TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 358, Number 8, Pages 3459–3472 S 0002-9947(05)03872-9 Article electronically published on September 22, 2005

A GEOMETRIC CHARACTERIZATION OF INTERPOLATION IN $\hat{\mathcal{E}}'(\mathbb{R})$

XAVIER MASSANEDA, JOAQUIM ORTEGA-CERDÀ, AND MYRIAM OUNAÏES

ABSTRACT. We give a geometric description of the interpolating varieties for the algebra of Fourier transforms of distributions (or Beurling ultradistributions) with compact support on the real line.

1. Introduction

Let $\mathcal{E}(\mathbb{R})$ be the space of smooth functions in \mathbb{R} and let $\mathcal{E}'(\mathbb{R})$ be its dual, the space of distributions with compact support on \mathbb{R} . It is well known that the space $\hat{\mathcal{E}}'(\mathbb{R})$ of Fourier transforms of distributions in $\mathcal{E}'(\mathbb{R})$ coincides with the algebra of entire functions f such that

$$|f(z)| \le C(1+|z|)^A e^{B|\text{Im }z|},$$

where A, B, C > 0 may depend on f (see [BrGa95, Theorem 1.4.15]).

A discrete sequence $\Lambda \subset \mathbb{C}$ is called $\hat{\mathcal{E}}'(\mathbb{R})$ -interpolating when the interpolation problem $f(\lambda) = v_{\lambda}$, $\lambda \in \Lambda$, has a solution $f \in \hat{\mathcal{E}}'(\mathbb{R})$ for every sequence of complex values $\{v_{\lambda}\}_{{\lambda} \in \Lambda}$ having the characteristic growth of $\hat{\mathcal{E}}'(\mathbb{R})$ on Λ (see the precise definition in Section 2).

The origin of the interest in $\hat{\mathcal{E}}'(\mathbb{R})$ -interpolation lies in its relationship with convolution equations and, in particular, with the density of exponential families $\{e^{i\lambda x}\}_{\lambda\in\Lambda}$ in the space of solutions $g\in\mathcal{E}(\mathbb{R})$ of equations of type $\mu\star g=0$, $\mu\in\mathcal{E}'(\mathbb{R})$. Any solution g to the convolution equation is the limit of linear combinations of $\{e^{i\lambda x}\}_{\lambda\in\Lambda}$ where Λ is the zero set of $\hat{\mu}$. If, moreover, the sequence Λ is $\hat{\mathcal{E}}'(\mathbb{R})$ -interpolating, then the series that represents g enjoys better convergence properties. For more on this relationship see [EhMa74] or [BrGa95, Chapter 6] (in particular, Theorem 6.1.11).

The space $\hat{\mathcal{E}}'(\mathbb{R})$ is a particular case of the algebras

$$A_p = \{ f \in H(\mathbb{C}) : \log |f(z)| \le A + Bp(z) \text{ for some } A, B > 0 \}$$

associated to positive measurable weights p, obtained by taking

(1)
$$p(z) = |\operatorname{Im} z| + \log(1 + |z|^2).$$

Received by the editors May 17, 2004.

²⁰⁰⁰ Mathematics Subject Classification. Primary 30E05, 42A85.

Key words and phrases. Interpolating sequence, entire function.

The first and second authors were supported by DGICYT grant BFM2002-04072-C02-01 and CIRIT grant 2001-SGR00172.

There exists an analytic characterization of interpolating sequences for general A_p spaces when p is subharmonic (see Theorem A below). However, a complete geometric description exists only for subharmonic weights p which are both radial (p(z) = p(|z|)) and doubling $(p(2z) \le Cp(z))$ for some C > 0; see [BrLi95, Corollary 4.8].

For the weight (1) Ehrenpreis and Malliavin gave a necessary geometric condition which turns out to be sufficient provided that Λ is a zero sequence of a slowly decreasing function (see [EhMa74, Theorem 4] and its proof). Later Squires, probably unaware of Ehrenpreis and Malliavin's result (which was stated in terms of solutions to convolution equations), proved the same result [Sq83, Theorem 2].

In this paper we give a geometric characterization for $\hat{\mathcal{E}}'(\mathbb{R})$ -interpolating sequences (Theorem 1). The characterization shows in particular that the geometric condition given by Ehrenpreis & Malliavin and Squires is also sufficient whenever the sequence is contained in the region

$$|\operatorname{Im} z| \le C \log(1 + |z|^2).$$

In general, however, their condition alone is not sufficient.

A similar characterization is obtained for the more general Beurling weights. These weights appear naturally in the context of convolution equations when one replaces distributions with compact support with Beurling-Björck ultradistributions of compact support (see [Bj66]). They are not necessarily subharmonic, but we will prove that they are equivalent to a subharmonic weight (see Lemma 8).

The paper is structured as follows. In Section 2 we give the precise definition of interpolating variety, discuss the background for the problem and state the main result. In Section 3 we prove that the geometric conditions of Theorem 1 are necessary, while in Section 4 we show that they are also sufficient.

A final remark about notation. C will always denote a positive constant and its actual value may change from one occurrence to the next. A = O(B) and $A \lesssim B$ mean that $A \leq cB$ for some c > 0, and $A \simeq B$ is $A \lesssim B \lesssim A$.

2. Preliminaries

For the following definition and general background on the problem we refer to [BrGa95, Chapter 2].

A measurable function $p:\mathbb{C}\longrightarrow\mathbb{R}_+$ is called a *weight* if for some C,D>0:

- (a) $\log(1+|z|^2) \le Cp(z)$ for all $z \in \mathbb{C}$.
- (b) $p(\zeta) \leq Cp(z) + D$ if $|\zeta z| \leq 1$.

The importance of these properties lies in their consequences for the ring A_p defined in the introduction: (a) implies that A_p contains all polynomials, and (b) that A_p is closed under differentiation.

The algebra A_p can be thought of as the union of the Hilbert spaces

$$A_{p,\alpha}^{2} := \left\{ f \in H(\mathbb{C}) : \|f\|_{A_{p,\alpha}^{2}}^{2} = \int_{\mathbb{C}} |f(z)|^{2} e^{-\alpha p(z)} dm(z) < \infty \right\}$$

for $\alpha > 0$, as well as the union of the Banach spaces

$$A^{\infty}_{p,\alpha}:=\left\{f\in H(\mathbb{C}): \|f\|_{A^{\infty}_{p,\alpha}}=\sup_{z\in\mathbb{C}}|f(z)|e^{-\alpha p(z)}<\infty\right\}\,.$$

Also, $A_p = \bigcup_{\alpha>0} A_{p,\alpha}^{\infty}$ has the structure of an (LF)-space with the topology of the inductive limit.

