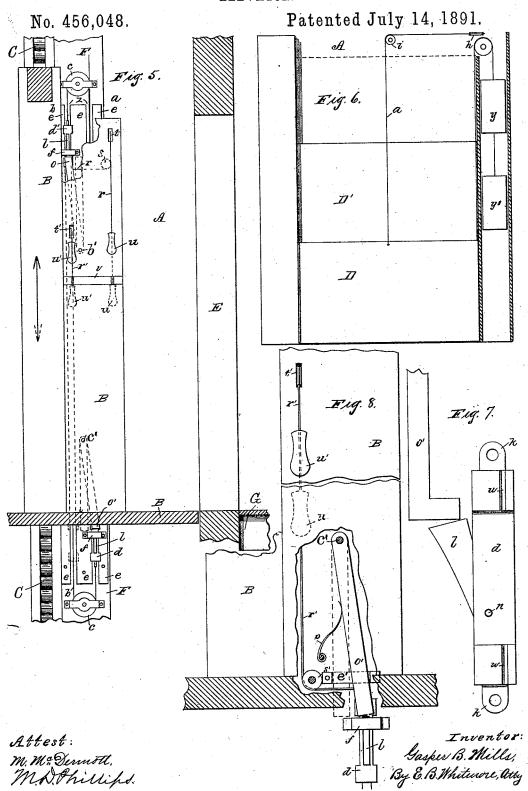

G. B. MILLS. ELEVATOR.


No. 456,048.

Patented July 14, 1891.

HE NORRIS PETERS CO., PHOTO-LITHO., WASHINGTON, D. C.

G. B. MILLS. ELEVATOR.

THE NORRIS PETERS CO., PHOTO-LITHO., WASHINGTON, D. C.

UNITED STATES PATENT OFFICE.

GASPER B. MILLS, OF ROCHESTER, NEW YORK, ASSIGNOR OF ONE-HALF TO GEORGE W. IRELAND, OF PHILADELPHIA, PENNSYLVANIA.

ELEVATOR.

SPECIFICATION forming part of Letters Patent No. 456,048, dated July 14, 1891.

Application filed December 22, 1890. Serial No. 375,500. (No model.)

To all whom it may concern:

Be it known that I, GASPER B. MILLS, of Rochester, in the county of Monroe and State of New York, have invented a new and useful Improvement in Devices for Operating Elevator-Doors, which improvement is fully set forth in the following specification and shown in the accompanying drawings.

My invention is a simple and convenient 10 mechanism for opening and closing the doors of elevator-wells, adapted more particularly for use with freight-elevators, the same being hereinafter fully described, and more par-

ticularly pointed out in the claim.

Referring to the drawings, Figure 1 is a vertical section through a part of an elevatorwell, the doors being shown in two positions by full and dotted lines; Fig. 2, drawn to a larger scale, a horizontal section of the guides 20 and associated parts; Fig. 3, a face view of a sliding block drawn to an increased scale; Fig. 4, a side sectional elevation of a sliding block seen as indicated by arrow in Fig. 3; Fig. 5, a vertical section of a portion of the 25 well and the car therein, parts being shown in two positions by full and dotted lines; Fig. 6, a front elevation of the doors, the box for the counter-weights at one side being vertically sectioned; Fig. 7, a side elevation of a 30 sliding block operated at the lower part of the car; and Fig. 8, a view showing more fully the means for operating the lower push-bar, parts being broken away.

Referring to the parts shown, A is an elevator-well of usual kind, C being a safety rack and guide of common kind at one side thereof, and E a doorway through the wall of the

well even with the floor G.

B, Fig. 5, is the car.

F is a line of vertical planking secured to the wall of the well adjacent to the safetyrack or rag-bar, to which is secured in vertical positions three parallel metal guides e.

