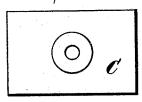

F. B. RAE.

OVERHEAD TROLLEY FOR ELECTRIC RAILWAYS.



Patented Feb. 11, 1890.

F=q.5.

United States Patent Office.

FRANK B. RAE, OF DETROIT, MICHIGAN, ASSIGNOR TO THE DETROIT ELEC-TRICAL WORKS, OF SAME PLACE.

OVERHEAD TROLLEY FOR ELECTRIC RAILWAYS.

SPECIFICATION forming part of Letters Patent No. 421,305, dated February 11, 1890.

Application filed July 1, 1889. Serial No. 316,179. (No model.)

To all whom it may concern:

Be it known that I, FRANK B. RAE, a citizen of the United States, residing at Detroit, in the county of Wayne and State of Michigan, have invented certain new and useful Improvements in Overhead Trolleys for Electric Railways; and I do hereby declare that the following is a full, clear, and exact description of the invention, which will enable 10 others skilled in the art to which it appertains to make and use the same.

My invention relates to traveling electrical contacts for electric railways, and especially has relation to an overhead trolley, adapted 15 to travel upon the upper side of one or more suspended aerial conductors and connected in some approved manner to an electrically-propelled vehicle, which latter derives its propelling current from one or more stationary 20 line-conductors through the medium of such

overhead trolley. I have found by experience that great difficulty is to be encountered in order to keep the sheave of the trolley upon the suspended 25 conductor, which difficulty arises from numerous causes, among which may be enumerated the deviations of the trolley-line from alignment with the track, the variations of height of the trolley-line due to crossings, bridges, 30 &c., and the lateral trailing of the trolley-pole or connection from the car at curves, due to the fact that the trolley itself is in both a different vertical and horizontal plane from the line of way when traversing such curves.

35 Again, it is necessary, in order to meet the requirements and emergencies of operation, to so arrange the pole or other connection between the car and trolley that the same may practically have a duplex swing-that is to 40 say, both a lateral and forward and backward movement at its joint or point of connection

45 ments mentioned above and to overcome the difficulties and disadvantages enumerated. My invention consists in certain details of construction, arrangement, and combination of parts, all of which will be more fully de-

with the car. Accordingly my invention has for its object to provide a trolley so con-

structed and arranged as to meet the require-

novelty in which will be particularly designated in the appended claims.

In the accompanying drawings I have shown certain features of construction which I deem adequate for earrying out my invention in 55 practice successfully. However, I wish to here state that I am not limited or restricted to the exact details of construction illustrated, since the scope of the claims forming a part hereof permits many changes and variations 6c without departing from the spirit of my invention.

Referring to the drawings, Figure is a side elevation showing my invention complete. Fig. 2 is a detail view of part of the construc- 65 tion shown in Fig. 1. Figs. 3, 4, 5, and 6 are detail views of the several parts.

Like letters of reference indicate like or corresponding parts in the several views of the

drawings. Referring to the drawings by letter, A is the car, shown for sake of space with parts broken away, and having my invention applied to the top thereof. This car is provided with any desirable or approved type of 75 propelling electric motor, which latter is designed to receive its actuating electric current from the overhead suspended wire B through the trolley and trolley-connections on top of the car, the return-circuit being 80 completed from the motor through the trackrails to the ground or dynamo, as the case

Approximately at the center of the roof of the car A is secured a metal bed-plate C, hav- 85 ing a centrally-located upwardly-projecting hub C', formed integral with the plate C and provided with a vertical bore designed to receive a swivel-bolt. E is a swivel-plate consisting of the central stem F and the two di- 90 verging arms G G'. This stem F is hollowed out interiorly at its bottom to correspond to the diameter of the hub on the bed-plate, and is designed to slip over, encircle, and ride easily upon said hub, the swivel-bolt serving 95 to keep the swivel-plate and the bed-plate together, and the whole forming a swivel-joint between said bed-plate and swivel-plate. The two arms or prongs G G' extend upwardly 50 scribed hereinafter, and the specific points of I and outwardly from the stem F, but occupy 100 421,305

the same vertical plane, the arm G carrying at its free outward extremity a pulley-wheel H, while the other arm G' is attached at its outer end to the lower end of a spiral or helical spring I, the upper end of which is suitably and adjustably secured to the pole J at a predetermined point above the hinge-joint L, for a purpose that will appear hereinafter.