Definition. Let Λ be a discrete sequence in \mathbb{C} and let $\{m_{\lambda}\}_{{\lambda}\in\Lambda}$ be a sequence of natural numbers. The pair $X = \{(\lambda, m_{\lambda})\}_{{\lambda} \in \Lambda}$ is called an *interpolating variety* for the space A_p if for every sequence of values $\{v_{\lambda}^l\}_{\lambda,l}, \lambda \in \Lambda, l = 0, \dots, m_{\lambda} - 1$, with

$$\sup_{\lambda \in \Lambda} \Bigl(\sum_{l=0}^{m_{\lambda}-1} |v_{\lambda}^{l}| \Bigr) e^{-\alpha p(\lambda)} < \infty$$

for some $\alpha > 0$, there exists $f \in A_p$ with

$$\frac{f^{(l)}(\lambda)}{l!} = v_{\lambda}^{l}, \qquad \lambda \in \Lambda; \quad l = 0, \dots, m_{\lambda} - 1.$$

The choice of condition (2) on the values to be interpolated reflects the fact that for every $f \in A_p$ there exists $\alpha > 0$ such that

$$\sup_{z \in \mathbb{C}} \left(\sum_{l=0}^{\infty} \left| \frac{f^{(l)}(z)}{l!} \right| \right) e^{-\alpha p(z)} < \infty.$$

Thus, denoting by $A_p(X)$ the space of sequences $\{v_{\lambda}^l\}_{\lambda,l}$ satisfying (2) for some $\alpha > 0$, we can equivalently define interpolating varieties X as those such that the restriction operator

$$\mathcal{R}_X : A_p(\mathbb{C}) \longrightarrow A_p(X)$$
$$f \mapsto \left\{ \frac{f^{(l)}(\lambda)}{l!} \right\}_{\lambda, l}$$

is onto.

There exists an analytic characterization of A_p -interpolating varieties for general subharmonic weights p (see [BrLi95, Corollary 3.5]). Results for p(z) = |z| and the weight (1) were previously obtained respectively by Leont'ev [Le72] and Squires [Sq81].

Given a holomorphic function f let $\mathcal{Z}(f)$ denote its zero variety, i.e., the set of pairs $(z, m_z) \in \mathbb{C} \times \mathbb{N}$ such that f(z) = 0 with multiplicity m_z .

Theorem A. A variety $X = \{(\lambda, m_{\lambda})\}_{{\lambda} \in \Lambda}$ is A_p -interpolating if and only if there exists $f \in A_p$ such that $X \subset \mathcal{Z}(f)$ and for some constants $\delta, C > 0$,

$$\Big|\frac{f^{(m_{\lambda})}(\lambda)}{m_{\lambda}!}\Big| \geq \delta e^{-Cp(\lambda)}, \qquad \lambda \in \Lambda.$$

We would like to give a geometric description of A_p -interpolating varieties for the non-isotropic Beurling weights

$$p(z) = |\operatorname{Im} z| + \omega(|z|),$$

where $\omega(t)$ is a subadditive increasing continuous function, normalized with $\omega(0)$ 0 and such that:

- (c) $\log(1+t) \lesssim \omega(t)$ for t > 1. (d) $\int_0^\infty \frac{\omega(t)}{1+t^2} dt < \infty$.

Canonical examples of such weights are given by $\omega(t) = \log(1+t^2)$ and $\omega(t) = t^{\gamma}$, $\gamma \in (0,1).$

Beurling weights satisfy the following additional properties:

(e) For every c>0 there exists C>0 such that $p(\zeta)\leq Cp(z)$ if $\zeta\in$ D(z, cp(z)).

- (f) For $\varepsilon > 0$ small enough, there exists $C(\varepsilon) > 0$ such that if $z \in D(\zeta, \varepsilon p(\zeta))$, then $p(\zeta) \leq C(\varepsilon)p(z)$. Also, $C(\varepsilon)$ tends to 1 as ε goes to 0.
- (g) For $x \in \mathbb{R}^+$ big enough, the function $\omega(x)$ does not oscillate too much. More precisely, for fixed C > 0, if $y \in (x C\omega(x), x + C\omega(x))$, then $1/2 \le \omega(y)/\omega(x) \le 2$ for x big enough.

Properties (e) and (f) follow easily from the subadditivity of ω . Property (g) follows from the subadditivity and the fact that $\omega(x) = o(|x|/\log|x|)$ (see [Bj66, Lemma 1.2.8]): for any $y \in (x - C\omega(x), x + C\omega(x))$,

$$\omega(x - C\omega(x)) \le \omega(y) \le \omega(x + C\omega(x)) \le \omega(x - C\omega(x)) + \omega(2C\omega(x))$$

$$\le \omega(x - C\omega(x)) + \omega(2Cx/\log x) \le 2\omega(x - C\omega(x)).$$

In order to state the geometric conditions on a variety X as above, we consider the counting function $n(z,r) = \sum_{\lambda \in D(z,r)} m_{\lambda}$ and the integrated version

$$N(z,r) = \int_0^r \frac{n(z,t) - n(z,0)}{t} dt + n(z,0) \log r.$$

In case we want to specify the variety X to which the functions n and N refer, we will use the notation n(z, r, X) and N(z, r, X) respectively.

We are ready to state our main result.

Theorem 1. A variety $X = \{(\lambda, m_{\lambda})\}_{{\lambda} \in \Lambda}$ is A_p -interpolating if and only if:

(i) There is C > 0 such that

$$N(\lambda, p(\lambda), X) \le Cp(\lambda) \quad \forall \lambda \in \Lambda.$$

(ii) The following Carleson-type condition holds:

$$\sup_{x \in \mathbb{R}} \sum_{\lambda: |\operatorname{Im} \lambda| > \omega(|\lambda|)} m_{\lambda} \frac{|\operatorname{Im} \lambda|}{|x - \lambda|^2} < \infty.$$

Since the Poisson kernel at λ in the corresponding half-plane (upper half-plane if $\operatorname{Im} \lambda > 0$ and lower half-plane when $\operatorname{Im} \lambda < 0$) is $P(\lambda, x) = \frac{|\operatorname{Im} \lambda|}{|x - \lambda|^2}$, a restatement of condition (ii) is that the measure $\sum_{\lambda:|\operatorname{Im} \lambda|>\omega(|\lambda|)} m_{\lambda}\delta_{\lambda}$ has bounded Poisson balayage.

Remark 2. Notice that for sequences Λ within the region $|\operatorname{Im} z| \leq \omega(|z|)$, condition (i) (shown to be necessary by Ehrenpreis & Malliavin and Squires) provides a complete characterization. However, this is not the case in general, i.e. condition (ii) does not follow from (i), as it is shown in the following example. Take the sequence Λ contained in the sector $\mathcal{A} = \{z \in \mathbb{C}; |\operatorname{Re} z| < \operatorname{Im} z\}$ and having in each segment $\{\operatorname{Im} z = 2^n\} \cap \mathcal{A}$ exactly 2^n equispaced points. Then Λ satisfies condition (i) (basically $n(\lambda, t) \leq t$ for $t \leq p(\lambda)$), but it does not satisfy (ii) (it is not even a Blaschke sequence).

