_{2,m}^* = \operatorname{Im} i_2^*$. Since $\operatorname{Im} i_2^* \cong \bigoplus_{i=1}^{(n-1)/2} W(2i-1)$ (cf. the proof of Theorem 3.2 (2)), we have a surjection

$$VAR_{D_n}(V_2 \oplus \varepsilon^m, V_n) \to \mathbb{P}_*(2i-1; 1 \le i \le (n-1)/2).$$

Theorem 3.6. Let m be a non-negative integer and let n be odd. Then there is a surjection from $VAR_{D_n}(V_2 \oplus \varepsilon^m, V_n)$ onto $\mathbb{P}_*(2i-1; 1 \le i \le (n-1)/2)$.

Remark. Let l be a non-negative integer and let (m,n) > 1. Then one obtains a similar result for $VAR_{D_n}(V_1 \oplus \varepsilon^l, V_m)$.

References

- H. Bass, W. Haboush, Some equivariant K-theory of affine algebraic group actions, Comm. Algebra 15 (1987), 181–217. MR 88g:14013
- 2. A. Bialynicki-Birula, Remarks on the action of an algebraic torus on k^n , I and II, Bull. Acad. Pol. Sci. 14 (1966), 177–181, and 15 (1967), 123–125.
- 3. G. Freudenburg, L. Moser-Jauslin, A nonlinearizable action of S_3 on \mathbb{C}^4 , Ann. Inst. Fourier, Grenoble **52** (2002), 133–143. MR **2002j**:14068
- S. Kaliman, M. Koras, L. Makar-Limanov, P. Russell, C*-actions on C³ are linearizable, Electronic Research Announcements of the AMS 3 (1997), 63-71. MR 98i:14046
- F. Knop, Nichtlinearisierbare Operationen halbeinfacher Gruppen auf affinen Räumen, Invent. Math. 105 (1991), 217–220. MR 92c:14046
- H. Kraft, G-vector bundles and the Linearization Problem, in Group Actions and Invariant Theory, CMS Conference Proceedings, vol. 10, Amer. Math. Soc., Providence, RI, 1989, pp. 111–123. MR 90j:14062
- H. Kraft, G.W. Schwarz, Reductive group actions with one-dimensional quotient, Publ. Math. IHES 76 (1992), 1–97. MR 94e:14065
- K. Masuda, Moduli of equivariant algebraic vector bundles over affine cones with one dimensional quotient, Osaka J. Math. 32 (1995), 1065–1085. MR 97k:14049
- K. Masuda, Moduli of equivariant algebraic vector bundles over a product of affine varieties, Duke Math. J. 88 (1997), 181–199. MR 99b:14011
- 10. K. Masuda, Moduli of algebraic SL_3 -vector bundles over adjoint representaion, Osaka J. Math. **38** (2001), 501–506. MR **2002g**:14069
- M. Masuda, L. Moser-Jauslin, T. Petrie, Equivariant algebraic vector bundles over representations of reductive groups: Applications, Proc. Natl. Acad. Sci. 88 (1991), 9065–9066. MR 92i:14059b
- M. Masuda, L. Moser-Jauslin, T. Petrie, The equivariant Serre problem for abelian groups, Topology 35 (1996), 329–334. MR 97a:20074
- M. Masuda, L. Moser-Jauslin, T. Petrie, Equivariant algebraic vector bundles over cones with smooth one dimensional quotient, J. Math. Soc. Japan 50 (1998), 379–414. MR 99k:14079
- M. Masuda, T. Nagase, Equivariant algebraic vector bundles over adjoint representations, Osaka J. Math. 32 (1995), 701–708. MR 96k:14014
- M. Masuda, T. Petrie, Equivariant algebraic vector bundles over representations of reductive groups: Theory, Proc. Nat. Acad. Sci. 88 (1991), 9061–9064. MR 92j:14059a
- M. Masuda, T. Petrie, Stably trivial equivariant algebraic vector bundles, J. Amer. Math. Soc. 8 (1995), 687–714. MR 95j:14067
- 17. M. Masuda, T. Petrie, Algebraic families of O(2)-actions on affine space C⁴, Proc. of Symp. in Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 347–354. MR 95f:14092
- 18. K. Mederer, Moduli of G-equivariant vector bundles, Ph.D. thesis, Brandeis University (1995).
- D. Quillen, Projective modules over polynomial rings, Invent. Math., 36 (1976), 167–171. MR
 55:337
- G.W. Schwarz, Exotic algebraic group actions, C. R. Acad. Sci. Paris 309 (1989), 89–94. MR
 91b:14066
- A. Suslin, Projective modules over a polynomial ring, Soviet Math. Doklady 17 (1976), 1160–

Mathematical Science II, Himeji Institute of Technology, 2167 Shosha, Himeji 671-2201, Japan

E-mail address: kayo@sci.himeji-tech.ac.jp