TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 357, Number 12, Pages 4867–4883 S 0002-9947(05)04046-8 Article electronically published on July 19, 2005

AFFINE PSEUDO-PLANES AND CANCELLATION PROBLEM

KAYO MASUDA AND MASAYOSHI MIYANISHI

ABSTRACT. We define affine pseudo-planes as one class of \mathbb{Q} -homology planes. It is shown that there exists an infinite-dimensional family of non-isomorphic affine pseudo-planes which become isomorphic to each other by taking products with the affine line \mathbb{A}^1 . Moreover, we show that there exists an infinite-dimensional family of the universal coverings of affine pseudo-planes with a cyclic group acting as the Galois group, which have the equivariant non-cancellation property. Our family contains the surfaces without the cancellation property, due to Danielewski-Fieseler and tom Dieck.

1. Introduction

Let G be an algebraic group defined over the complex number field \mathbb{C} . We shall consider the following:

Equivariant Cancellation Problem. Let X and Y be smooth affine varieties with algebraic G-actions. If $X \times W$ is G-isomorphic to $Y \times W$ for a G-module W, is X then G-isomorphic to Y?

If we forget the actions, the problem is simply called the *Cancellation Problem*. When $Y \cong \mathbb{A}^2$, the cancellation holds by the results of Miyanishi-Sugie [18] and Fujita [7]. However, the Cancellation Problem for $Y \cong \mathbb{A}^n$ remains open if $n \geq 3$.

In the Equivariant Cancellation Problem, the intriguing case is when Y is isomorphic to a G-module, i.e., an affine space with a linear G-action. In this case, it is known that the answer is negative. In fact, for a reductive algebraic group G, there exist affine spaces with non-linearizable G-actions which are realized as the total spaces of non-trivial algebraic G-vector bundles over G-modules (Schwarz [19], see also references in [10]). By Bass-Haboush [2], every G-vector bundle over a G-module is stably trivial, namely, it becomes isomorphic to a trivial G-vector bundle by adding a certain trivial G-vector bundle. Hence non-trivial G-vector bundles over G-modules, whose total spaces have non-linearizable G-actions, give rise to counterexamples to the Equivariant Cancellation Problem with G-modules Y (cf. Masuda-Miyanishi [12]). All counterexamples to the Equivariant Cancellation Problem that we have so far for reductive algebraic groups G and G-modules Y are derived from non-trivial G-vector bundles over G-modules.

Next, consider the case where Y is not isomorphic to a G-module nor an affine space without G-action. Then there are well-known counterexamples due to Daniel-

Received by the editors November 26, 2003.

 $^{2000\} Mathematics\ Subject\ Classification.$ Primary 14R10; Secondary 14R20, 14R25, 14L30. Key words and phrases. Equivariant Cancellation Problem, algebraic group action.

This work was supported by Grant-in-Aid for Scientific Research (C), JSPS.

ewski [4], Fieseler [6], tom Dieck [5], and Wilkens [22]. In tom Dieck [5], it is shown that the smooth affine surfaces $\widetilde{V}(d,r)$ in \mathbb{A}^3 defined by $x^rz+y^d=1$ for $r\geq 1$ and $d\geq 2$ have non-cancellation property; namely, $\widetilde{V}(d,r)\not\cong\widetilde{V}(d,s)$ for $r\neq s$, but $\widetilde{V}(d,r)\times\mathbb{A}^1\cong\widetilde{V}(d,s)\times\mathbb{A}^1$ for any r and s. The surface $\widetilde{V}(d,r)$ has an action of the multiplicative group $G_m=\mathbb{C}^*$ and tom Dieck showed that the surfaces $\widetilde{V}(d,r)$ have in fact equivariant non-cancellation property. There exists an action of the additive group $G_a=\mathbb{C}^+$ on $\widetilde{V}(d,r)$ as well, and hence there is an \mathbb{A}^1 -fibration $\widetilde{\rho}:\widetilde{V}(d,r)\to\mathbb{A}^1=\operatorname{Spec}\mathbb{C}[x]$, which has a unique reducible fiber $\widetilde{\rho}^{-1}(0)$. We call a smooth affine surface X an affine pseudo-plane if X has an \mathbb{A}^1 -fibration $\rho:X\to\mathbb{A}^1$ such that every fiber of ρ is irreducible and there is only one multiple fiber. Then the surfaces $\widetilde{V}(d,r)$ are the universal coverings of affine pseudo-planes V(d,r) with Galois group isomorphic to $\mathbb{Z}/d\mathbb{Z}$. The surfaces V(d,r) constructed by tom Dieck for $r\geq 2$ are characterized as affine pseudo-planes with non-trivial \mathbb{C}^* -actions. See section 2 for definitions and relevant results.

In the present article, we observe various properties of affine pseudo-planes and their universal coverings. We shall show that affine pseudo-planes can be constructed from the Hirzebruch surfaces, as tom Dieck's surfaces V(d,r) are constructed from the Hirzebruch surfaces. We also show that the universal coverings of affine pseudo-planes are isomorphic to the hypersurfaces in \mathbb{A}^3 , and give their defining equations explicitly. Using the results on the properties of affine pseudo-planes and their universal coverings, we show that if $d \ge 2$, there exists an infinite-dimensional family of non-isomorphic smooth affine surfaces with actions of $G_a \times \mathbb{Z}/d\mathbb{Z}$, whose members are mutually equivariantly non-cancellative. The family consists of the universal coverings of affine pseudo-planes and includes the examples due to Danielewski-Fieseler and tom Dieck. By taking their quotients by $\mathbb{Z}/d\mathbb{Z}$, we also obtain an infinite-dimensional family of non-isomorphic affine pseudo-planes without cancellation property. In the last section, we show that there exist families of non-isomorphic affine G-varieties without equivariant cancellation property. The families are of infinite dimension and are derived from G-equivariant \mathbb{A}^1 -fibrations and not G-vector bundles.

2. Affine pseudo-planes with unique \mathbb{A}^1 -fibrations

An algebro-geometric characterization of the affine plane \mathbb{A}^2 is stated as follows: the affine plane \mathbb{A}^2 is an affine surface such that its coordinate ring R is factorial, $R^* = \mathbb{C}^*$, and there exists an \mathbb{A}^1 -fibration with base curve isomorphic to \mathbb{A}^1 . There are many related results on smooth affine surfaces with \mathbb{A}^1 -fibrations (cf. Miyanishi [14]). Here we recall the following.

Lemma 2.1. Let X be a smooth affine surface with an \mathbb{A}^1 -fibration $\rho: X \to C \cong \mathbb{A}^1$. Suppose that every fiber of ρ is irreducible. Then $\operatorname{Pic}(X) \cong \prod_{P \in C} \mathbb{Z}/d_P\mathbb{Z}$, where d_P is the multiplicity of the fiber $\rho^{-1}(P)$. In particular, if there is only one multiple fiber dF with the multiplicity d and $F \cong \mathbb{A}^1$, then $\operatorname{Pic}(X) \cong \mathbb{Z}/d\mathbb{Z}$.

Affine surfaces satisfying the assumptions in Lemma 2.1 are \mathbb{Q} -homology planes, and there are many such surfaces. We define *affine pseudo-plane* as one class of such affine surfaces.

Definition 2.1. A smooth affine surface X is an affine pseudo-plane if X satisfies the following conditions.

- (1) X has an \mathbb{A}^1 -fibration $\rho: X \to C$, where $C \cong \mathbb{A}^1$.
- (2) The \mathbb{A}^1 -fibration ρ has a unique multiple fiber dF with multiplicity $d \geq 2$ and $F \cong \mathbb{A}^1$, and every other fiber is isomorphic to \mathbb{A}^1 .

We say that X has type (d, n, r) if X further satisfies the next condition:

(3) X has a smooth compactification (V, D) such that the boundary divisor D = V - X has simple normal crossings and the dual graph of D is as given in Figure 1 below, where $n \geq 1$ and $r \geq 1$. Furthermore, \overline{F} is the closure of F in V, and S' is the unique cross-section contained in D.

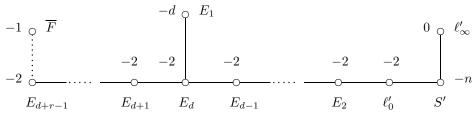


Figure 1

If X has a smooth compactification (V,D) with the dual graph as in Figure 1 and $(S'^2) = -n$ for n > 1, then we can make $(S'^2) = -1$. In fact, choose a point P on the fiber ℓ'_{∞} and blow up the point P to obtain a (-1) curve E. Then the proper transform L of ℓ'_{∞} is a (-1) curve. Contract L to obtain the same figure as before with ℓ'_{∞} replaced by the image of E and with $(S'^2) = -n + 1$ if $P \neq S' \cap \ell'_{\infty}$, and -n - 1 if $P = S' \cap \ell'_{\infty}$. This operation is called the elementary transformation with center P. After several elementary transformations, we obtain $(S'^2) = -1$. Meanwhile, we have to consider the case $(S'^2) < -1$ as well, e.g., in the proof of Theorem 2.3. We call an affine pseudo-plane of type (d, 1, r) simply an affine pseudo-plane of type (d, r).