3. Necessary conditions

A standard feature of the spaces A_p is that the interpolation can be performed in a stable way. This consequence of the open mapping theorem for (LF)-spaces applied to the restriction mapping \mathcal{R}_X defined in Section 2 (see [BrGa95, Lemma 2.2.6]) is stated precisely in the following lemma.

Lemma 3. If X is an interpolating variety, there exist C > 0, $M \in \mathbb{N}$ such that for every $\lambda \in \Lambda$ there are functions $f_{\lambda}, g_{\lambda} \in A_p$ with bounded norms $\|f_{\lambda}\|_{A_{p,M}^{\infty}}$, $\|g_{\lambda}\|_{A_{p,M}^{\infty}} \leq C$ and

$$\begin{split} f_{\lambda}^{(l)}(\lambda')/l! &= \delta_{\lambda\lambda'}\delta_{l0}, \\ g_{\lambda}^{(l)}(\lambda')/l! &= \delta_{\lambda\lambda'}\delta_{l(m_{\lambda}-1)} \qquad \forall \lambda, \lambda' \in \Lambda, \ 0 \leq l \leq m_{\lambda}. \end{split}$$

An application of Jensen's Formula to the functions f_{λ} , g_{λ} in the disk $D(\lambda, p(\lambda))$ gives the following result (see [EhMa74, Theorem 4] or [Sq83, Theorem 1]).

Theorem 4. If X is A_p -interpolating, then condition (i) of Theorem 1 holds.

The necessity of condition (ii) is an immediate consequence of the following result. Assume that $\Lambda \cap \mathbb{R} = \emptyset$; otherwise move the horizontal line so that it does not touch any of the points in Λ . Let \mathbb{H} denote the upper half-plane.

Proposition 5. Let X be A_p -interpolating. There exist C > 0 such that

$$\sum_{\substack{\lambda' \in \Lambda \cap \mathbb{H} \\ \lambda' \neq \lambda}} m_{\lambda'} \log \left| \frac{\lambda - \lambda'}{\lambda - \overline{\lambda'}} \right|^{-1} \le Cp(\lambda) \quad \text{for all } \lambda \in \Lambda \cap \mathbb{H}.$$

Of course, an analogous result could be given for any upper $(\{z : \text{Im} z > a\})$ or lower $(\{z : \text{Im} z < a\})$ half-plane.

Before giving the proof of Proposition 5, we show that it implies condition (ii) of Theorem 1. Define $\Lambda_+ = \Lambda \cap \{\operatorname{Im} z > \omega(|z|)\}$. Given $x \in \mathbb{R}$ consider $\lambda \in \Lambda_+$ such that $|x - \lambda| = \inf_{\Lambda_+} |x - \lambda|$. Then

$$|\lambda - \bar{\lambda}'| \le |\lambda - x| + |x - \bar{\lambda}'| = |\lambda - x| + |x - \lambda'| \le 2|x - \lambda'|,$$

and therefore

$$\sum_{\lambda' \in \Lambda_+} m_{\lambda'} \frac{|\operatorname{Im} \lambda'|}{|x - \bar{\lambda}'|^2} \le 2 \sum_{\lambda' \in \Lambda_+} m_{\lambda'} \frac{|\operatorname{Im} \lambda'|}{|\lambda - \bar{\lambda}'|^2}.$$

The estimate $\log t^{-1} > 1 - t$ for $t \in (0,1)$ shows that

$$\sum_{\substack{\lambda' \in \Lambda_+ \\ \lambda' \neq \lambda}} m_{\lambda'} \frac{|\operatorname{Im} \lambda| |\operatorname{Im} \lambda'|}{|\lambda - \bar{\lambda}'|^2} \leq \sum_{\substack{\lambda' \in \Lambda_+ \\ \lambda' \neq \lambda}} m_{\lambda'} \log \left| \frac{\lambda - \lambda'}{\lambda - \bar{\lambda}'} \right|^{-1}.$$

Since $p(\lambda) \simeq |\operatorname{Im} \lambda|$ for $\lambda \in \Lambda_+$, it is clear that this implies condition (ii) of Theorem 1.

Remark 6. The necessary condition of Proposition 5 can be seen as a Carleson-type condition; it can be rewritten as

$$|B_{\lambda}(\lambda)| \ge \delta e^{-Cp(\lambda)}, \quad \lambda \in \Lambda \cap \mathbb{H}$$

where B denotes the Blaschke product in \mathbb{H} of $\{(\lambda, m_{\lambda})\}_{\lambda \in \Lambda \cap \mathbb{H}}$, and

$$B_{\lambda}(z) = B(z) \left(\frac{z - \bar{\lambda}}{z - \lambda}\right)^{m_{\lambda}}.$$

It can also be seen as density conditions for the counting function associated to the hyperbolic metric in the half-plane. Letting $\nu = \sum_{\lambda \in \Lambda \cap \mathbb{H}} m_{\lambda} \delta_{\lambda}$ and using the distribution function we have

$$\sum_{\lambda \in \Lambda} m_{\lambda} \log \left| \frac{z - \lambda}{z - \bar{\lambda}} \right|^{-1} = \int_{\mathbb{H}} \log \left| \frac{z - \zeta}{z - \bar{\zeta}} \right|^{-1} d\nu(\zeta) = \int_{0}^{1} \frac{n_{\mathbb{H}}(z, t)}{t} \ dt,$$

where

$$D_{\mathbb{H}}(z,t) = \{\zeta : \left| \frac{z - \zeta}{z - \overline{\zeta}} \right| < t\}, \quad \text{and} \quad n_{\mathbb{H}}(z,t) := \nu(D_{\mathbb{H}}(z,t))$$

is the number of points of Λ in the pseudohyperbolic disk of "center" z and "radius" t (actually the true disk of center $\text{Re}z + i\frac{1+t^2}{1-t^2}\text{Im}z$ and radius $\frac{2t}{1-t^2}\text{Im}z$).

Proof of Proposition 5. Let z = x + iy and consider the Poisson transform of $\omega(|t|)$:

$$u(z) := P[\omega](z) = \int_{\mathbb{R}} \frac{y \,\omega(|t|)}{(x-t)^2 + y^2} \,dt,$$

which converges by (d). Define $H = \exp(u + i\tilde{u})$, where \tilde{u} is a harmonic conjugate of u.

