
R. J. SHEEHY.

PRINTING TELEGRAPH.

No. 307,233.

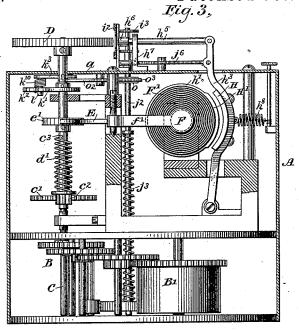
Patented Oct. 28, 1884.

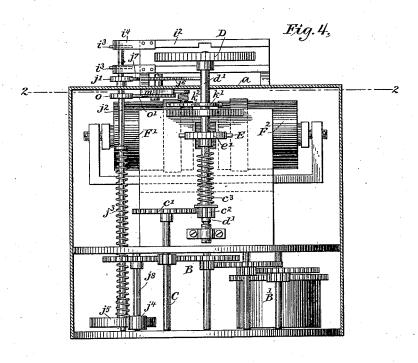
WITNESSES
MM A. Skinkle
Seo W. Bleck

INVENTOR

Robert J. Sheehy,

By his Attorneys


Pope Edge comb & Butter


R. J. SHEEHY.

PRINTING TELEGRAPH.

No. 307,233.

Patented Oct. 28, 1884. Fig. 3,

WITNESSES

Mm A. Skinkle

Sto W. Breck.

INVENTOR

Robert J. Sheehy,

By his Attorneys

Pope Edgecomb & Butley.

UNITED STATES PATENT OFFICE.

ROBERT J. SHEEHY, OF NEW YORK, N. Y.

PRINTING-TELEGRAPH.

UPECIFICATION forming part of Letters Patent No. 307,233, dated October 28, 1884.

Application filed November 19, 1883. (No model.)

To all whom it may concern:

Be it known that I, ROBERT J. SHEEHY, a citizen of the United States, residing in New York, in the county and State of New York, have invented certain new and useful Improvements in Printing-Telegraphs, of which the following is a specification.

My invention relates to the class of apparatus employed for recording the messages or dis-10 patches which are transmitted over a single telegraphic main line or conductor in the form of electric impulses by means of characters impressed upon a paper tape from a revolving type-wheel.

The object of the invention is to provide simple and efficient means for actuating a typewheel in response to electric impulses of a given character, effecting impressions therefrom by means of a second class of electric 20 impulses or currents, and securing a unison between the position of the type-wheel and the apparatus employed for transmitting the

currents or impulses at will. The invention consists in constructing the 25 apparatus in substantially the following manner: Two electro-magnets are supported with their poles of opposite character confronting, and between these poles extends a polarized armature capable of moving to and fro be-30 tween the same in response to electric impulses of alternating polarity which are caused to traverse the coils of the electro-magnets. The armature is supported upon a pivoted lever which carries an escapement adapted to 35 permit a step-by-step advancement of a scapewheel, which is impelled in a given direction through the influence of a spring or weight and a train of wheels. A type-wheel is supported upon the same shaft with the scape-40 wheel, and is thus caused to advance step by step in response to electric impulses of alternating polarity. Impressions are effected from this type-wheel by means of an armature which is supported upon an independent lever, and 45 which extends into proximity to the outer surfaces of the coils of both electro-magnets. Two soft-iron bands surround the coils of the respective electro-magnets, and serve to attract this second armature when the electro-magnets 50 are vitalized by currents of sufficient duration. The alternating electric impulses by means of I shown in section. Fig. 5 illustrates certain

which the escapement of the type-wheel is actuated are not of sufficient length to so magnetize the soft-iron bands, but a simple prolongation of any one of these currents will secure 55 such a result. The armature will thereupon be drawn toward the surface of the coils and impel the platen toward the periphery of the type-wheel, thus effecting upon a paper tape designed to receive the message an impression 60 of the particular character which has been caused to stand before it. The advancement of the paper tape is occasioned by means of suitable paper-feeding wheels, which receive their motion from the train of gear-wheels 65 through a yielding frictional connection and a coiled spring which is placed under sufficient tension for that purpose by the movement of the train of wheels. The advancement of the friction-rollers is prevented, however, during 70 the advancement of the type-wheel by means of an escapement-anchor acting upon a scapewheel. This escapement is actuated by the printing-lever, and permits it to advance during the movement of the platen away from the 75 type-wheel after an impression has been effected. The unison of the type-wheel is secured by means of a Geneva stop, which is applied to the type-wheel shaft, and which is adapted to cause the same to be arrested in a 80 predetermined position when the type-wheel is caused to revolve continuously a given number of times. For the purpose, however, of releasing the stop and preventing it from so arresting the type-wheel during the continu- 85 ous operation of printing, and also for disengaging the type-wheel shaft after the typewheel has been brought to unison, I apply to the paper-feeding device a releasing device which operates each time an impression is ef- 90 fected from the type-wheel, and the paper is advanced to disengage the stop and to prevent it from locking the type-wheel until the latter has again performed the entire number of revolutions.