In the two spaces z z, formed between ad-45 jacent guides, are fitted sliding blocks $d\,d'$ to be operated by the car. Immediately above and below these guides pulleys c c are respectively secured to the planking F, around which pulleys cords b run, these cords be-50 ing secured to lugs k at the ends of the blocks,

circuit around the said pulleys. Normally these blocks stand one near the lower end of the guides and one near the upper end of the guides, as shown in Fig. 1. When the car ascends, it carries the lower block d'upward to the top of the guides, which causes the block d to descend to the lower end of the guide on account of the rope connection or circuit-cords $b\ b$. When the car descends, in pass- 60 ing the blocks it acts upon the block d, carrying it to the bottom of the guides, which, for reasons above stated, causes the block d' to move to the top of the guides. These movements of the blocks, in connection with coun- 65 ter-weights for the doors, open and close the latter by means described farther on. The doors shown are vertically-sliding doors; but horizontally-sliding doors may be equally well

operated by the mechanism shown.

To the upper block d is secured a cord a, which passes upward over a pulley g, thence horizontally out of the well over a pulley h, Figs. 1 and 6, thence over a pulley i over the middle of the doors, thence downward and 75 attaches to the lower door D. The doors D and D' slide in vertical grooves in the casings I in the ordinary manner, and are made, preferably, in half-doors, one sliding outside of the other. The lower door D is provided 80 with a horizontal strip a' at its lower edge, which, as said door is lifted, encounters the lower edge of the upper door D', and lifts the latter, both moving upward to the positions shown in dotted lines. When the ascending 85 car moves the sliding block d' upward, as above described, it pulls downward on the cord a, and thus lifts the doors, the part of the car acting upon the sliding block being so placed that when the floor of the car comes 90 even with the floor G of the building the sliding block d' is at its upper position and the doors are raised. In the same manner, when the car is descending, it pushes the sliding block d downward, as above described, and 95 thus pulls downward upon the cord a and raises the doors.

The parts of the car that encounter the respective sliding blocks are shiftable push-bars o and o', (clearly shown in Figs. 4 and 7,) the 100 former at the top and the latter at the bottom and, with said blocks, forming a continuous of the car. The sliding blocks are each pro-

the lower block d' pointing downward, as shown in Fig. 4, and the tongue of the upper block d pointing upward, as shown in Fig. 7. These tongues are the parts of the respective blocks encountered by the push-bars, the latter being bent outward at their free ends, as shown, to meet the tongues. These tongues are held in recesses in the respective sliding 10 blocks to turn upon pivot-pins n, and when in their normal position their free ends project from the faces of the respective sliding blocks, to be encountered by the push-bars, as Simple springs x, Fig. 4, of some 15 description, bearing against the rear surfaces of the tongues force them outward to their normal positions. Trips f (shown in various figures) are secured to the guides e in positions to cross the spaces z at right angles with 20 the latter. These trips are rectangular in form, as shown in Fig. 2, and of such dimensions that the respective sliding blocks pass freely beneath them when said sliding blocks are moved by the car, as above described; but 25 these blocks pass close to the trips, so that the latter act to depress the respective tongues l or force them back into the recesses in the blocks against the action of the springs, as indicated by dotted lines in Fig. 4. When 30 thus depressed, the tongues are withdrawn from the action of the push-bars, which latter then pass them, also safely clearing the trips themselves. Now, regarding Fig. 1, when the push-bar 35 o of the ascending car encounters the tongue of the sliding block d' and lifts the latter to the position shown in dotted lines near the upper ends of the guides, said sliding block passes under the trip f, which depresses the 40 tongue out of the way of the push-bar, and no further upward motion of the sliding block At this position of the sliding block, it will be noted, the doors are thrown up. Likewise, when the car is descending along the well and carries the sliding block \overrightarrow{d} to its lowest position the latter passes back of the trip f, near the lower end of the guides, which trip depresses the tongue out of the way of

further action by the push-baro'. The push-

the car, the former reaching upward from

its pivot and the latter downward from its

pivot. Both push-bars are capable of swing-

ing slightly laterally in a vertical plane.