At the upper part of the stem F are formed 10 two vertically-projecting bearing-lugs, which are placed in a horizontal line with each other, as shown, and serve to journal the hinge-bolt M, which in turn is connected with the pole-socket N by two lugs on the bottom of the pole-socket, thus forming a hinge between the pole-socket and the swivel-plate. The spring I is so arranged with relation to the pole J and the plate E that its pull or tension is constantly directed in the effort to 20 pull the pole up vertically in the direction of the feathered arrow, whereas the spring O (which is also secured at its outer end to the pole J and at its other extremity to the handcord P, which latter passes over the pulley-25 wheel H) can be operated by the means of the hand-cord P to pull against the tension of the spring I, or can be released so that the spring I is free to exert its pull against the pole J. Thus it will be understood that 30 the tension of the spring I varies inversely to that of the spring O. By tightening the

spring O by cord P the spring I is elongated and the pole forced in the direction of the unfeathered arrow, and by releasing the cord P the retractability of the spring I tends to replace the pole in the direction of the feathered arrow. The cord P is run along

the roof of the car and depends at one end thereof within easy reach and manipulation 40 of the motor-man or other attendant. The pole J has its lower end secured in the tubular socket N and carries at its upper end any suitable or desirable form of trolley. This pole is of some light, strong, elastic, and or-

45 namental material, and is under the control of the motor-man through the instrumentality of an operating-cord W, secured at its upper end to the trolley-pole near the trolley-wheel and at its other end attached to the car in 50 such position that it can be reached and han-

dled. By means of this string or cord W the pole J can be turned around on the swivel-joint at will.

The particular construction and arrange-55 ment of the two springs I and O are intended for the purpose of aiding the operation of the contact-wheel on the conductor, so that the same is properly maintained upon the wire irrespective of irregularities in the shape of 60 curves, hangers, &c.

It will be readily appreciated that the spring I serves to hold the trolley-pole in an upright position when not neutralized by the action of the spring O. Thus if the spring O were 65 not present the spring I would lift the trol-

apparent that the spring I relieves the weight of the trolley from the line-wire, while the adjustable spring O can be so adjusted as to 70 bring the trolley down on the wire sufficiently to insure the necessary electrical contact without permitting the weight or gravity pressure of the trolley to be exerted upon the wire. By such arrangement the efficient op- 75 eration of the pole and trolley is insured and is rendered under ready control. Furthermore, it is apparent that when the two springs are so adjusted with relation to each to keep the trolley-wheel upon a conductor 80 at a given height above the roof of the car, and the distance between the car and conductor should increase, (say at a bridge or crossing,) the spring O would permit the trolley-wheel to accommodate itself to the in- 85 creased height without any change of its ten-

It will be understood that some means should be provided to hold the cord P in the desired position, and I have shown a well- go known form of clamping device Z, attached to the end of the car within reach of the motor-man, which will accomplish this purpose, although other well-known clamps may be

Having thus fully described my invention, what I claim, and desire to secure by Letters Patent, is—

1. In an overhead trolley for electric railways, the combination, with a trolley-pole, of 100 a flexible joint between said pole and its base-support, a spring permanently connecting said pole with its base support and capable of exerting tension to move the said pole in a prescribed direction, and a spring 105 mechanically connected at one end to said pole and attached to a movable cord or cable at the other, and capable of being adjusted in its tension by the operator, all arranged to operate in the manner set forth.

2. In a trolley for an electric railway, the combination, with a trolley-pole connected to its base-support flexibly, and adapted to have practically a universal oscillation or swing at its base, of two springs mechanic- 115 ally connected to the said pole, and controlling the direction of swing of the same, one of said springs being permanently attached to the base-support of the pole and the other controlled in its action by an adjusting cable 120 or cord.

3. In a trolley for an electric railway, the combination, with a trolley-pole carrying at its upper end a trolley wheel or wheels, of a pole-socket for said pole hinged to an inter- 125 mediate support, an intermediate plate or support for said pole swiveled to the baseplate and having two outwardly-extending lateral arms, a spring permanently connecting one of said arms with the pole, and an- 130 other spring arranged opposite the first spring and attached at one extremity to the ley-wheel off the wire, so that no contact | pole and at its other secured to an adjust-would be preserved. Therefore it becomes | ing-cord passing over a pulley journaled in

421,305

plate.

4. The combination, with a trolley-pole flexibly jointed at its base to a support, of a 5 spring permanently connecting said pole with a base-support, means for adjusting said spring, and another spring attached at one extremity to said pole opposite the first spring and fastened at its other end to an 10 adjusting cord or cable passing over a guiding pulley or roller.

5. The combination, with the pole, of a bifurcated plate at the base of said pole, ca-

the end of the other arm of the intermediate | pable of a swiveling movement, and having two oppositely-extending lateral arms, one of 15 said arms being connected to the pole by a helical spring and the other carrying aguiding pulley or wheel, over which passes the controlling cable or cord for another spring

connected to the trolley-pole.

In testimony whereof I have hereunto set my hand this 17th day of June, 1889.

FRANK B. RAE.

Witnesses:

ALBERT KOEPCKE, JOHN MACDONALD.