In the accompanying drawings, which illustrate my invention, Figure 1 is a plan view of the instrument, and Fig. 2 is a like view taken through the plane 2 2, Fig. 4. Fig. 3 is a transverse section through the plane 3 3, Fig. 10 1. Fig. 4 is a side elevation, the case being

details of the construction of the unison device.

Referring to these figures, A represents a suitable case, which is preferably cylindrical in form, for inclosing certain parts of the mechanism. A suitable train of gear-wheels, B, is inclosed within the lower portion of the case A, and driven by means of a spring, B', or by means of a weight. This train imparts to to a shaft, C, a revolution, which in turn is communicated, through a gear-wheel, c', and pinion c', to a type-wheel shaft, d'.

Surrounding the shaft d' is a coiled spring, c3, one end of which is secured to the shaft, 15 while the remaining end is attached to a sleeve carrying the pinion c^2 . The tension of the spring e^3 is sufficient to advance the shaft d', and thus the wheel e', in the direction indicated by the arrow, as far as the latter is per-20 mitted to revolve, by an escapement-anchor, When the scape wheel is brought to rest by the anchor E, the force exerted by the train of gear upon the pinion c^2 causes the latter to advance against the tension of the spring. By 25 means of this device I avoid arresting the train of gear abruptly. During the rapid vibration of the escapement, and, in fact, even when an impression is being made, the train B continues to move, and much less power is 30 therefore required to impel the instrument at a given speed, since the type-wheel will respond at once when the scape-wheel is released.

The required movements of the anchor-escapement E are occasioned by means of a polarized armature, F, and its lever f', which constitutes one arm of the lever supporting the escapement. The polarized armature F extends between the confronting poles of an 40 electro-magnet, F'F2. The coils of these magnets are wound in the usual manner, so that the magnetism induced in the confronting poles by a current traversing the coils of the two will be of the opposite character. The 45 two coils are connected in series, in the usual manner, and are designed to be included in the main-line conductor. A current of one polarity will impel the armature F in one direction by reason of the attractive force ex-50 erted by one of the electro-magnets and the repulsive force existing between the armature and the other electro-magnet. A current of the opposite polarity will impel the armature in the opposite direction in the same manner. 55 Thus by means of currents or impulses of alternating polarity the escapement E is actuated and the shaft d' permitted to advance step by step. The shaft d' projects above the top a of the case A, and carries at its extrem-60 ity a type-wheel, D, the periphery of which is engraved with suitable characters, in a man-

ner well understood.

The paper tape upon which the impressions are to be effected is led through a guide, i^2 , and 65 between a suitable feed-roller, i^3 , and pressure or tension spring i^4 . The impressions are

effected from the type-wheel upon this tape by means of a printing-platen, h^6 , which is carried upon an arm, h^5 , extending through a guide, h, secured to the top a of the frame A. 70 The arm h^5 is pivoted to the extremity of an armature-lever, h, carrying an armature, H. This armature is parallel with the two magnets F' and F2, and projects beyond their confronting poles outside their coils. The coils are re- 75 spectively surrounded by soft-iron bands h' and h^2 , and are preferably extended or thickened along the portions H' and H^2 beneath the respective extremities of the armature H. This armature is preferably made in the form 80 of a section of a cylinder for the purpose of conforming to the surface presented by the extensions H' and H². A suitable retractile spring, h^8 , normally holds the armature away from the surface of the coils, and prevents it 85 from responding to the magnetism induced in the bands h' and h^2 by the electric impulses of short duration employed for actuating the escapement. When, however, any one of these impulses is prolonged, sufficient magnetism is 90 induced in the bands h' and h^2 to overcome the retractile force of the spring h^s , and the armature is therefore drawn toward the coils of the magnets. The platen h^6 is thereby thrust toward the type-wheel, causing an impression 95 of the character which has been caused to stand in front of the paper tape to be effected upon the same. In this manner the typewheel may be arrested at any desired point, and an impression of any required character 100 upon the type-wheel may be effected.