Lemma 2.2. Let X be an affine pseudo-plane of type (d,r). Then X is isomorphic to the complement of $M_0 \cup C_d$ if r < d, and $M_1 \cup C_d$ if $r \ge d$ in the Hirzebruch surface Σ_n with n = |r - d|, where M_0 is the minimal section and where C_d and M_1 are specified as follows. In the case r < d, C_d is an irreducible member of the linear system $|M_0 + d\ell_0|$ which meets M_0 in the point $M_0 \cap \ell_0$ with multiplicity r, where ℓ_0 is a fiber of the \mathbb{P}^1 -fibration of Σ_n . In the case $r \ge d$, M_1 is a section of Σ_n with $(M_1^2) = n$, and C_d is an irreducible member of the linear system $|M_1 + d\ell_0|$ which meets M_1 in the point $M_1 \cap \ell_0$ with multiplicity r. In both cases, $\ell_0 \cap X = \overline{F} \cap X$.

Proof. Contract $S', \ell'_0, E_2, \ldots, E_d, E_{d+1}, \ldots, E_{d+r-1}$ in this order. Then the resulting surface is the Hirzebruch surface Σ_n with n = |r - d| and the image of ℓ'_{∞} provides C_d . The image of E_1 provides M_0 or M_1 according to whether r - d < 0 or $r - d \ge 0$, while the image of \overline{F} is the fiber ℓ_0 .

An affine pseudo-plane X of type (d, n, r) with $r \geq 2$ has the distinguished property as stated in the following theorem. An \mathbb{A}^1 -fibration $\rho: X \to C \cong \mathbb{A}^1$ is called unique; if there is another \mathbb{A}^1 -fibration $\sigma: X \to B \cong \mathbb{A}^1$, then $\sigma = \tau \circ \rho$ for an automorphism τ of \mathbb{A}^1 . The next theorem follows from a theorem of Bertin [3], but we prefer to give a direct proof.

Theorem 2.3. Let X be an affine pseudo-plane of type (d, n, r) with $r \geq 2$. Then ρ is a unique \mathbb{A}^1 -fibration on X.

Proof. Suppose that there exists another \mathbb{A}^1 -fibration $\sigma: X \to B$ which is different from the fixed \mathbb{A}^1 -fibration $\rho: X \to C$. Then $B \cong \mathbb{A}^1$ and every fiber of σ is isomorphic to \mathbb{A}^1 if taken with the reduced structure. Let M be a linear pencil on V spanned by the closures of general fibers of σ , where the notations V, D, etc. are the same as in Definition 2.1. Then a general member of M meets the curve ℓ'_{∞} , for otherwise the \mathbb{A}^1 -fibrations ρ and σ coincide with each other. Suppose that M has no base points. Then the curve ℓ'_{∞} is a cross-section of M and $S' + \ell'_0 + E_1 + \cdots + E_{d+r-1}$ supports a reducible fiber of M. Then r = d = 1. Since $d \geq 2$ by the hypothesis, this case does not take place. Hence M has a base point, say P, on ℓ'_{∞} . Let $Q := \ell'_{\infty} \cap S'$. We consider two cases separately.

Case $P \neq Q$. Then $\ell'_{\infty} + S' + \ell'_0 + E_1 + E_2 + \cdots + E_{d+r-1}$ will support a reducible member G_0 of the pencil M. Let $s = (\overline{F} \cdot G)$, where G is a general member of M. By comparing the intersection numbers of G with two fibers of ρ , ℓ'_{∞} and the one containing $d\overline{F}$, it follows that $(\ell'_{\infty} \cdot G) = ds$. Let μ be the multiplicity of Gat P, where P is a one-place point of G. We have $ds \geq \mu$. Consider first the case n=1. The contraction of $S', \ell'_0, E_2, \ldots, E_{d-1}$ makes E_d a (-1) curve meeting three components $\ell'_{\infty}, E_1, E_{d+1}$, and this is impossible. So, suppose $n \geq 2$. The elimination of the base points of M will be achieved by blowing up the point Pand its infinitely near points. After the elimination of the base points of M, the proper transform M gives rise to a \mathbb{P}^1 -fibration, and the proper transform of ℓ_{∞}' is a unique (-1) component. If $gs > \mu$, then the point P and its infinitely near point of the first order lying on ℓ_{∞}' are blown up. Hence the proper transform of ℓ_{∞}' is not a (-1) curve. This implies that $ds = \mu$. Let E be the exceptional curve arising from the blowing-up of P and let M' be the proper transform of M. Then E is contained in the member G'_0 of M' corresponding to G_0 of M. In fact, we otherwise have ds=1, which is impossible because $d\geq 2$. Now contract ℓ_{∞}' and take the image of E instead of ℓ_{∞}' . Then we have the same dual graph as Figure 1 with $(S'^2) = -(n-1)$. By repeating this argument, we reach a contradiction.

Case P=Q. As above, let G_0 be a reducible member of M containing $S'+\ell'_0+E_1+E_2+\cdots+E_{d+r-1}$. If ℓ'_∞ is not contained in G_0 , the elimination of the base points of M, which is achieved by blowing up the point P=Q and its infinitely near points, yields a \mathbb{P}^1 -fibration in which the fiber corresponding to G_0 is a reducible fiber not containing any (-1) curve. This is a contradiction. Hence ℓ'_∞ is contained in G_0 . So, G_0 is supported by $S'+\ell'_0+E_1+E_2+\cdots+E_{d+r-1}+\ell'_\infty$. Now apply the elementary transformation with center P. Then we obtain the same dual graph as Figure 1, where $(S'^2)=-(n+1)$ and ℓ'_∞ is replaced by the image of E. After repeating the elementary transformations several times, we are reduced to the case where $P \neq Q$. So, we reach a contradiction in the present case as well.

Since the existence of an \mathbb{A}^1 -fibration with affine base is equivalent to the existence of an action of the additive group G_a , it follows from Theorem 2.3 that there is an essentially unique G_a -action on an affine pseudo-plane of type (d, n, r) for $r \geq 2$. On the other hand, an affine pseudo-plane of type (d, n, 1) has two algebraically independent G_a -actions, namely, it has trivial Makar-Limanov invariant (cf. [11]). This is a consequence of a more general result in Gurjar-Miyanishi [9, Theorem 3.1] which is stated below. We only note that the boundary divisor D in the case of

type (d, n, 1) is a linear chain for the normal compactification in Definition 2.1 and that $\pi_{1,\infty}(X)$ is then a finite cyclic group of order d^2 .

Theorem 2.4. Let X be a smooth affine surface. Then the Makar-Linamov invariant ML(X) is trivial if and only if X has a minimal normal compactification V such that the dual graph of D := V - X is a linear chain of rational curves and $\pi_{1,\infty}(X)$ is a finite group.

Lemma 2.2 gives rise to a construction of affine pseudo-planes from the Hirzebruch surfaces. We denote by X(d,r) an affine pseudo-plane of type (d,r) constructed from the Hirzebruch surface as in Lemma 2.2. Some partial cases of affine pseudo-planes were observed in tom Dieck [5] as examples of affine surfaces without cancellation property. We shall recall and generalize a little bit his construction. Write $\Sigma_n = \operatorname{Proj} \left(\mathcal{O}_{\mathbb{P}^1}(-n) \oplus \mathcal{O}_{\mathbb{P}^1} \right)$ as the quotient of $(\mathbb{A}^2 \setminus \{0\}) \times \mathbb{P}^1$ under the relation

$$(z_0, z_1), [w_0, w_1] \sim (\nu z_0, \nu z_1), [\nu^n w_0, w_1]$$

for $\nu \in G_m = \mathbb{C}^*$. The projection $\{(z_0, z_1), [w_0, w_1]\} \mapsto [z_0, z_1]$ induces a \mathbb{P}^1 -fibration $p_n : \Sigma_n \to \mathbb{P}^1$. In the above definition by quotient and in what follows, the integer n could be negative. If $n \geq 0$, the curve $w_0 = 0$ (resp. $w_1 = 0$) is a section M_1 of p_n with $(M_1^2) = n$ (resp. the minimal section M_0 with $(M_0^2) = -n$). Meanwhile, if n < 0, then the curve $w_0 = 0$ (resp. $w_1 = 0$) is the minimal section M_0 (resp. a section M_1 with $(M_1^2) = |n|$) of $\Sigma_{|n|}$. Let $d \geq 2$ and $r = d + n \geq 1$. With the notations of Lemma 2.2, we assume that the fiber ℓ_0 is defined by $z_0 = 0$. Let $w = w_0/w_1$. Then $\{z_0/z_1, w/z_1^n\}$ is a system of local coordinates at the point $M_1 \cap \ell_0$ (resp. $M_0 \cap \ell_0$) if $n \geq 0$ (resp. n < 0). Let $n \geq 0$ be a linear subsystem of $n \geq 0$ (resp. $n \geq 0$) at the point $n \geq 0$ (resp. $n \geq 0$) with multiplicity $n \geq 0$ (resp. $n \geq 0$). Then any member of $n \geq 0$ is defined by an equation

$$\frac{w}{z_1^n} \left\{ a_0 + a_1 \left(\frac{z_0}{z_1} \right) + \dots + a_{d-1} \left(\frac{z_0}{z_1} \right)^{d-1} + a_d \left(\frac{z_0}{z_1} \right)^d \right\} + a_{d+1} \left(\frac{z_0}{z_1} \right)^r = 0$$

or equivalently by

(1)
$$w_0 \left(a_0 z_1^d + a_1 z_0 z_1^{d-1} + \dots + a_{d-1} z_0^{d-1} z_1 + a_d z_0^d \right) + a_{d+1} z_0^r w_1 = 0$$

for $(a_0, a_1, \dots, a_{d+1}) \in \mathbb{P}^{d+1}$. In fact, it is readily computed that dim $\Lambda = d+1$. So, the curve C_d is defined by such an equation with $a_0 \neq 0$ and $a_{d+1} \neq 0$. Hence it follows that

$$X(d,r) = \Sigma_{|n|} \setminus (\{w_0 = 0\} \cup C_d)$$

where n = r - d and C_d is the curve defined by (1) with $a_0 \neq 0$ and $a_{d+1} \neq 0$. We shall verify the following result.