Given $\lambda \in \Lambda \cap \mathbb{H}$, take the function f_{λ} given by Lemma 3 and define

$$h_{\lambda}(z) = \frac{f_{\lambda}(z)e^{iM_1z}}{(H(z))^{M_2}},$$

with M_1, M_2 to be chosen. It is clear that h_{λ} is holomorphic in \mathbb{H} . On the other hand, for all z in the upper half-plane $|\log |H(z)| - \omega(|\mathrm{Re}z|)| \leq A + B|\mathrm{Im}z|$; see [Bj66, Lemma 1.3.11]. Moreover, $|\omega(|\mathrm{Re}z|) - \omega(|z|)| \leq \omega(|\mathrm{Im}z|) \leq A + B|\mathrm{Im}z|$, thus $|\log |H(z)| - \omega(|z|)| \leq A + B|\mathrm{Im}z|$. Therefore, if M_1 and M_2 are big enough, h_{λ} is bounded in \mathbb{H} by a constant which does not depend on λ :

$$|h_{\lambda}(z)| \le Ce^{Mp(z) - M_1 \text{Im } z - M_2 \log |H(z)|} \lesssim 1.$$

Also,

$$|h_{\lambda}(\lambda)| = e^{-M_1 \operatorname{Im} \lambda - M_2 \log |H(\lambda)|} \ge e^{-Cp(\lambda)}.$$

Now apply Jensen's formula in the half-plane to the function h_{λ} :

$$\log |h_{\lambda}(\lambda)| = \int_{\mathbb{R}} P(\lambda, x) \log |h_{\lambda}(x)| dx - \int_{\mathbb{H}} G(\lambda, \zeta) \Delta \log |h_{\lambda}(\zeta)|,$$

where $P(\lambda, x)$ denotes the Poisson kernel and $G(\lambda, \zeta) = \log \left| \frac{\lambda - \zeta}{\lambda - \overline{\zeta}} \right|^{-1}$ is the Green function in \mathbb{H} with pole in λ .

Since h_{λ} vanishes on $\Lambda \setminus \{\lambda\}$, Jensen's Formula and the estimates above yield

$$\sum_{\substack{\lambda' \in \Lambda \cap \mathbb{H} \\ \lambda' \neq \lambda}} m_{\lambda'} \log \left| \frac{\lambda - \lambda'}{\lambda - \bar{\lambda'}} \right|^{-1} \leq \sup_{\mathbb{R}} \log |h_{\lambda}| - \log |h_{\lambda}(\lambda)| \lesssim p(\lambda).$$

4. Sufficient conditions

We split the sequence into three pieces, according to the non-isotropy of the weight p. Consider the regions

$$\Omega_0 = \{ z \in \mathbb{C} : |\operatorname{Im} z| \le \omega(|z|) \},
\Omega_+ = \{ z \in \mathbb{C} : \operatorname{Im} z > \omega(|z|) \},
\Omega_- = \{ z \in \mathbb{C} : \operatorname{Im} z < -\omega(|z|) \},$$

and define $\Lambda_0 = \Lambda \cap \Omega_0$, $\Lambda_+ = \Lambda \cap \Omega_+$ and $\Lambda_- = \Lambda \cap \Omega_-$. Let also $X_0 = \{(\lambda, m_{\lambda})\}_{\lambda \in \Lambda_0}$, $X_+ = \{(\lambda, m_{\lambda})\}_{\lambda \in \Lambda_+}$ and $X_- = \{(\lambda, m_{\lambda})\}_{\lambda \in \Lambda_-}$.

It is enough to prove that each piece X_+, X_-, X_0 of the variety X is A_p -interpolating. This is so because X is weakly separated (see Lemma 7(i) below), and

a weakly separated union of a finite number of A_p -interpolating varieties is also A_p -interpolating [Ou03, Theorem II.1]. It is also clear that the varieties X^+ and X^- can be dealt with similarly.

We start with some easy consequences of condition (i) of Theorem 1.

Lemma 7. If condition (i) in Theorem 1 holds, then

(i) X is weakly separated: there exist $\delta, C > 0$ such that the disks $D_{\lambda} = D(\lambda, \delta e^{-C\frac{p(\lambda)}{m_{\lambda}}})$ are pairwise disjoint, i.e.

$$|\lambda - \lambda'| \ge 2\delta \max[e^{-C\frac{p(\lambda)}{m_{\lambda}}}, e^{-C\frac{p(\lambda')}{m_{\lambda'}}}], \qquad \lambda \ne \lambda'.$$

(ii) There exist $\varepsilon, C > 0$ such that $n(z, \varepsilon p(z), X) \leq Cp(z), \forall z \in \mathbb{C}$.

Proof. (i) If there exists λ' such that $|\lambda' - \lambda| < 1$, then

$$N(\lambda, p(\lambda), X) \ge \int_{|\lambda' - \lambda|}^1 \frac{n(\lambda, t) - m_\lambda}{t} dt \ge \int_{|\lambda' - \lambda|}^1 \frac{m_{\lambda'}}{t} dt = \log \left(\frac{1}{|\lambda' - \lambda|}\right)^{m_{\lambda'}}.$$

Using condition (i) in Theorem 1 and reversing the roles of λ and λ' we obtain the desired estimate.

(ii) When $z = \lambda \in \Lambda$, this is immediate from the estimate

$$\int_{1/2p(\lambda)}^{p(\lambda)} \frac{n(\lambda, 1/2p(\lambda)) - 1}{t} dt \le N(\lambda, p(\lambda)).$$

When $z \notin \Lambda$, then let $\varepsilon > 0$ be such that $\zeta \in D(z, \varepsilon p(z))$ implies

$$D(z, \varepsilon p(z)) \subset D(\zeta, 1/2p(\zeta)),$$

which exists by property (f) of the weight. Take $\lambda \in D(z, \varepsilon p(z))$ (if there is no such λ the estimate is obviously true). Then, by the previous case and property (e) of the weight

$$n(z, \varepsilon p(z)) \le n(\lambda, 1/2p(\lambda)) \lesssim p(\lambda) \lesssim p(z).$$

4.1. Case Λ_0 . We would like to prove that $X_0 = \{(\lambda, m_{\lambda})\}_{\lambda \in \Lambda_0}$ is A_p -interpolating using a $\bar{\partial}$ -scheme. This is easier if we can regularize the weight in the following way.

Lemma 8. There exists \tilde{p} subharmonic in \mathbb{C} such that $p(z) \simeq \tilde{p}(z)$ and

(3)
$$1/\tilde{p}(z) \leq \Delta \tilde{p}(z) \quad \text{if } |\text{Im}z| < 2\omega(|z|).$$

The fact that $p \simeq \tilde{p}$ clearly implies that $A_p = A_{\tilde{p}}$ and the interpolating varieties for A_p and $A_{\tilde{p}}$ are the same.