For the purpose of actuating the frictionroller i and advancing the paper tape after each impression, this roller is carried upon a shaft, j^2 , which is caused to advance by means 105 of two friction-rollers, j^{\dagger} and j^{\dagger} , connecting the same with a shaft, j^s . The shaft j^s , which is represented as being geared with the arbor C, may be any suitable arbor employed in the train mechanism B. A spring, j³, Fig. 4, pref-110 erably connects the wheel j^4 with the shaft j^2 , in a manner similar to that described with reference to the scape-wheel e' and the shaft d'. There will thus be continually stored up in the spring j^3 sufficient energy to revolve the 115 paper-feeding wheel i^3 the required distance each time the shaft j^2 is released by the action of an escapement, j^{\dagger} , acting upon the scapewheel j', which is secured to the shaft. The escapement-anchor j^{\dagger} is connected with the 120 lever h³ of the printing-platen by means of a link or pivoted lever, j^6 , and each to and-fro movement of the arm h^5 during the process of printing causes this lever to be actuated, thereby permitting the scape-wheel j' to ad- 125 vance one tooth and the friction-wheel j to revolve the required distance. The scapewheel and escapement-anchor are preferably so constructed that this advancement will oceur during the movement of the platen-rod ho 130 away from the type-wheel.

For the purpose of securing a unison be-

307,233

tween the receiving instrument and the instrument employed for transmitting the requisite electric impulses and currents thereto, it is necessary to provide some device for ar-5 resting the type-wheel in a predetermined position whenever desired. For this purpose I apply to the type-wheel shaft d'a device known as a "Geneva stop." This device consists of a primary or locking wheel, k', having a sin-10 gle tooth, k, formed upon its periphery, and engaging a wheel, k^2 , carried at the free extremity of a pivoted arm, k3. The periphery of the wheel \bar{k}' fits into successive hollow teeth or concave faces k5, which are formed in the 15 periphery of the secondary wheel \mathcal{R}^2 . Once in each revolution of the wheel k' the tooth k enters a corresponding space or opening, k^4 , intervening between the successive concave faces k^5 , and advances the wheel k^2 one tooth.

Upon the wheel k^2 is carried a pin, k^6 , which is normally out of the path of a corresponding arm, k^s , carried upon the wheel k'. The successive revolutions of the wheel k' cause the pin k^6 to approach more nearly into the path 25 of the arm k^s , and after this wheel has described a predetermined number of revolutions—say four—the stop or pin k^6 will be in the path of the arm k^s , and will arrest the type-wheel shaft, and thus the type-wheel, at 30 a predetermined unison-point. At the same instant the tooth k strikes against a convex portion, $k^{\mathfrak{g}}$, of the wheel $k^{\mathfrak{g}}$, in the usual manner of a Geneva stop. It is evident that the pin or stop $k^{\mathfrak{g}}$ and arm $k^{\mathfrak{g}}$ may be dispensed 35 with; but usually I prefer to employ them for relieving the tooth k from undue strain in

arresting the type-wheel shaft. For the purpose of preventing the typewheel from being thus arrested during the 40 process of printing continuously, and also for the purpose of unlocking the device after it has been arrested, the wheel k^2 is, as already mentioned, mounted upon the pivoted arm A post, l, serves as the axis of the wheel, 45 and it is connected therewith by means of a coiled spring, k^{10} , in such a manner that a force is normally exerted upon the wheel to revolve it in the direction opposite that indicated by the arrow. Normally, however, the periph-50 ery of the wheel k' prevents it from revolving

successive advanced positions which it assumes by reason of the engagement of the tooth k. A tension-spring, m, normally holds 55 the arm o', and thus the wheel k^2 , toward the wheel k'. It is evident, thus, that when it is desired to release the wheel k^2 from engagement with the wheel k' it is necessary only to force the arm k3 backward against the ten-60 sion of the spring m. This is accomplished

in that direction, and causes it to retain the

by means of a lever, o', one arm, o2, of which extends in front of the arm k^3 , while the other arm, o^3 , extends toward a toothed wheel, o, which is mounted upon the arbor of the scape-

o³, rests against the periphery of this toothed wheel, and each time the scape-wheel is advanced the passage of one of its teeth beneath the tooth o' causes this end of the lever to be 70 thrown outward. The arm o^2 is thus caused to force the pivoted arm k³ backward, thereby causing the wheel k^2 to be released from the wheel k'. The wheel k^2 will thereupon be revolved by the action of the spring k^{10} until it 75 is arrested in the position shown in Fig. 5 by means of a pin, n', which projects from the face of the wheel k^2 and strikes against the supporting arm k^3 . If the arm k^3 be then again released, as it immediately will be by the pass- 80 ing of the tooth of the wheel o from beneath the beveled tooth o^i , the wheel k^2 will be again engaged by the wheel k'. The subsequent revolutions of the type-wheel shaft will cause the wheel k^2 to be again advanced in the man- 85 ner already described. It will be seen thus that each time the paper-feed is actuated during the operation of printing continuously from the type-wheel the wheel k^2 will be permitted to return to its starting-point. When, 90 however, the required number of revolutions of the type-wheel-say four-occur without interruption, the type-wheel will be arrested at its unison point in the manner described.