Lemma 2.5. Let $r \geq 2$ and let X = X(d,r) be an affine pseudo-plane defined as above. Let $\sigma: G_m \times X \to X$ be a non-trivial action of the algebraic torus $G_m = \mathbb{C}^*$. Then the following assertions hold true:

- (1) The action σ induces an action $\sigma: G_m \times \Sigma_{|n|} \to \Sigma_{|n|}$ such that $\sigma^{(\mu)} M_i \subseteq M_i$ for i = 0, 1, $\sigma^{(\mu)} C_d \subseteq C_d$ and $\sigma^{(\mu)} \ell_0 \sim \ell_0$, where $\sigma^{(\mu)} M_i$ denotes the image of M_i under the action of $\mu \in \mathbb{C}^*$, etc.
- (2) The curve C_d is defined by an equation

$$z_1^d w_0 + a z_0^r w_1 = 0 \quad for \quad a \in \mathbb{C}^*.$$

Proof. (1) We prove only the case $n=r-d\geq 0$. The proof of the case n<0 is done in the same manner. Let $\rho:X\to C\cong \mathbb{A}^1$ be the unique \mathbb{A}^1 -fibration (cf. Theorem 2.3). Then the fibers of ρ are permuted by the action σ . Hence σ extends to the cross-section S' and sends S' into itself. Let W be a G_m -equivariant smooth normal compactification of X whose existence is guaranteed by [21]. We may assume that $W\setminus X$ contains the cross-section S'. Let F_0 and F_∞ be two fibers of the \mathbb{P}^1 -fibration $p:W\to \mathbb{P}^1$ whose supports partly or totally lie outside of X, where F_0 contains the multiple fiber of ρ . We may assume that all (-1) components of F_0 and F_∞ are fixed componentwise under the action σ . Then we may assume that F_∞ is irreducible and F_0 minus the component F contains no (-1) components, where $F \cap X$ gives rise to the multiple fiber of ρ . Then we may assume that $W\setminus X$ has the dual graph as in Definition 2.1. So, the action σ induces a F_0 -action on F_0 such that F_0 is induced as F_0 of the components F_0 and F_0 is equal to F_0 . Then we may assume that F_0 is such that F_0 is induced as F_0 in F_0 in

(2) The G_m -action σ on $\Sigma_{|n|}$ is given as follows in terms of the coordinates:

$$\mu \cdot ((z_0, z_1), [w_0, w_1]) = ((\mu^{\alpha} z_0, \mu^{\beta} z_1), [\mu^{\gamma} w_0, \mu^{\delta} w_1])$$

for $\mu \in \mathbb{C}^*$. Since C_d is stable under the σ -action, the defining equation (1) must be semi-invariant. Note that $a_0a_{d+1} \neq 0$ because C_d is irreducible. Hence we obtain $\alpha r + \delta = \beta d + \gamma$. Suppose that $(a_1, \ldots, a_d) \neq (0, \ldots, 0)$. Then we have an additional relation $\alpha i + \beta (d-i) + \gamma = \beta d + \gamma$ for some $1 \leq i \leq d$. The last relation implies $\alpha = \beta$. So, the first relation gives $\gamma = \alpha n + \delta$. Then we have

$$\begin{array}{lcl} \mu \cdot ((z_0,z_1),[w_0,w_1]) & = & \left((\mu^{\alpha}z_0,\mu^{\beta}z_1),[\mu^{\gamma}w_0,\mu^{\delta}w_1] \right) \\ & = & \left((\mu^{\alpha}z_0,\mu^{\beta}z_1),[\mu^{\alpha n+\delta}w_0,\mu^{\delta}w_1] \right) \\ & \sim & \left((z_0,z_1),[\mu^{\delta}w_0,\mu^{\delta}w_1] \right) \\ & = & \left((z_0,z_1),[w_0,w_1] \right). \end{array}$$

Hence the σ -action is trivial. This proves the second assertion.

Let V(d,r) be the affine pseudo-plane defined by

$$V(d,r) = \Sigma_{|n|} \setminus (\{w_0 = 0\} \cup \{z_1^d w_0 + z_0^r w_1 = 0\})$$

where n = r - d. Then there exists a G_m -action on V(d,r) defined by

$$\mu \cdot ((z_0, z_1), [w_0, w_1]) = ((\mu z_0, z_1), [w_0, \mu^{-r} w_1])$$

for $\mu \in \mathbb{C}^*$. For $r \geq 2$, one can show that any G_m -action on V(d,r) is reduced to the G_m -action specified as above. In fact, with the notation in the proof of Lemma 2.5(2)

$$\begin{array}{lll} \mu \cdot ((z_{0},z_{1}),[w_{0},w_{1}]) & = & \left((\mu^{\alpha}z_{0},\mu^{\beta}z_{1}),[\mu^{\gamma}w_{0},\mu^{\delta}w_{1}] \right) \\ & = & \left((\mu^{\alpha}z_{0},\mu^{\beta}z_{1}),[\mu^{\alpha r-\beta d+\delta}w_{0},\mu^{\delta}w_{1}] \right) \\ & = & \left((\mu^{\alpha}z_{0},\mu^{\beta}z_{1}),[\mu^{\beta n+(\alpha-\beta)r+\delta}w_{0},\mu^{\delta}w_{1}] \right) \\ & \sim & \left((\mu^{\alpha-\beta}z_{0},z_{1}),[\mu^{r(\alpha-\beta)}w_{0},w_{1}] \right) \\ & = & \left((\mu^{\alpha-\beta}z_{0},z_{1}),[w_{0},\mu^{-r(\alpha-\beta)}w_{1}] \right). \end{array}$$

We shall consider the universal covering $\widetilde{X}(d,r)$ of an affine pseudo-plane X(d,r).

Lemma 2.6. The following assertions hold true:

(1) The universal covering $\widetilde{X}(d,r)$ is isomorphic to an affine hypersurface in $\mathbb{A}^3 = \operatorname{Spec} \mathbb{C}[x,y,z]$ defined by an equation

(2)
$$x^r z + (y^d + a_1 x y^{d-1} + \dots + a_{d-1} x^{d-1} y + a_d x^d) = 1.$$

The Galois group of the covering $\widetilde{X}(d,r) \to X(d,r)$ is a cyclic group $H(d) := \mathbb{Z}/d\mathbb{Z}$ of order d and acts as

$$\lambda \cdot (x, y, z) = (\lambda x, \lambda y, \lambda^{-r} z)$$

for $\lambda \in H(d)$.

- (2) The projection $(x, y, z) \mapsto x$ induces an \mathbb{A}^1 -fibration $\widetilde{\rho} : \widetilde{X}(d, r) \to \mathbb{A}^1$ such that every fiber except for $\widetilde{\rho}^{-1}(0)$ is smooth and the fiber $\widetilde{\rho}^{-1}(0)$ consists of d copies of \mathbb{A}^1 which are reduced.
- (3) There is a G_a -action on $\widetilde{X}(d,r)$ defined by

$$c \cdot (x, y, z)$$

$$= (x, y + cx^{r}, z - x^{-r} \{ ((y + cx^{r})^{d} + a_{1}x(y + cx^{r})^{d-1} + \dots + a_{d}x^{d}) - (y^{d} + a_{1}xy^{d-1} + \dots + a_{d-1}x^{d-1}y + a_{d}x^{d}) \} \},$$

where $c \in G_a = \mathbb{C}$.