Proof. We will construct $\tilde{p}(z) = |\mathrm{Im}z| + r(z)$, where r satisfies the following properties:

- (i) $r \geq 0$ and \tilde{p} is subharmonic in \mathbb{C} .
- (ii) $r(z) = 0 \text{ if } |\text{Im} z| \ge 10\omega(|z|).$
- (iii) $1/p(z) \lesssim \Delta \tilde{p}(z)$ and $r(z) \simeq \omega(|z|)$ if $|\mathrm{Im}z| \leq 2\omega(|z|)$.

In order to construct r, we partition the real line into intervals I_n defined in the following way.

Let $x_1 > 1$, $x_{n+1} = x_n + \omega(x_n)$ for $n \ge 1$ and $x_n = -x_{-n}$ for $n \le -1$. Set $I_0 = [x_{-1}, x_1], I_n = [x_n, x_{n+1}] \text{ for } n \ge 1 \text{ and } I_n = [x_{n-1}, x_n] \text{ for } n \le -1.$ Denote by ω_n the length of I_n .

We consider two measures in \mathbb{C} . The first one is the usual length measure $d\nu$ in \mathbb{R} , which we split $d\nu = \sum_n d\nu_n$, with $d\nu_n = dx_{|I_n}$. The second one is defined as a sum of convolutions of the $d\nu_n$'s: let

$$d\mu_n(z) = \left(\frac{1}{100\pi\omega_n^2} \int_{I_n} \chi_{D_n}(z-x) dx\right) dm(z),$$

where $D_n = D(0, 10\omega_n)$, and define $d\mu = \sum_n d\mu_n$. Notice that when z is at a distance of I_n smaller than $2\omega_n$, we can use property (g) of the Beurling weights to deduce that $d\mu(z) \simeq 1/\omega(|z|) \simeq 1/p(z)$. Hence $d\mu(z) \simeq dm(z)/p(z)$.

Define

$$r(z) = \int_{\mathbb{C}} \log|z - w| (d\mu(w) - d\nu(w)).$$

Since $\Delta |\text{Im } z| = d\nu$, we have $\Delta \tilde{p} = d\mu \geq 0$.

Let S_n denote the support of μ_n . Let

$$r_n(z) := \int_{\mathbb{C}} \log|z-w| (d\mu_n(w)-d\nu_n(w)) = \int_{S_n} \log|z-w| d\mu_n(w) - \int_{I_n} \log|z-x| dx.$$

Using the definition of μ_n and reversing the order of integration we get

$$r_n(z) = \int_{I_n} M(x) dx,$$

where

$$M(x) = \frac{1}{100\pi\omega_n^2} \int_{D(x,10\omega_n)} \log|z - w| dm(w) - \log|z - x| \ge 0.$$

In particular, r is non-negative in \mathbb{C} .

If $z \notin S_n$ and $x \in I_n$, $\log |z - w|$ is harmonic in $D(x, 10\omega_n)$, hence $r_n(z) = 0$. Suppose now $z \in D(x_n, 3\omega_n)$. Then, for each $x \in I_n$, $|z - x| \le 4\omega_n$ and

$$M(x) \geq \frac{1}{100\pi\omega_n^2} \int_{9\omega_n \leq |w-x| \leq 10\omega_n} \log \frac{|z-w|}{|z-x|} dm(w) \gtrsim 1.$$

Thus, $r_n(z) \gtrsim \omega_n \gtrsim \omega(|z|)$.

If $z \in S_n$, using that μ_n and ν_n have the same mass $\omega(x_n)$, we obtain

$$\int_{\mathbb{C}} \log|z - w| (d\mu_n(w) - d\nu_n(w)) \le \int_{\mathbb{C}} \left| \log \frac{|z - w|}{\omega(x_n)} \right| (d\mu_n(w) + d\nu_n(w))$$

$$\lesssim \int_{\mathbb{C}} \left| \log \frac{|x_n - w|}{\omega(x_n)} \right| (d\mu_n(w) + d\nu_n(w)) \lesssim \omega(|z|).$$

Since $|\text{Im} z| \leq 2\omega(|z|)$, z belongs at most to a finite number of S_n 's and at least to one $D(x_n, 10\omega_n)$, by property (g) of the Beurling weights, we are done.

Let us prove now that X_0 is $A_{\tilde{p}}$ -interpolating. In view of Lemma 8, we assume that $1/p \leq \Delta p$ on $|\text{Im}z| \leq 2\omega(|z|)$.

Consider the separation radii $\delta_{\lambda} := \delta e^{-Cp(\lambda)}$ given by Lemma 7(i).

Given a sequence of values $\{v_{\lambda}^{\ell}\}_{\lambda,\ell}$ satisfying (2), define the smooth interpolating function

$$F(z) = \sum_{\lambda \in \Lambda_0} p_{\lambda}(z) \mathcal{X}\left(\frac{|z - \lambda|^2}{\delta_{\lambda}^2}\right),$$

where $p_{\lambda}(z) = \sum_{l=0}^{m_{\lambda}-1} v_{\lambda}^{l}(z-\lambda)^{l}$ and \mathcal{X} is a smooth cut-off function with $|\mathcal{X}'| \lesssim 1$, $\mathcal{X}(x) = 1$ if $|x| \leq 1$ and $\mathcal{X}(x) = 0$ if $|x| \geq 2$.

It is clear that $F^{(l)}(\lambda)/l! = v_{\lambda}^l$, and that F has the characteristic growth of A_p functions; the support of F is contained in $\bigcup_{\lambda} D_{\lambda}$ and for $z \in D_{\lambda}$,

$$|F(z)| \leq \sum_{l=0}^{m_{\lambda}-1} |v_{\lambda}^{l}| \leq C e^{\alpha p(\lambda)} \lesssim e^{Kp(z)}.$$

There is also a good estimate on $\bar{\partial}F$. Its support is the union of the annuli

$$C_{\lambda} = \{ z \in \mathbb{C} : \delta_{\lambda} \le |z - \lambda| \le 2\delta_{\lambda} \},$$

and for $z \in C_{\lambda}$,

$$\left|\frac{\partial F}{\partial \bar{z}}(z)\right| \lesssim \sum_{l=0}^{m_{\lambda}-1} |v_{\lambda}^{l}| |\mathcal{X}'| \frac{1}{\delta_{\lambda}} \lesssim e^{Cp(\lambda)} \lesssim e^{Kp(z)},$$

for K big enough.