These push-bars are held by the pivots, so

that when they occupy vertical positions, as shown by dotted lines in Fig. 5, they will pass

by the respective sliding blocks without

touching them, in which case the passage of

doors. The lateral movements of these push-

bars are limited by some simple means, as

yokes e', Fig. 8. They are held in inclined

positions—that is to say, in positions in which

springs p, of any convenient form or construction. To bring them to vertical posi²

65 to encounter the sliding blocks-by simple

60 the car in either direction does not move the

50 bars o o' are pivoted, respectively, at b' c' to

vided with a pivoted tongue l, the tongue of

tions, so as to avoid the sliding blocks, I employ cords r r', Figs. 5 and 8, provided with handles u u', to be manipulated by the per- 70 son operating the car. The cord r, which actuates the upper push-bar o, is secured to the latter near its upper end and passes horizontally around a pulley son the outside of the car, thence upward and over a pulley t to the inside $\,$ 75 $\,$ of the car, with the handle u in convenient reach of the operator. The cord r' for the lower push-bar o' is secured near the lower end of the latter and passes around the pulley s' at the outside of the car, thence upward 80 and over pulley t' to the inside of the car. v, Fig. 5, is a lock or holder for the handles, provided with grooves in which to receive the two cords. When either of the handles is released from the holder, the spring of the push- 85bar operated by the handle throws the pushbar in position to act upon the sliding blocks in its way as the car moves up and down; but when either handle is pulled down and caught under the holder the push-bar operated by it 90 is pulled to a vertical position against the action of the spring, and clears the sliding block, as above described. The counter-weights y y' are intended to balance only a part of the weight of the re- 95 spective doors, leaving with the latter a preponderance of weight sufficient to carry them down and close them; and to prevent the doors closing with a too rapid fall or too suddenly the push-bars are so arranged with ref- 100 erence to the sliding blocks that before the tongue of the block d' lets go the push-bar o (when the car is ascending) the lower pushbar will pass above the tongue of the sliding block d and catch the same. This allows the 105 doors to close only as rapidly as the car moves up, the block d following under the ascending car. The parts operate similarly to prevent the too rapid descent of the doors when the car moves downward—that is to say, be- 110 fore the lower push-bar is released from the sliding block d the tongue of the sliding block d' is brought to a point just above the upper push-bar, so that said sliding block can

descend only as fast as the car descends. The tongues of the two sliding blocks have a bearing at their pivoted end directly against parts of the respective blocks, so that the pivot-pins of the tongues will be relieved of the stress or pressure due to the action of the 120 push-bar.

It is understood that the guides, sliding blocks, cords, &c., are repeated for the doors

of each story.

In case a horizontally-sliding door is em- 125 ployed, the cord a instead of turning downward over the pulley i, passes onward in a horizontal direction and is attached to the sliding door near its edge farthest from the pulley h. The movements of the sliding 130 blocks above described then operate to slide the door one way or the other, as is the case with the vertically-sliding doors, a weight being employed to close the door. After the

 $\operatorname{cord} a$ is brought out of the well around the $|\operatorname{spring-pressed}$ push-bars to operate the slidpulley h it is only a matter of judgment in attaching it to any kind of a door.

What I claim as my invention is—

In a device for operating elevator-doors, parallel guides within the well, in combination with sliding blocks between the guides, cords connecting said blocks passing over pulleys, a shiftable counterweighted door, a cord connecting said sliding blocks with the door, a car provided with laterally-swinging

ing blocks, an operating-handle connected with each of said push-bars, and rests or hold-ers for said handles, substantially as shown. 15

In witness whereof I have hereunto set my hand, this 13th day of December, 1890, in the presence of two subscribing witnesses. GASPER B. MILLS.

Witnesses:

ENOS B. WHITMORE, M. S. McDermott.