- (4) The \mathbb{A}^1 -fibration $\widetilde{\rho}: \widetilde{X}(d,r) \to \mathbb{A}^1$ is unique for $r \geq 2$.
- (5) Let ω be a d-th root of unity. Then there exist uniquely determined polynomials $p_{\omega}(x), q_{\omega}(x) \in \mathbb{C}[x]$ satisfying the following conditions:
 - (i) $\deg p_{\omega}(x) \leq r 1$.
 - (ii) $p_{\omega}(0) = \omega$.
 - (iii) $x^r q_{\omega}(x) + p_{\omega}(x)^d + a_1 x p_{\omega}(x)^{d-1} + \dots + a_{d-1} x^{d-1} p_{\omega}(x) + a_d x^d = 1.$
 - (iv) $p_{\lambda\omega}(\lambda x) = \lambda p_{\omega}(x)$, $q_{\lambda\omega}(\lambda x) = \lambda^{-r}q_{\omega}(x)$ for any d-th root λ of unity. By making use of these polynomials, we define the morphism

$$\varphi_{\omega} : \mathbb{A}^2 \cong \mathbb{A}^1 \times G_a \to \widetilde{X}(d,r), \quad (x,c) \mapsto c \cdot (x, p_{\omega}(x), q_{\omega}(x))$$

which is an open immersion onto an open set U_{ω} which is the complement of $\coprod_{\lambda \neq \omega} G_a \cdot (0, \lambda, 0)$. The inverse morphism φ_{ω}^{-1} on U_{ω} is defined by

$$(x, y, z) \mapsto \begin{cases} (x, \frac{y - p_{\omega}(x)}{x^r}) & \text{if } x \neq 0, \\ (0, \frac{-z + q_{\omega}(0)}{d\omega^{-1}}) & \text{if } x = 0. \end{cases}$$

(6) $\widetilde{X}(d,r)$ is obtained by glueing together the d-copies of the affine plane \mathbb{A}^2 by the transition functions

$$g_{\lambda\omega} := \varphi_{\lambda}^{-1} \circ \varphi_{\omega} : \mathbb{A}_{*}^{1} \times \mathbb{A}^{1} \to \mathbb{A}_{*}^{1} \times \mathbb{A}^{1}$$
$$(x,c) \mapsto (x,c + \frac{p_{\omega}(x) - p_{\lambda}(x)}{r^{r}}),$$

where $\omega, \lambda \in H(d)$ and $\mathbb{A}^1_* = \mathbb{A}^1 - \{0\}.$

(7) The Galois group H(d) acts as

$$\lambda \cdot \varphi_{\omega}(x,c) = \varphi_{\lambda\omega}(\lambda x, \lambda^{1-r}c).$$

Proof. (1) Recall that X(d,r) is the complement in $\Sigma_{|n|}$ of the curves C_d defined by the equation (1) with $a_0 \neq 0$ and $a_{d+1} \neq 0$, and the curve $w_0 = 0$ which is M_1 if $r - d \geq 0$ (resp. M_0 if r - d < 0), where n = r - d. Since $w_0 \neq 0$, we can normalize to $w_0 = 1$. We can then normalize

$$w_0 \left(a_0 z_1^d + a_1 z_0 z_1^{d-1} + \dots + a_{d-1} z_0^{d-1} z_1 + a_d z_0^d \right) + a_{d+1} z_0^r w_1 \neq 0$$

to the relation

$$z_0^r w_1 + (a_0 z_1^d + a_1 z_0 z_1^{d-1} + \dots + a_{d-1} z_0^{d-1} z_1 + a_d z_0^d) = 1,$$

where $a_0 \neq 0$. This normalization comes from the defining equivalence relation

$$(z_0, z_1), [w_0, w_1] \sim (\nu z_0, \nu z_1), [\nu^n w_0, w_1].$$

We may assume that $a_0 = 1$. The equivalence relation requires that the points $(\lambda z_0, \lambda z_1, \lambda^{-n} w_1)$ for $\lambda \in H(d)$ should be identified together, where we note that n = r - d. Hence the assertion follows. Note that $\widetilde{X}(d, r)$ is simply connected.

(3) Let δ be a derivation on the coordinate ring $\Gamma(\widetilde{X}(d,r))$ defined by

$$\delta(x) = 0, \quad \delta(y) = x^r,
\delta(z) = -(dy^{d-1} + (d-1)a_1xy^{d-2} + \dots + a_{d-1}x^{d-1}).$$

Then δ is locally nilpotent. Hence it defines a G_a -action on $\widetilde{X}(d,r)$ by

$$c \cdot a = \sum_{n=0}^{\infty} \frac{c^n}{n!} \delta^n(a), \quad \text{for } c \in G_a, a \in \Gamma(\widetilde{X}(d,r)),$$

which is as specified as in the assertion. One easily verifies that $\operatorname{Ker} \delta = \mathbb{C}[x]$ and the inclusion $\operatorname{Ker} \delta \hookrightarrow \Gamma(\widetilde{X}(d,r))$ induces an \mathbb{A}^1 -fibration $\widetilde{\rho}: \widetilde{X}(d,r) \to \mathbb{A}^1$.

(4) We consider the smooth compactification (V, D) as given in Definition 2.1. Then we have a linear equivalence

$$\ell'_{\infty} \sim \ell'_0 + E_1 + 2E_2 + \dots + (d-1)E_{d-1} + dE_d + d(E_{d+1} + \dots + E_{d+r-1} + \overline{F}),$$
 which is written as follows:

$$\ell_{\infty}' + (d-1)(\ell_0' + E_1) + (d-2)E_2 + \dots + E_{d-1}$$

$$\sim d \left\{ \ell_0' + E_1 + E_2 + \dots + E_{d-1} + E_d + E_{d+1} + \dots + E_{d+r-1} + \overline{F} \right\}.$$

Let $q: \widetilde{V} \to V$ be a d-ple cyclic covering which ramifies totally over the branch locus $\ell'_{\infty} + \ell'_0 + E_1 + E_2 + \cdots + E_{d-1}$. Then \widetilde{V} has cyclic quoteint singularities over the intersection points $\ell'_0 \cap E_2, E_2 \cap E_3, \ldots, E_{d-2} \cap E_{d-1}$. The minimal resolution of these singularities will only insert linear chains of exceptional curves in between the proper transforms of the intersecting curves. Meanwhile, the inverse image $\widetilde{E}_d := q^{-1}(E_d)$ of the curve E_d remains irreducible on \widetilde{V} and the linear branch $E_{d+1} + \cdots + E_{d+r-1} + \overline{F}$ splits into a disjoint union of d linear branches $\widetilde{E}_{d+1}^{(j)} + \cdots + \widetilde{E}_{d+r-1}^{(j)} + \widetilde{F}_{d+r-1}^{(j)} + \widetilde{F}_{d+r-1}^{(j)}$ ($1 \le j \le d$). Each of the curves $\widetilde{E}_{d+1}^{(j)}$ ($1 \le j \le d$) meets the curve \widetilde{E}_d transversally in one point. Furthermore, $q^{-1}(X(d,r))$ is the universal covering space $\widetilde{X}(d,r)$. By the above observations, one knows that the boundary divisor of $\widetilde{X}(d,r)$ embedded minimally in a smooth projective surface, which is obtained from \widetilde{V} by resolving minimally the above cyclic quotient singularities and contracting (-1) curves and consecutively contractible curves resulting from the inverse image of $q^{-1}(\ell'_{\infty} + S' + \ell'_0 + E_1 + \cdots + E_{d-1})$, is not a linear chain, for

 $\widetilde{E}_d + \sum_{j=1}^d (\widetilde{E}_{d+1}^{(j)} + \cdots + \widetilde{E}_{d+r-1}^{(j)})$ cannot become a part of a linear chain if $d \geq 2$ and $r \geq 2$. So, we are done by a theorem of Bertin [3].

(5) Write $p_{\omega}(x) = \omega + c_1(\omega)x + \cdots + c_{r-1}(\omega)x^{r-1}$, where the coefficients are to be determined by the relation

(3)
$$x^r q_{\omega}(x) + p_{\omega}(x)^d + a_1 x p_{\omega}(x)^{d-1} + \dots + a_{d-1} x^{d-1} p_{\omega}(x) + a_d x^d = 1$$

which is obtained from equation (2) above by substituting $p_{\omega}(x), q_{\omega}(x)$ for y, z. By condition (i), it is easy to see that $p_{\omega}(x)$ is uniquely determined. Namely the coefficients $c_1(\omega), \ldots, c_{r-1}(\omega)$ are uniquely determined by putting the coefficients of the terms x^i $(1 \le i \le r-1)$ to be zero in the left-hand side of equation (3) above. Then $q_{\omega}(x)$ is uniquely determined as well. By multiplying $\lambda^d = 1$ to the relation (3), we obtain

$$(\lambda x)^r \lambda^{-r} q_{\omega}(\lambda^{-1}(\lambda x)) + (\lambda p_{\omega}(\lambda^{-1}(\lambda x)))^d + a_1(\lambda x)(\lambda p_{\omega}(\lambda^{-1}(\lambda x)))^{d-1} + \dots + a_d(\lambda x)^d = 1.$$

Replace λx by x in the above relation. Then the uniqueness of the polynomials $p_{\lambda\omega}(x), q_{\lambda\omega}(x)$ imply that $p_{\lambda\omega}(x) = \lambda p_{\omega}(\lambda^{-1}x)$ and $q_{\lambda\omega}(x) = \lambda^{-r}q_{\omega}(\lambda^{-1}x)$. Now replace x by λx . Then we obtain the relation (iv). Note that $\varphi_{\omega}: \mathbb{A}^2 \to U_{\omega}$ is injective and $U_{\omega} \cong \mathbb{A}^2$. Hence φ_{ω} is an isomorphism by [1]. The φ_{ω} ($\omega \in H(d)$) are bundle charts of $\widetilde{X}(d,r)$ and $\widetilde{X}(d,r)$ is obtained by glueing d-copies $\{\omega\} \times \mathbb{A}^2$ ($\omega \in H(d)$) under the identification

$$(\omega, x, c) \sim (\lambda, x, c + \frac{p_{\omega}(x) - p_{\lambda}(x)}{x^r})$$

for $\omega, \lambda \in H(d)$ and $(x, c) \in \mathbb{A}^1_* \times \mathbb{A}^1$. The other assertions are verified in a straightforward manner.