Altogether, there exists $\gamma > 0$ such that

(4)
$$\int_{\mathbb{C}} |F(z)|^2 e^{-\gamma p(z)} < \infty, \quad \int_{\mathbb{C}} |\bar{\partial}F(z)|^2 e^{-\gamma p(z)} < \infty.$$

Now, when looking for a holomorphic interpolating function of the form f = F - u, we are led to the $\bar{\partial}$ -problem

$$\bar{\partial}u = \bar{\partial}F$$
.

which we solve using Hörmander's theorem [Ho94, Theorem 4.2.1]: given a (pluri)-subharmonic function ψ in \mathbb{C} , there exists a solution u to the above equation such that

$$2\int_{\mathbb{C}} |u|^2 \frac{e^{-\psi}}{(1+|z|^2)^2} dm \le \int_{\mathbb{C}} |\bar{\partial}F|^2 e^{-\psi} dm .$$

We apply Hörmander's theorem with

$$\psi_{\beta}(z) = \beta p(z) + v(z),$$

where $\beta > 0$ will be chosen later on and

$$v(z) = \sum_{\lambda \in \Lambda_0} m_{\lambda} \left[\log|z - \lambda|^2 - \frac{1}{\pi \varepsilon^2 p^2(\lambda)} \int_{D(\lambda, \varepsilon p(\lambda))} \log|z - \zeta|^2 dm(\zeta) \right].$$

Here ε is a fixed small constant to be determined later on.

Integrating by parts the equality

$$\int_0^{2\pi} \log|a - re^{i\theta}|^2 \frac{d\theta}{2\pi} = \begin{cases} \log|a|^2 & \text{if } |a| > r, \\ \log r^2 & \text{if } |a| \le r, \end{cases}$$

one sees that for $a \in \mathbb{C}$ and r > 0,

$$\log|a|^2 - \frac{1}{\pi r^2} \int_{D(a,r)} \log|\zeta|^2 dm(\zeta) = \begin{cases} \log|\frac{a}{r}|^2 + 1 - |\frac{a}{r}|^2 & \text{if } |a| \le r, \\ 0 & \text{if } |a| > r. \end{cases}$$

Thus

$$v(z) = \sum_{\lambda: |\lambda - z| \le \varepsilon p(\lambda)} m_{\lambda} \left[\log \frac{|z - \lambda|^2}{\varepsilon^2 p^2(\lambda)} + 1 - \frac{|z - \lambda|^2}{\varepsilon^2 p^2(\lambda)} \right].$$

In particular, $v \leq 0$ and $\Delta v(z) = 0$ if $z \notin \bigcup_{\lambda} D(\lambda, \varepsilon p(\lambda))$. For $z \in \bigcup_{\lambda} D(\lambda, \varepsilon p(\lambda))$ we have $|\operatorname{Im} z| \leq 2\omega(|z|)$ and

$$\Delta v(z) \ge \sum_{\lambda: |\lambda - z| \le \varepsilon p(\lambda)} \frac{-m_{\lambda}}{\varepsilon^2 p^2(\lambda)} \gtrsim \sum_{\lambda: |\lambda - z| \le C(\varepsilon) p(z)} \frac{-m_{\lambda}}{p^2(z)} = -\frac{n(z, C(\varepsilon) p(z))}{p^2(z)} .$$

As observed in Lemma 7(ii), with ε small enough $n(z, C(\varepsilon)p(z)) \lesssim p(z)$, thus $\Delta v(z) \gtrsim -1/p(z)$. This and (3) show that ψ_{β} is subharmonic if β is chosen big enough.

Also, we deduce from (c) that for any $\beta' > \beta$,

$$\int_{\mathbb{C}} |u|^2 e^{-\beta' p} dm \lesssim \int_{\mathbb{C}} |u|^2 \frac{e^{-\psi_{\beta}}}{(1+|z|^2)^2} dm \lesssim \int_{\mathbb{C}} |\bar{\partial} F|^2 e^{-\psi_{\beta}} dm .$$

We need to control ψ_{β} on the support of $\bar{\partial} F$. For $z \in C_{\lambda}$,

$$\begin{aligned} |\psi_{\beta}(z) - \beta p(z)| &\leq \sum_{\lambda: |\lambda - z| \leq \varepsilon p(\lambda)} m_{\lambda} \log \frac{\varepsilon^{2} p^{2}(\lambda)}{|z - \lambda|^{2}} \\ &\simeq m_{\lambda} \log \frac{\varepsilon^{2} p^{2}(\lambda)}{|z - \lambda|^{2}} + \sum_{\substack{\lambda': |z - \lambda'| \leq \varepsilon p(\lambda') \\ \lambda' \neq \lambda}} m_{\lambda'} \log \frac{\varepsilon^{2} p^{2}(\lambda')}{|z - \lambda'|^{2}} \\ &\lesssim p(\lambda) + \sum_{\substack{\lambda': |\lambda' - z| \leq C(\varepsilon) p(z) \\ \lambda' \neq \lambda}} m_{\lambda'} \log \frac{C(\varepsilon)^{2} p^{2}(z)}{|z - \lambda'|^{2}} \\ &\lesssim p(z) + N(z, C(\varepsilon) p(z)). \end{aligned}$$

Claim 9. For ε small enough $N(z, C(\varepsilon)p(z)) \leq p(z)$ for all $z \in supp(\bar{\partial}F)$.

Assuming the claim we have $|\psi_{\beta}(z) - \beta p(z)| \leq Kp(z)$ on $supp(\bar{\partial}F)$. Therefore, for β big enough

$$\int_{\mathbb{C}} |u|^2 e^{-\beta' p} dm \lesssim \int_{\mathbb{C}} |\bar{\partial} F|^2 e^{-\psi_{\beta}} dm \leq \int_{\mathbb{C}} |\bar{\partial} F|^2 e^{-\gamma p} dm < \infty \ .$$

This shows that $f:=F-u\in A_p$. Since $e^{-\psi_\beta}\simeq |z-\lambda|^{-2m_\lambda}$ around each λ , also $u^{(l)}(\lambda)=0$ for all $\lambda\in\Lambda,\ l=0,\ldots,m_\lambda-1,$ and therefore $f^{(l)}(\lambda)/l!=F^{(l)}(\lambda)/l!=v_\lambda^l$, as required.

Proof of the claim. Assume $z \in C_{\lambda}$ and observe that n(z,t) = 0 for $t < \delta_{\lambda}$ and that $n(z,t) \le m_{\lambda}$ for $\delta_{\lambda} \le t < 2\delta_{\lambda}$. Since $D(z,t) \subset D(\lambda,t+2\delta_{\lambda})$ and $|z| < |\lambda| + 2\delta_{\lambda}$, we have (changing into $s = t + 2\delta_{\lambda}$)

$$\begin{split} N(z,C(\varepsilon)p(z)) & \leq \int_{\delta_{\lambda}}^{2\delta_{\lambda}} \frac{m_{\lambda}}{t} \; dt + \int_{2\delta_{\lambda}}^{C(\varepsilon)p(z)} \frac{n(z,t) - m_{\lambda}}{t} \; dt \\ & \leq p(\lambda) + \int_{4\delta_{\lambda}}^{C(\varepsilon)p(z) + 2\delta_{\lambda}} \frac{n(\lambda,s) - m_{\lambda}}{s - 2\delta_{\lambda}} \; ds \\ & \lesssim p(\lambda) + \int_{4\delta_{\lambda}}^{C(\varepsilon)p(z) + 2\delta_{\lambda}} \frac{n(\lambda,s) - m_{\lambda}}{s/2} \; ds \lesssim p(\lambda) + N(\lambda,C'(\varepsilon)p(\lambda)). \end{split}$$

From the properties of the weight and the hypothesis we have finally that for ε small $N(z, C(\varepsilon)p(z)) \lesssim p(\lambda) \lesssim p(z)$.