I am aware that it has been proposed to act- 95 uate the press-levers of printing-instruments by means of armatures applied to extensions of the pole-pieces of the escapement-actuating electro-magnets. The bands or plates which are applied to the exterior of the electro-mag- 100 nets, and which I employ for the purpose of actuating the printing-lever, are not polar extensions; but they are entirely independent thereof. This organization is desired for the convenience and compactness of construction 105 which it affords, and for the reason that the mass of metal presented to the escapement armature is less and its speed of operation is in-

I am also aware that it has been proposed 110 to apply a single cog or tooth to a type-wheel shaft, and by means thereof to advance a toothed wheel constructed to serve as a unison-stop against the tension of a retractingspring once in each revolution of the type- 115 wheel shaft. It has been necessary, however, in such an organization to employ not only the tension-spring to prevent the undue advancement of the wheel, but also a detent or retaining-pawl to prevent the wheel from re- 120 turning to its normal position when the cog has passed out of engagement with the teeth of the wheel. By the use of the Geneva stop which I employ the locking in both directions is effected by the primary wheel, and it is not 125 necessary to employ either a retracting-spring or a locking-pawl. The useless expenditure of force in overcoming the tension of the retracting-spring during the continuous operation of the instrument, when it is not desired 130 to secure a unison, is thus obviated; and in 65 wheel j', which feeds the paper. A beveled to secure a unison, is thus obviated; and in tooth, o', formed at the extremity of the arm every way the device which I employ is more

certain in its operation, more simple in its | construction, and less liable to become out of order.

I claim as my invention—

1. The combination, substantially as hereinbefore set forth, with a type-wheel and means, substantially such as described, for actuating said type-wheel, of an escapement for controlling the movements of the same, a polarized 10 armature for actuating said escapement, located between the confronting poles of an electro-magnet, a printing-platen, a soft-iron armature for actuating the same, and two softiron plates applied to the exterior of said elec-15 tro-magnet for attracting said armature.

2. The combination, substantially as hereinbefore set forth, with a type-wheel and means, substantially such as described, for actuating said type-wheel step by step, of an electro-mag-20 net, one or more soft-iron bands surrounding said electro-magnet, and an armature applied to said bands and acting in response to electric impulses of a given character to effect im-

pressions from said type-wheel.

3. The combination, substantially as hereinbefore set forth, of a type-wheel, means, substantially such as described, for actuating the same, an armature actuated in response to electric currents of a given character to effect 30 impressions from said type-wheel, a paperfeeding device, a frictional connection between said paper - feeding device and the impelling mechanism of said type-wheel, and an escapement device actuated by the movements of 35 said printing-armature for permitting an advancement of said paper-feeding device.

4. The combination, substantially as hereinbefore set forth, with a type-wheel and means, substantially such as described, for 40 actuating and effecting impressions from the same, of a paper-feeding device, a frictional connection between said device and the actuating-power of said type-wheel, a yielding spring normally placed under tension by the 45 action of said frictional connection, an escapement for normally retaining said paper-feeding device against the tension of said spring, and means, substantially such as described, for actuating said escapement and permitting 50 said device to respond to the tension of said spring when an impression is taken from said type-wheel.

5. The combination, substantially as here-

inbefore set forth, with a type-wheel, a typewheel shaft, and means, substantially such as 55 described, for actuating the same, of a unison device consisting of a Geneva stop applied to said type-wheel shaft.

6. The combination, substantially as hereinbefore set forth, with a type-wheel, a type- 60 wheel shaft, and means, substantially such as described, for actuating the same, of a Geneva stop applied to said shaft, an arm moving with said shaft, and a detent caused by the action of said Geneva stop to be periodically placed, 65 by the revolution of said type-wheel, in the path of said arm.

7. A unison device for printing - telegraph receiving-instruments, consisting of the two wheels of a Geneva stop, the one of which is 70 applied to the type-wheel shaft of the instrument, while the other is engaged thereby, and means, substantially such as described, for separating said wheels from engagement with each other.

75

8. The combination, substantially as hereinbefore set forth, with the type-wheel shaft of a printing-telegraph receiving-instrument, of the primary wheel of a Geneva stop, mounted upon said shaft, the secondary wheel of said 80 stop, and means, substantially such as described, whereby said shaft is arrested in a predetermined position when said secondary wheel has been brought into a given position through the agency of said primary wheel.

9. The combination, substantially as hereinbefore set forth, with a type-wheel shaft, of a locking wheel carried upon said shaft, a wheel periodically advanced by the action of said locking-wheel, means, substantially such 90 as described, tending to hold the last-named wheel in engagement with said locking-wheel, an electro-magnet, a paper-feeding device actuated by said electro-magnet, and means, substantially such as described, for causing 95 said paper-feeding device to throw said wheels out of engagement with each other each time

In testimony whereof I have hereunto subscribed my name this 17th day of November, 100 A. D. 1883.

ROBERT J. SHEEHY.

Witnesses: DANL. W. EDGECOMB, CHARLES A. TERRY.