We say that a homogeneous polynomial $y^d + a_1 x y^{d-1} + \cdots + a_d x^d$ with the coefficient of the y^d -term equal to 1 is monic. Let $\widetilde{X}(d,r)$ and $\widetilde{X'}(d,s)$ be the affine hypersurfaces in \mathbb{A}^3 defined by $x^r z + f(x,y) = 1$ and $x^s z + h(x,y) = 1$, respectively, where f(x,y) and h(x,y) are monic homogeneous polynomials of degree d. If $r \neq s$, then $\widetilde{X}(d,r) \not\cong \widetilde{X'}(d,s)$ since $\pi_{1,\infty}(\widetilde{X}(d,r)) \neq \pi_{1,\infty}(\widetilde{X'}(d,s))$. Concerning the isomorphism classes of the hypersurfaces $\widetilde{X}(d,r)$, we have the following result. Note that we may assume that f(x,y) and h(x,y) are of the form $y^d + a_2 x^2 y^{d-2} + \cdots + a_d x^d$ by changing the coordinates.

Lemma 2.7. Let $d \geq 2$ and r > d. Let $\widetilde{X}_1(d,r)$ and $\widetilde{X}_2(d,r)$ be the hypersurfaces defined by the equations $x^rz+y^d+a_2x^2y^{d-2}+\cdots+a_dx^d=1$ and $x^rz+y^d+b_2x^2y^{d-2}+\cdots+b_dx^d=1$, respectively. Then there is an isomorphism $\widetilde{X}_1(d,r) \cong \widetilde{X}_2(d,r)$ if and only if

$$a_i = \mu^i b_i, \quad for \quad \mu \in \mathbb{C}^*, \quad 2 \le i \le d.$$

Proof. Let $f: \widetilde{X}_1(d,r) \to \widetilde{X}_2(d,r)$ be an isomorphism and let φ be the induced isomorphism of the coordinate rings. Note that f preserves the unique \mathbb{A}^1 -fibrations of $\widetilde{X}_1(d,r)$ and $\widetilde{X}_2(d,r)$ as well as the reduced reducible fibers. Hence f induces an automorphism of $\mathbb{C}[x]$ and $\varphi(x) = \mu x$ with $\mu \in \mathbb{C}^*$. Then φ induces an automorphism of the polynomial ring $\mathbb{C}[x,x^{-1}][y]$. So, one can write $\varphi(y) = ux^e y + F(x)$ with $u \in \mathbb{C}^*, e \in \mathbb{Z}$ and $F(x) \in \mathbb{C}[x,x^{-1}]$. Since φ is an isomorphism of the coordinate rings, it follows that $e \geq 0$ and $F \in \mathbb{C}[x]$. Furthermore, since f maps

isomorphically the unique reducible fiber of $\widetilde{X}_1(d,r)$ to the unique reducible fiber of $\widetilde{X}_2(d,r)$, it follows that e=0, F(0)=0 and $u^d=1$. Since

$$z = x^{-r} \{ 1 - (y^d + b_2 x^2 y^{d-2} + \dots + b_d x^d) \}$$

$$\in \Gamma(\widetilde{X}_2(d, r)) \otimes \mathbb{C}[x, x^{-1}] = \mathbb{C}[x, x^{-1}][y],$$

it follows that $\varphi(z) = \mu^{-r} x^{-r} \{1 - (\varphi(y)^d + b_2(\mu x)^2 \varphi(y)^{d-2} + \dots + b_d(\mu x)^d)\}$ in $\Gamma(\widetilde{X}_1(d,r)) \otimes \mathbb{C}[x,x^{-1}] = \mathbb{C}[x,x^{-1}][y]$. While, φ is an isomorphism from $\Gamma(\widetilde{X}_2(d,r))$ to $\Gamma(\widetilde{X}_1(d,r))$, $\varphi(z)$ is written in a form $\sum_{k\geq 0}^N \varphi_k(x,y) z^k$, where $\varphi_k(x,y) = \sum_{0\leq j< d} \phi_{kj}(x) y^j$ for $\phi_{kj}(x) \in \mathbb{C}[x]$. Hence we have $\varphi(z) = \mu^{-r} z + \varphi_0(x,y)$, and

$$(\varphi(y))^d + b_2 \mu^2 x^2 (\varphi(y))^{d-2} + \dots + b_d \mu^d x^d - 1$$

coincides with

$$y^d + a_2 x^2 y^{d-2} + \dots + a_d x^d - 1$$

modulo x^r . The comparison of the coefficients of the terms x^iy^{d-i} for $1 \le i \le d$ implies that F is a multiple of x^r and $a_i = \mu^i u^{d-i} b_i$ for $2 \le i \le d$. Replacing μu^{-1} by a new μ , we obtain $a_i = \mu^i b_i$ for $\mu \in \mathbb{C}^*$, $0 \le i \le d$.

Conversely, if $a_i = \mu^i b_i$ $(2 \le i \le d)$ for $\mu \in \mathbb{C}^*$, then we can determine an isomorphism φ by

$$\varphi(x) = \mu x,
\varphi(y) = y + x^r G(x),
\varphi(z) = \mu^{-r} \left[z - x^{-r} \left\{ \left(\varphi(y)^d + b_2(\mu x)^2 \varphi(y)^{d-2} + \dots + b_d(\mu x)^d \right) - \left(y^d + a_2 x^2 y^{d-2} + \dots + a_d x^d \right) \right\} \right],$$

where $G(x) \in \mathbb{C}[x]$.

Let $\widetilde{X}(d,r)$ be the affine hypersurface in \mathbb{A}^3 defined by equation (2) in Lemma 2.6 which has the transition functions given in assertion (6) of the same lemma. Let $\widetilde{X}'(d,s)$ be a similar affine hypersurface in \mathbb{A}^3 with the equation

$$x^{s}z + (y^{d} + a'_{1}xy^{d-1} + \dots + a'_{d-1}x^{d-1}y + a'_{d}x^{d}) = 1$$

and the transition functions

$$g'_{\lambda\omega} := {\varphi'}_{\lambda}^{-1} \circ {\varphi'}_{\omega} : \mathbb{A}^1_* \times \mathbb{A}^1 \to \mathbb{A}^1_* \times \mathbb{A}^1, \quad (x,c) \mapsto (x,c + \frac{p'_{\omega}(x) - p'_{\lambda}(x)}{x^s}).$$

As in [5], we define a 3-dimensional affine variety $\widetilde{X}(d,r,s)$ by glueing together d-copies of the affine 3-space $\{\omega\} \times \mathbb{A}^3 \ (\omega \in H(d))$ by the following identification:

$$(\omega, x, c_1, c_2) \sim (\lambda, x, c_1 + \frac{p_{\omega}(x) - p_{\lambda}(x)}{x^r}, c_2 + \frac{p'_{\omega}(x) - p'_{\lambda}(x)}{x^s}), \quad x \neq 0.$$

The projection $(\omega, x, c_1, c_2) \mapsto (\omega, x, c_1)$ yields a morphism $\pi_1 : \widetilde{X}(d, r, s) \to \widetilde{X}(d, r)$ which is a principal G_a -bundle over $\widetilde{X}(d, r)$ with G_a acting naturally on the coordinate c_2 . Similarly, the projection $(\omega, x, c_1, c_2) \mapsto (\omega, x, c_2)$ gives rise to a principal G_a -bundle $\pi_2 : \widetilde{X}(d, r, s) \to \widetilde{X}'(d, s)$ with G_a acting naturally on the coordinate c_1 . Since every principal G_a -bundle over an affine variety is trivial [20], it follows that

$$\widetilde{X}(d,r)\times \mathbb{A}^1\cong \widetilde{X}(d,r,s)\cong \widetilde{X'}(d,s)\times \mathbb{A}^1.$$

Hence the surfaces $\widetilde{X}(d,r)$ have the non-cancellation property.

Theorem 2.8. Let $d \geq 2$ and let r, s > d. Let $\widetilde{X}(d, r)$ and $\widetilde{X}'(d, s)$ be the affine hypersurfaces defined by the equations $x^rz + (y^d + a_2x^2y^{d-2} + \cdots + a_dx^d) = 1$ and $x^sz + (y^d + a_2'x^2y^{d-2} + \cdots + a_d'x^d) = 1$, respectively. Then the following assertions hold:

(1) For any r and s,

$$\widetilde{X}(d,r) \times \mathbb{A}^1 \cong \widetilde{X'}(d,s) \times \mathbb{A}^1.$$

(2) The isomorphism $\widetilde{X}(d,r) \cong \widetilde{X'}(d,s)$ holds if and only if r = s and $a'_i = \mu^i a_i$ for $\mu \in \mathbb{C}^*$ and $2 \leq i \leq d$.