4.2. Case Λ^+ . According to Theorem A, it is enough to construct a function $G \in A_p$ such that $X_+ \subset \mathcal{Z}(G)$ and

$$\frac{|G^{(m_{\lambda})}(\lambda)|}{m_{\lambda}!} \ge \varepsilon e^{-Kp(\lambda)}, \qquad \lambda \in \Lambda_{+},$$

for some constants $\varepsilon, k > 0$. In fact, the hypotheses of Theorem A require the weight p to be subharmonic, and our weights are not necessarily so. Nevertheless, by Lemma 8, there exists a subharmonic weight \tilde{p} equivalent to p, and we may apply Theorem A to \tilde{p} .

Take any entire function F such that $\mathcal{Z}(F) = X_+$. Since the necessary conditions imply that X_+ satisfies the Blaschke condition in \mathbb{H} , we can consider also the Blaschke product

$$B(z) = \prod_{\lambda \in \Lambda_+} \left(\frac{z - \lambda}{z - \overline{\lambda}}\right)^{m_\lambda}, \qquad z \in \mathbb{H}.$$

Define

$$\phi(z) = \begin{cases} \log \left| \frac{F(z)}{B(z)} \right|, & \text{Im } z > 0, \\ \log |F(z)|, & \text{Im } z \le 0. \end{cases}$$

Lemma 10. ϕ is harmonic outside the real axis, subharmonic on \mathbb{C} and its Laplacian is uniformly bounded.

Proof. It is clear, by definition, that ϕ is harmonic on $\mathbb{C} \setminus \mathbb{R}$. In order to prove that ϕ is subharmonic on \mathbb{C} , it is enough to check the mean inequality for $x \in \mathbb{R}$. We have

$$\phi(x) = \log|F(x)| \le \frac{1}{2\pi} \int_0^{2\pi} \log|F(x + re^{i\theta})| d\theta \le \frac{1}{2\pi} \int_0^{2\pi} \phi(x + re^{i\theta}) d\theta.$$

Since $\Delta \log |F| \equiv 0$ around \mathbb{R} , it is enough to compute the Laplacian of

$$\psi(z) = \begin{cases} \log \frac{1}{|B(z)|}, & \text{Im } z > 0, \\ 0, & \text{Im } z \le 0. \end{cases}$$

Being

$$\log \frac{1}{|B(z)|} = \frac{1}{2} \sum_{\lambda \in \Lambda^+} m_{\lambda} \log \left| \frac{z - \bar{\lambda}}{z - \lambda} \right|^2,$$

it will be enough to compute the Laplacian of each term

$$\psi_{\lambda}(z) = \begin{cases} \log \left| \frac{z - \bar{\lambda}}{z - \lambda} \right|^2, & \text{Im } z > 0, \\ 0, & \text{Im } z \le 0. \end{cases}$$

It is clear that $\partial \psi_{\lambda}/\partial x = 0$ on \mathbb{R} , hence $\Delta \psi_{\lambda} = \partial^2 \psi_{\lambda}/\partial y^2$. Since ψ_{λ} is continuous around \mathbb{R} , this Laplacian has a magnitude equivalent to the jump of the first derivative of ψ_{λ} . The derivative of the Green function on the half-plane with respect to the normal direction y is the Poisson kernel:

$$\frac{\partial}{\partial y} \log \left| \frac{z - \bar{\lambda}}{z - \lambda} \right|_{|y=0}^{2} = \frac{4 \operatorname{Im} \lambda}{|x - \lambda|^{2}}.$$

Therefore,

$$\Delta\phi(x) = 4\sum_{\lambda \in \Lambda^+} m_\lambda \frac{\operatorname{Im}\lambda}{|x - \lambda|^2} dx,$$

which is bounded by the hypothesis.

Define

$$\Psi(z) = N|\operatorname{Im} z| - \phi(z).$$

Observe that $\Delta\Psi(z)=N\,dx-\Delta\phi(x)\,dx$, thus according to the previous lemma $\Delta\Psi\simeq dx$ when $N\in\mathbb{N}$ is big enough. In this situation, according to [OrSe99, Lemma 3], there exists a multiplier associated to Ψ , i.e., an entire function h such that:

- (a) $\mathcal{Z}(h)$ is a separated sequence contained in \mathbb{R} .
- (b) Given any $\varepsilon > 0$, $|h(z)| \simeq \exp(\Psi(z))$ for all points z such that $d(z, \mathcal{Z}(h)) > \varepsilon$.

Define now G = hF. It is clear that $G \in A_p$:

$$|G(z)| \lesssim e^{\Psi(z) + \log|F(z)|} \leq e^{\Psi(z) + \phi(z)} \leq e^{Np(z)}, \qquad z \in \mathbb{C}$$

It is also clear that $X_+ \subset \mathcal{Z}(G)$, since $X_+ \subset \mathcal{Z}(F)$.

In order to prove that there exist $\varepsilon, C > 0$ such that

$$\left| \frac{G^{(m_{\lambda})}(\lambda)}{m_{\lambda}!} \right| \ge \varepsilon e^{-Cp(\lambda)}$$

consider then the disjoint disks $D_{\lambda} = D(\lambda, \delta_{\lambda})$, $\delta_{\lambda} = \delta e^{-C\frac{p(\lambda)}{m_{\lambda}}}$ given by Lemma 7(i). Since Λ_{+} is far from $\mathcal{Z}(h)$, the estimate

$$|G(z)| = |h(z)|e^{\phi(z)}|B(z)| \simeq e^{N|\operatorname{Im} z|}|B(z)|, \qquad z \in \partial D_{\lambda},$$

holds.

Claim 11. There exists C > 0 such that $|B(z)| \ge \epsilon e^{-Cp(z)}$, $z \in \partial D_{\lambda}$.

Assuming this we have $|G(z)| \gtrsim e^{-Cp(z)}$ for all $z \in \partial D_{\lambda}$. Define then $g(z) = G(z)/(z-\lambda)^{m_{\lambda}}$. It is clear that g is holomorphic, non-vanishing in D_{λ} , and $|g(z)| \gtrsim e^{-cp(\lambda)}$ for $z \in \partial D_{\lambda}$. By the minimum principle

$$\left| \frac{G^{(m_{\lambda})}(\lambda)}{m_{\lambda}!} \right| = |g(0)| \gtrsim e^{-cp(\lambda)},$$

as desired.

Proof of the claim. As observed in Remark 6(b), the estimate we want to prove is equivalent to

$$\int_0^1 \frac{n_{\mathbb{H}}(z,t)}{t} dt \lesssim p(z), \qquad z \in \partial D_{\lambda}.$$

This is proved like Claim 9, except we replace the Euclidean disks by the hyperbolic ones. We have

$$\int_0^1 \frac{n_{\mathbb{H}}(z,t)}{t} dt \lesssim \int_{\delta_{\lambda}}^{2\delta_{\lambda}} \frac{m_{\lambda}}{t} dt + \int_{2\delta_{\lambda}}^1 \frac{n_{\mathbb{H}}(z,t) - m_{\lambda}}{t} dt.$$

The first term is controlled by $p(\lambda)$. In order to control the second term observe that $D_{\mathbb{H}}(z,t) \subset D_{\mathbb{H}}(\lambda,\frac{t+\delta_{\lambda}}{1+t\delta_{\lambda}})$; hence changing the variable into $s = \frac{t+\delta_{\lambda}}{1+t\delta_{\lambda}}$ we get

$$\int_{2\delta_{\lambda}}^{1} \frac{n_{\mathbb{H}}(z,t) - m_{\lambda}}{t} dt \le \int_{\frac{3\delta_{\lambda}}{1 + 2\delta_{\lambda}^{2}}}^{1} \frac{n_{\mathbb{H}}(\lambda,s) - m_{\lambda}}{s - \delta_{\lambda}} \frac{1 - \delta_{\lambda}^{2}}{(1 - \delta_{\lambda})^{2}} ds.$$

There is no restriction in assuming that $\delta_{\lambda} < 1/2$. Then $\frac{3\delta_{\lambda}}{1+2\delta_{\lambda}^2} > 2\delta_{\lambda}$ and therefore $s - \delta_{\lambda} > s/2$. With this and condition (ii) in Theorem 1 we obtain

$$\int_0^1 \frac{n_{\mathbb{H}}(z,t)}{t} dt \lesssim p(\lambda) + \int_0^1 \frac{n_{\mathbb{H}}(\lambda,s) - m_{\lambda}}{s} ds.$$

Since $p(\lambda) \lesssim p(z)$, we will be done as soon as we prove that

$$\int_0^1 \frac{n_{\mathbb{H}}(\lambda, s) - m_{\lambda}}{s} \, ds \lesssim p(\lambda).$$

There exists $\delta > 0$ (independent of λ) such that $D_{\mathbb{H}}(\lambda, \delta) \subset D(\lambda, p(\lambda))$. Then

$$\int_{0}^{\delta} \frac{n_{\mathbb{H}}(\lambda, s) - m_{\lambda}}{s} ds = \sum_{0 < |\frac{\lambda - \lambda'}{\lambda - \lambda'}| < \delta} m_{\lambda'} \log \frac{\delta}{|\frac{\lambda - \lambda'}{\lambda - \lambda'}|} \leq \sum_{0 < |\frac{\lambda - \lambda'}{\lambda - \lambda'}| < \delta} m_{\lambda'} \log \frac{p(\lambda)}{|\lambda - \lambda'|}$$
$$\lesssim \sum_{0 < |\lambda - \lambda'| < p(\lambda)} m_{\lambda'} \log \frac{p(\lambda)}{|\lambda - \lambda'|} \leq N(\lambda, p(\lambda)) \lesssim p(\lambda).$$

For the remaining part we use condition (ii) in Theorem 1 and the estimate $\log t^{-1} \simeq 1 - t$ for $\delta < t < 1$. Taking $x = \text{Re } \lambda$ we have

$$\int_{\delta}^{1} \frac{n_{\mathbb{H}}(\lambda, s) - m_{\lambda}}{s} ds \lesssim \sum_{\lambda \neq \lambda'} m_{\lambda'} \frac{|\operatorname{Im} \lambda| |\operatorname{Im} \lambda'|}{|\lambda - \bar{\lambda}'|^{2}}$$
$$\lesssim \sum_{\lambda \neq \lambda'} m_{\lambda'} \frac{|\operatorname{Im} \lambda| |\operatorname{Im} \lambda'|}{|x - \lambda'|^{2}} \lesssim |\operatorname{Im} \lambda| \simeq p(\lambda).$$

References

- [Bj66] G. Björck. Linear partial differential operators and generalized distributions, Ark. Mat. 6 (1966), 351–407. MR0203201 (34:3054)
- [BrGa95] C.A. Berenstein and R. Gay. Complex Analysis and Special Topics in Harmonic Analysis, Springer-Verlag, 1995. MR1344448 (96j:30001)
- [BrLi95] C.A. Berenstein and B.Q. Li. Interpolating varieties for spaces of meromorphic functions, J. Geom. Anal. 5 (1995), 1–48. MR1315656 (96b:30064)
- [EhMa74] L. Ehrenpreis and P. Malliavin. Invertible operators and interpolation in AU spaces, J. Math. pures appl. 53 (1974), 165–182. MR0402497 (53:6316)
- [Ga81] J. Garnett. Bounded Analytic Functions, Academic Press, 1981. MR0628971 (83g:30037)
- [Ho94] L. Hörmander. Notions of Convexity, Progr. Math., vol. 127, Birkhäuser, 1994. MR1301332 (95k:00002)
- [Le72] A.F. Leont'ev. On conditions of expandibility of analytic functions in Dirichlet series, Math. U.S.S.R. Izv. 6 (1972), 1265–1277. MR0335763 (49:543)
- [OrSe99] J. Ortega-Cerdà and K. Seip. Multipliers for entire functions and an interpolation problem of Beurling, J. Funct. Anal. 162 (1999), 400–415. MR1682065 (2000c:30071)
- [Ou03] M. Ounaïes. On interpolating discrete varieties for weighted spaces of entire functions, Anal. Math. 29 (2003), 59–74. MR1965313 (2003m:32005)

[Sq81] W.A. Squires. Necessary conditions for universal interpolation in $\hat{\mathcal{E}}'$, Canad. J. Math. **33** (1981), 1356–1364. MR0645231 (83g:30040)

[Sq83] W.A. Squires. Geometric condition for universal interpolation in $\hat{\mathcal{E}}'$, Trans. Amer. Math. Soc. **280** (1983), 401–413. MR0712268 (84h:30058)

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08071-Barcelona, Spain

 $E ext{-}mail\ address: xavier.massaneda@ub.edu}$

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08071-Barcelona, Spain

 $E ext{-}mail\ address: jortega@ub.edu}$

Institut de Recherche Mathématique Avancée, Université Louis Pasteur, 7 Rue René Descartes, 67084 Strasbourg Cedex, France

 $E\text{-}mail\ address{:}\ \mathtt{ounaies@math.u-strasbg.fr}$