At this point, we do not know whether the isomorphism $\widetilde{X}(d,r) \times \mathbb{A}^1 \cong \widetilde{X'}(d,s) \times \mathbb{A}^1$ in Theorem 2.8 is H(d)-equivariant or not. We shall show that the isomorphism in Theorem 2.8(1) is in fact H(d)-equivariant in some cases. The H(d)-action specified in assertion (1) of Lemma 2.6 is lifted to $\widetilde{X}(d,r,s)$ on ω -charts as follows so that π_1 and π_2 are H(d)-equivariant:

$$\lambda \cdot (\omega, x, c_1, c_2) = (\lambda \omega, \lambda x, \lambda^{1-r} c_1, \lambda^{1-s} c_2) \quad \text{for } \lambda \in H(d).$$

We look for H(d)-equivariant sections of π_1 and π_2 . A section of $\pi_1: \widetilde{X}(d,r,s) \to \widetilde{X}(d,r)$ is expressed on ω -chart as

$$\{\omega\} \times \mathbb{A}^2 \to \{\omega\} \times \mathbb{A}^3, \qquad (x,c) \mapsto (x,c,\sigma_{\omega}(x,c)).$$

Hence an H(d)-equivariant section of π_1 is a family of $\sigma_{\omega} \in \mathbb{C}[x,c]$ ($\omega \in H(d)$), which is compatible with glueing maps and H(d)-actions.

Lemma 2.9. For the principal G_a -bundle $\pi_1: \widetilde{X}(d,r,s) \to \widetilde{X}(d,r)$, an H(d)-equivariant section is given by a family of polynomials $\sigma_{\omega} \in \mathbb{C}[x,c], \omega \in H(d)$, satisfying the following conditions:

(1) For all $\omega, \lambda \in H(d)$ and $(x, c) \in \mathbb{A}^1_* \times \mathbb{A}^1$,

$$\sigma_{\omega}(x,c) + \frac{p_{\omega}'(x) - p_{\lambda}'(x)}{x^s} = \sigma_{\lambda}(x,c + \frac{p_{\omega}(x) - p_{\lambda}(x)}{x^r}).$$

(2) For any $\omega, \lambda \in H(d)$,

$$\lambda^{1-s}\sigma_{\omega}(x,c) = \sigma_{\lambda\omega}(\lambda x, \lambda^{1-r}c).$$

We can use relation (2) in the above lemma to compute σ_{λ} from σ_1 :

(4)
$$\sigma_{\lambda}(x,c) = \lambda^{1-s}\sigma_1(\lambda^{-1}x,\lambda^{r-1}c).$$

In terms of the function σ_1 , conditions (1) and (2) in Lemma 2.9 are reformulated as in the following result. The proof is essentially the same as in [5] if one takes into account relation (5)(iv) of Lemma 2.6.

Lemma 2.10. Given a polynomial $\sigma = \sigma_1 \in \mathbb{C}[x,c]$, define polynomials $\{\sigma_{\lambda} \mid \lambda \in H(d)\}$ by equation (4) above. Then conditions (1) and (2) in Lemma 2.9 are satisfied if and only if σ satisfies

(5)
$$\lambda^{1-s} x^s \sigma(\lambda^{-1} x, \lambda^{r-1} (c + \frac{p_1(x) - p_{\lambda}(x)}{x^r})) = x^s \sigma(x, c) + p_1'(x) - p_{\lambda}'(x)$$

for all $\lambda \in H(d), (x, c) \in \mathbb{A}^1_* \times \mathbb{A}^1$.

If there exists a polynomial σ satisfying condition (5) in Lemma 2.10, then there is an H(d)-equivariant isomorphism

$$\widetilde{X}(d,r,s) \cong \widetilde{X}(d,r) \times \mathbb{A}^1(1-s),$$

where $\mathbb{A}^1(a)$ denotes the one-dimensional H(d)-module of weight a. In fact, an H(d)-equivariant isomorphism $\widetilde{X}(d,r)\times \mathbb{A}^1(1-s)\cong \widetilde{X}(d,r,s)$ is defined as follows on the ω -chart for $\omega\in H(d)$:

$$(\omega \times \mathbb{A}^2) \times \mathbb{A}^1 \to \omega \times \mathbb{A}^3,$$

$$((\omega, x, c_1), c_2) \mapsto (\omega, x, c_1, \sigma_{\omega}(x, c_1) + c_2).$$

Let $\widetilde{V}(d,r)$ be the affine surface defined by $x^rz+y^d=1$. Then $\widetilde{V}(d,r)$ is the universal covering of the affine pseudo-plane V(d,r). The polynomial $p_{\omega}(x)$ corresponding to $\widetilde{V}(d,r)$ is $p_{\omega}(x)=\omega$. Let $\widetilde{V}(d,r,s)$ be the affine variety glueing $\{\omega\}\times\mathbb{A}^3$ for $\omega\in H(d)$ with transition functions of $\widetilde{V}(d,r)$ and $\widetilde{V}(d,s)$ just as we constructed $\widetilde{X}(d,r,s)$. In [5], it is shown that there exist H(d)-equivariant sections of $\widetilde{V}(d,r,s)\to \widetilde{V}(d,r)$ for any r and s. The next result is a key fact in finding H(d)-equivariant sections, which is due to tom Dieck in the case u=1.

Proposition 2.11. Let u and t be positive integers and let $1 \le u \le d-1$.

- (1) There exists a unique polynomial $Q_{u,t}(x) \in \mathbb{C}[x]$ satisfying the following properties:
 - (i) $Q_{u,t}(\lambda x) = \lambda^u Q_{u,t}(x)$ for any $\lambda \in H(d)$.
 - (ii) $\deg Q_{u,t}(x) = u + (t-1)d$.
 - (iii) $Q_{u,t}(1+x)-1$ is divisible by x^t .
- (2) Let $P_{u,t}(x)$ be the polynomial defined by the equation $Q_{u,t}(1+x)-1=x^tP_{u,t}(x)$. Then for any $\lambda \in H(d)$,

$$\lambda^{-t}(x+1-\lambda)^{t} P_{u,t}(\lambda^{-1}(x+1-\lambda)) = \lambda^{-u}(x^{t} P_{u,t}(x) + 1 - \lambda^{u}).$$

Proof. (1) By the property (i) and (ii), $Q_{u,t}(x)$ is written as

$$Q_{u,t}(x) = \sum_{j=0}^{t-1} a_j x^{u+jd}.$$

By property (iii), the coefficients a_j must satisfy linear equations. The determinant of the coefficient matrix of the system of the linear equations in a_0, \ldots, a_{t-1} is

$$\left| \begin{array}{cccc} 1 & 1 & \cdots & 1 \\ \binom{u}{1} & \binom{u+d}{1} & \cdots & \binom{u+(t-1)d}{1} \\ \cdots & \cdots & \cdots & \cdots \\ \binom{u}{t-1} & \binom{u+d}{t-1} & \cdots & \binom{u+(t-1)d}{t-1} \end{array} \right|,$$

where the binomial coefficient $\binom{a}{b}$ for a < b is defined to be zero. Note that $\binom{u+jd}{i}$ is a polynomial in jd of degree i. By adding a linear combination of the first i rows to the (i+1)-th row, the (i+1)-th row becomes 1/i! times of $(0, d^i, (2d)^i, \cdots, (t-1)^i d^i)$. Hence the determinant reduces to a non-zero multiple of the Vandermonde determinant and its value is non-zero. Thus we can determine the coefficients a_j , and the polynomial $Q_{u,t}(x)$ is uniquely determined.

(2) By the definition of $P_{u,t}(x)$, $Q_{u,t}(x)$ is written as

$$Q_{u,t}(x) = 1 + (x-1)^t P_{u,t}(x-1).$$

Then the required relation follows from property (i) of $Q_{u,t}(x)$.

Theorem 2.12 (cf. tom Dieck [5]). Let $d \ge 2$ and $r, s \ge 1$. Then for any r and s, there exists an H(d)-equivariant isomorphism

$$\widetilde{V}(d,r) \times \mathbb{A}^1(1-s) \cong \widetilde{V}(d,s) \times \mathbb{A}^1(1-r).$$

Proof. It suffices to find $\sigma(x,c)$ satisfying

$$\lambda^{1-s} x^s \sigma(\lambda^{-1} x, \lambda^{r-1} (c + \frac{1-\lambda}{r^r})) = x^s \sigma(x, c) + 1 - \lambda$$

for all $\lambda \in H(d)$, $(x,c) \in \mathbb{A}^1_* \times \mathbb{A}^1$. Let a and t be integers such that a = -s + rt, t > 0 and $a \geq 0$. Set $\sigma(x,c) = x^a c^t P_{1,t}(x^r c)$, where $P_{1,t}(x)$ is the polynomial defined in Proposition 2.11(2). Then one easily verifies that $\sigma(x,c)$ satisfies the above condition, and the assertion follows.

Remark. There is a \mathbb{C}^* -action on $\widetilde{V}(d,r)$ defined by

$$\mu \cdot (x, y, z) = (\mu x, y, \mu^{-r} z)$$
 for $\mu \in \mathbb{C}^*$,

which is the lift-up of the \mathbb{C}^* -action on the affine pseudo-plane V(d,r) (cf. Lemma 2.5 and the statement below it). One verifies that the isomorphism in Theorem 2.12 is in fact an $H(d) \times \mathbb{C}^*$ -equivariant isomorphism

$$\widetilde{V}(d,r)\times \mathbb{A}^1(1-s,-s)\cong \widetilde{V}(d,s)\times \mathbb{A}^1(1-r,-r),$$

where $\mathbb{A}^1(a,b)$ denotes the one-dimensional $H(d) \times \mathbb{C}^*$ -module with weight a for H(d) and with weight b for \mathbb{C}^* .

In some cases, we can find a polynomial σ satisfying the condition in Lemma 2.10 and write down σ explicitly. First, we consider the case r = s = 2.

Lemma 2.13. Let $\widetilde{X}(d,2)$ and $\widetilde{X}'(d,2)$ be the affine surfaces defined by $x^2z+f(x,y)=1$ and $x^2z+h(x,y)=1$, respectively, where f(x,y) and h(x,y) are monic homogeneous polynomials of degree d. Then for any $d\geq 2$ there is an H(d)-equivariant isomorphism

$$\widetilde{X}(d,2) \times \mathbb{A}^1(-1) \cong \widetilde{X'}(d,2) \times \mathbb{A}^1(-1).$$

Proof. Let $\widetilde{X}(d,2,2)$ be the affine variety obtained by $\widetilde{X}(d,2)$ and $\widetilde{X}'(d,2)$. For the principal G_a -bundle $\widetilde{X}(d,2,2) \to \widetilde{X}(d,2)$, $p_1(x)$ and $p_1'(x)$ in Lemma 2.9 are both of the form 1 + ax for $a \in \mathbb{C}$. Since $p_{\lambda}(x) = \lambda p_1(\lambda^{-1}x)$ and $p_{\lambda}'(x) = \lambda p_1'(\lambda^{-1}x)$, condition (5) in Lemma 2.10 is reduced to

$$\lambda^{-1}x^2\sigma(\lambda^{-1}x,\lambda(c+\frac{1-\lambda}{x^2}))=x^2\sigma(x,c)+1-\lambda$$

for all $\lambda \in H(d)$, $(x,c) \in \mathbb{A}^1_* \times \mathbb{A}^1$. Set $\sigma(x,c) = x^{d-1} + c$. Then σ satisfies the above condition and it follows that $\widetilde{X}(d,2,2) \cong \widetilde{X}(d,2) \times \mathbb{A}^1(-1)$. Since $\sigma(x,c)$ gives rise to an H(d)-equivariant section of the principal G_a -bundle $\widetilde{X}(d,2,2) \to \widetilde{X}'(d,2)$, we have the assertion.

Next, we consider the case where $\widetilde{X}(d,r)$ is defined by the equation $x^rz + y^d + ax^d = 1$ with $a \in \mathbb{C}$.

Lemma 2.14. Let $d < r \le 2d$. Suppose that $\widetilde{X}(d,r)$ is defined by $x^rz+y^d+ax^d=1$ with $a \in \mathbb{C}$. Then there exists an H(d)-equivariant isomorphism

$$\widetilde{X}(d,r) \times \mathbb{A}^1(1-r) \cong \widetilde{V}(d,r) \times \mathbb{A}^1(1-r).$$

Proof. Let $\widetilde{X}(d,r,r)$ be the affine variety obtained by $\widetilde{X}(d,r)$ and $\widetilde{V}(d,r)$. The polynomial σ which gives rise to an H(d)-equivariant section of the principal G_a -bundle $\widetilde{X}(d,r,r) \to \widetilde{X}(d,r)$ must satisfy condition (5) in Lemma 2.10 with r=s, $p_{\lambda}(x) = \lambda(1-(a/d)x^d)$ and $p'_{\lambda}(x) = \lambda$. Define $\sigma(x,c) \in \mathbb{C}[x,c]$ by

$$\sigma(x,c) = -\frac{a^2}{d^2}x^{2d-r} + \left(1 + \frac{a}{d}x^d\right)c.$$

Then σ satisfies the condition and we obtain an H(d)-equivariant isomorphism $\widetilde{X}(d,r,r) \cong \widetilde{X}(d,r) \times \mathbb{A}^1(1-r)$. Similarly, one easily verifies that

$$\tau(x,c) = \left(1 - \frac{a}{d}x^d\right)c$$

satisfies

$$\lambda^{1-r} x^r \tau(\lambda^{-1} x, \lambda^{r-1} (c + \frac{1-\lambda}{x^r})) = x^r \tau(x, c) + p_1(x) - p_{\lambda}(x)$$

and gives rise to an H(d)-equivariant section of $\widetilde{X}(d,r,r) \to \widetilde{V}(d,r)$. Hence $\widetilde{X}(d,r,r) \cong \widetilde{V}(d,r) \times \mathbb{A}^1(1-r)$, and the assertion follows.

Combining Lemma 2.14 and Theorem 2.12, we obtain the following.

Lemma 2.15. Let $d < r \le 2d$ and $d < s \le 2d$. Suppose that $\widetilde{X}(d,r)$ and $\widetilde{X}'(d,s)$ are defined by $x^rz+y^d+ax^d=1$ and $x^sz+y^d+a'x^d=1$ with $a,a' \in \mathbb{C}$, respectively. Then there exists an H(d)-equivariant isomorphism

$$\widetilde{X}(d,r)\times \mathbb{A}^1(1-r)\times \mathbb{A}^1(1-s)\cong \widetilde{X'}(d,s)\times \mathbb{A}^1(1-r)\times \mathbb{A}^1(1-s).$$

Now, resume the set-up in Lemmas 2.9 and 2.10, and suppose that $r \equiv s \equiv 1 \pmod{d}$. Then we can find a polynomial σ as satisfying the condition in Lemma 2.10 so that there exists an H(d)-equivariant isomorphism $\widetilde{X}(d,r) \times \mathbb{A}^1 \cong \widetilde{X'}(d,s) \times \mathbb{A}^1$, where \mathbb{A}^1 is the trivial H(d)-module.

Theorem 2.16. Let $d \geq 2$ and $r \equiv s \equiv 1 \pmod{d}$. Then there is an H(d)-isomorphism

$$\widetilde{X}(d,r)\times \mathbb{A}^1\cong \widetilde{X'}(d,s)\times \mathbb{A}^1.$$

Proof. We first show that $\widetilde{X}(d,r) \times \mathbb{A}^1 \cong \widetilde{V}(d,1) \times \mathbb{A}^1$ for any $r \equiv 1 \pmod{d}$. Consider the affine variety $\widetilde{X}(d,r,1)$ obtained by $\widetilde{X}(d,r)$ and $\widetilde{V}(d,1)$. Then, the polynomial σ which gives rise to an H(d)-equivariant section of the principal G_a -bundle $\widetilde{X}(d,r,1) \to \widetilde{X}(d,r)$ must satisfy

$$x\sigma(\lambda^{-1}x, c + \frac{p_1(x) - p_{\lambda}(x)}{x^r}) = x\sigma(x, c) + 1 - \lambda$$

for all $\lambda \in H(d)$, $(x,c) \in \mathbb{A}^1_* \times \mathbb{A}^1$, where $p_1(x) = 1 + a_1x + \cdots + a_{r-1}x^{r-1}$ with $a_i \in \mathbb{C}$. It follows from $p_{\lambda}(x) = \lambda p_1(\lambda^{-1}x)$ that

$$p_1(x) - p_{\lambda}(x) = p_1(x) - \lambda p_1(\lambda^{-1}x)$$

= $(1 - \lambda) + \sum_{i=2}^{kd} a_i (1 - \lambda^{1-i}) x^i$,

where k is a non-negative integer such that r = 1 + kd. Set

$$\sigma(x,c) = f_0(x) + f_1(x)c,$$

where

$$f_0(x) = a_2 x + \dots + a_{kd} x^{kd-1}, \qquad f_1(x) = x^{kd}.$$

Then σ satisfies the above condition, and it follows that $\widetilde{X}(d,r,1) \cong \widetilde{X}(d,r) \times \mathbb{A}^1$ as H(d)-varieties. Next, we find a polynomial τ which gives rise to an H(d)-equivariant section of the principal G_a -bundle $\widetilde{X}(d,r,1) \to \widetilde{V}(d,1)$. The polynomial τ must satisfy

$$x^{r} \tau(\lambda^{-1}x, c + \frac{1-\lambda}{x}) = x^{r} \tau(x, c) + p_{1}(x) - p_{\lambda}(x)$$

for all $\lambda \in H(d), (x, c) \in \mathbb{A}^1_* \times \mathbb{A}^1$. Note that

$$p_1(x) - p_{\lambda}(x) = (1 - \lambda) + \sum_{\substack{2 \le i \le d \\ 0 \le j \le k - 1}} a_{i+jd} (1 - \lambda^{1-i}) x^{i+jd}.$$

Set

$$\tau(x,c) = c^r P_{1,r}(xc) + \sum_{\substack{2 \le i \le d \\ 0 \le j \le k-1}} a_{i+jd} c^{r-i-jd} P_{d-i+1,r-i-jd}(xc),$$

where $P_{i,j}(x)$ is the polynomial defined in Proposition 2.11(2). Then τ satisfies the above equation, and an H(d)-equivariant isomorphism $\widetilde{X}(d,r,1)\cong \widetilde{V}(d,1)\times \mathbb{A}^1$ holds. Hence we obtain an H(d)-equivariant isomorphism $\widetilde{X}(d,r)\times \mathbb{A}^1\cong \widetilde{V}(d,1)\times \mathbb{A}^1$ for any $r\equiv 1\pmod{d}$. Since we have an H(d)-isomorphim $\widetilde{X}'(d,s)\times \mathbb{A}^1\cong \widetilde{V}(d,1)\times \mathbb{A}^1$ for $s\equiv 1\pmod{d}$, there exists an H(d)-isomorphism $\widetilde{X}(d,r)\times \mathbb{A}^1\cong \widetilde{X}'(d,s)\times \mathbb{A}^1$.

By Lemma 2.7 and Theorem 2.16, we obtain families of non-isomorphic affine surfaces $\widetilde{X}(d,r)$ with equivariant non-cancellation property. By taking the quotients by H(d), we obtain families of affine pseudo-planes with non-cancellation property.

Theorem 2.17. Let $d \geq 2$ and let r, s > 1 and $r \equiv s \equiv 1 \pmod{d}$. Let $\widetilde{X}(d, r; f)$ be the affine hypersurface defined by $x^rz + f(x,y) = 1$, where f(x,y) is of the form $y^d + a_2x^2y^{d-2} + \cdots + a_dx^d$ with $a_j \in \mathbb{C}$. Then the quotient of $\widetilde{X}(d,r;f)$ by the Galois group H(d) is an affine pseudo-plane X(d,r;f) of type (d,r), and the following assertions hold:

(1) For any r and s,

$$X(d,r;f_1) \times \mathbb{A}^1 \cong X(d,s;f_2) \times \mathbb{A}^1,$$

where f_1 and f_2 are monic homogeneous polynomials of the form stated above.

(2) The isomorphism $X(d,r;f_1) \cong X(d,s;f_2)$ holds if and only if r=s and $f_1(x,y) = f_2(\mu x,y)$ for $\mu \in \mathbb{C}^*$.

3. An application

Let G be a reductive algebraic group. As an application of the results in the previous section, we construct the examples of families of affine G-varieties without equivariant cancellation property.

Let $Y = \operatorname{Spec} R$ be an affine G-variety such that the invariant subring R^G is a polynomial ring $\mathbb{C}[x]$ for $x \in R^G$. Let $\widetilde{Y}(d,r;f)$ be a hypersurface in $Y \times \mathbb{A}^2 = \operatorname{Spec} R[y,z]$ defined by $x^rz + f(x,y) = 1$, where f(x,y) is a monic homogeneous polynomial of degree d. Then $\widetilde{Y}(d,r;f)$ has a G_a -action induced by a locally nilpotent R-derivation $D = x^r\partial_y - f_y\partial_z$. Since the G_a -action commutes with the G-action, the inclusion $\operatorname{Ker} D = R \hookrightarrow R[y,z]$ induces a G-equivariant \mathbb{A}^1 -fibration $\widetilde{Y}(d,r;f) \to Y$. Let $\widetilde{\pi}: \widetilde{Y}(d,r;f) \to \widetilde{X}(d,r;f)$ and $\pi: Y \to \mathbb{A}^1 = \operatorname{Spec} \mathbb{C}[x]$ be the algebraic quotients by G, where $\widetilde{X}(d,r;f)$ is the affine hypersurface in $\mathbb{A}^3 = \operatorname{Spec} \mathbb{C}[x,y,z]$ defined by $x^rz + f(x,y) = 1$. Then it follows that $\widetilde{Y}(d,r;f) = \widetilde{X}(d,r;f) \times_{\operatorname{Spec}} \mathbb{C}[x] Y$.

$$\begin{array}{ccc} \widetilde{Y}(d,r;f) & \stackrel{\widetilde{\pi}}{--\!\!\!\!--\!\!\!\!--} & \widetilde{X}(d,r;f) \\ \downarrow & & & \downarrow \tilde{\rho} \\ Y & \stackrel{\pi}{--\!\!\!\!--} & \mathbb{A}^1 \\ \end{array}$$

Theorem 3.1. Let $d \geq 2$ and let r, s > d. Let $\widetilde{Y}(d, r; f_1)$ and $\widetilde{Y}(d, s; f_2)$ be affine G-varieties defined by $f_1(x, y)$ and $f_2(x, y)$ as above, respectively, where f_1 and f_2 are homogeneous polynomials of the form $y^d + a_2 x^2 y^{d-2} + \cdots + a_d x^d$ for $a_i \in \mathbb{C}$ $(2 \leq i \leq d)$. Then the following assertions hold:

(1) For any r and s, there is a G-equivariant isomorphism

$$\widetilde{Y}(d,r;f_1) \times \mathbb{A}^1 \cong \widetilde{Y}(d,s;f_2) \times \mathbb{A}^1.$$

(2) The isomorphism of G-varieties $\widetilde{Y}(d,r;f_1) \cong \widetilde{Y}(d,s;f_2)$ holds if and only if r = s and $f_1(x,y) = f_2(\mu x,y)$ for $\mu \in \mathbb{C}^*$.

Proof. The assertions follows from Theorem 2.8.

References

- J. Ax, The elementary theory of finite fields, Ann. of Math. 88 (1968), 239–271. MR0229613 (37:5187)
- [2] H. Bass and W. Haboush, Some equivariant K-theory of affine algebraic group actions, Comm. Algebra 15 (1987), 181–217. MR0876977 (88g:14013)
- [3] J. Bertin, Pinceaux de droites et automorphismes des surfaces affines, J. Reine Angew. Math. 341 (1983), 32–53. MR0697306 (84f:14035)
- [4] W. Danielewski, On the cancellation problem and automorphism group of affine algebraic varieties, preprint.
- $[5]\;$ T. tom Dieck, Homology planes without cancellation property, Arch. Math. (Basel) $\bf 59$ (1992), 105–114. MR1170634 (93i:14012)
- [6] K. H. Fieseler, On complex affine surfaces with C⁺-action, Comment. Math. Helv. 69 (1994), 5-27. MR1259603 (95b:14027)
- [7] T. Fujita, On the topology of non-complete algebraic surfaces, J. Fac. Sci. of the Univ. Tokyo, Ser. IA 29 (1982), 503-566. MR0687591 (84g:14035)
- [8] R. V. Gurjar and M. Miyanishi, On a generalization of the Jacobian Conjecture, J. Reine Angew. Math. 516 (1999), 115–132. MR1724617 (2001b:14094)
- [9] R.V. Gurjar and M. Miyanishi, Automorphisms of affine surfaces with A¹-fibrations, Michigan Math. J. 53 (2005), no. 1, 33–55. MR2125532

- [10] K. Masuda, Certain moduli of algebraic G-vector bundles over affine G-varieties, in Advanced Studies in Pure Mathematics 33, Math. Soc. of Japan, Tokyo (2002). MR1890099 (2003a:14096)
- [11] K. Masuda and M. Miyanishi, The additive group actions on Q-homology planes, Ann. Inst. Fourier, Grenoble 53, 2 (2003), 429–464. MR1990003 (2004e:14073)
- [12] K. Masuda and M. Miyanishi, Equivariant cancellation for algebraic varieties, Contemp. Math., 369, Amer. Math. Soc., Providence, RI, 2005. MR2126662
- [13] M. Miyanishi, Lectures on curves on rational and unirational surfaces, Tata Institute of Fundamental Research, Springer, 1978. MR0546289 (81f:14001)
- [14] M. Miyanishi, Open algebraic surfaces, Centre de Recherches Mathématiques, Vol. 12, Université de Montréal, Amer. Math. Soc., 2000. MR1800276 (2002e:14101)
- [15] M. Miyanishi, Singularities of normal affine surfaces containing cylinderlike open sets, J. Algebra 68 (1981), 268-275. MR0608535 (82k:14035)
- [16] M. Miyanishi, Étale endomorphisms of algebraic varieties, Osaka J. Math. 22 (1985), 345–364. MR0800978 (87f:14021)
- [17] M. Miyanishi and K. Masuda, Generalized Jacobian Conjecture and Related Topics, Proceedings of the Internat. Conf. on Algebra, Arithmetic and Geometry, Tata Institute of Fundamental Research, 427–466, 2000. MR1940676 (2004a:14065)
- [18] M. Miyanishi and T. Sugie, Homology planes with quotient singularities, J. Math. Kyoto Univ. 31 (1991), 755–788. MR1127098 (92g:14034)
- [19] G. Schwarz, Exotic algebraic group actions, C. R. Acad. Sci. Paris 309 (1989), 89–94. MR1004947 (91b:14066)
- [20] J.-P. Serre, Espaces fibrés algébriques, Séminaire C. Chevalley, Anneaux de Chow, Exposé 1, 1958.
- [21] H. Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1–28. MR0337963 (49:2732)
- [22] J. Wilkens, On the cancellation problem for surfaces, C. R. Acad. Sci. Paris 326 (1998), 1111–1116. MR1647227 (99i:14040)

Mathematical Science II, Himeji Institute of Technology, 2167 Shosha, Himeji 671-2201, Japan

E-mail address: kayo@sci.himeji-tech.ac.jp

School of Science & Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan

E-mail address: miyanisi@ksc.kwansei.ac.jp