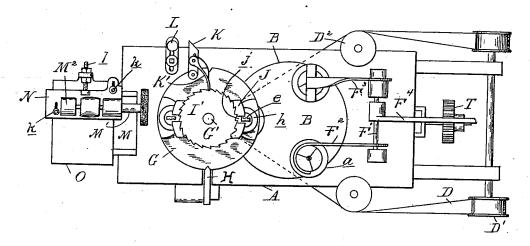
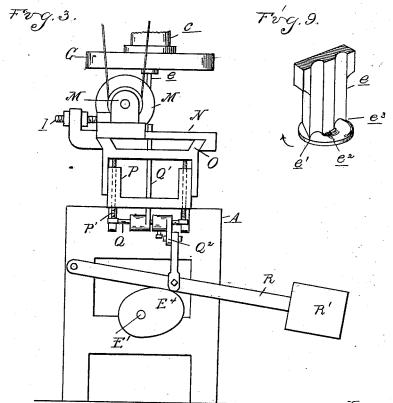

W. E. NAGEBORN. BUTTON FACING MACHINE.

(Application filed Apr. 13, 1898.)

No. 647,903.

Patented Apr. 17, 1900.

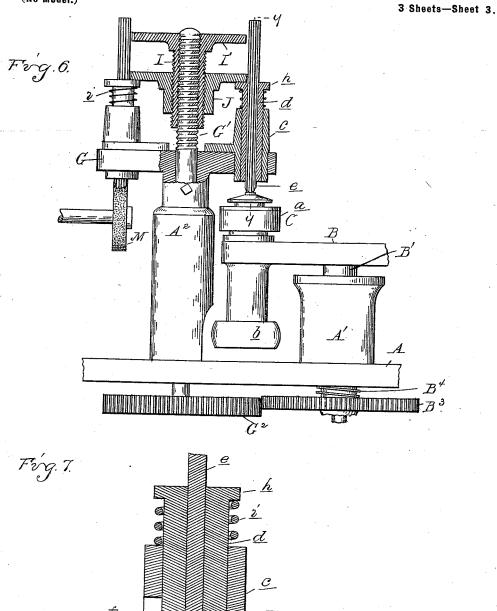

W. E. NAGEBORN. BUTTON FACING MACHINE.


(Application filed Apr. 13, 1898.)

(No Model.)

3 Sheets-Sheet 2.

Frg.2


Wrtnesses Oth House Wilheim E. Nagetonn

og Malfpapel Don

W. E. NAGEBORN. BUTTON FACING MACHINE.

(Application filed Apr. 13, 1898.)

(No Model.)

UNITED STATES PATENT OFFICE.

WILHELM E. NAGEBORN, OF DETROIT, MICHIGAN, ASSIGNOR TO THE MONITOR BUTTON COMPANY, OF SAME PLACE.

BUTTON-FACING MACHINE.

SPECIFICATION forming part of Letters Patent No. 647,903, dated April 17, 1900.

Application filed April 13, 1898. Serial No. 677,404. (No model.)

To all whom it may concern:

Beit known that I, WILHELM E. NAGEBORN, a citizen of the United States, residing at Detroit, in the county of Wayne and State of 5 Michigan, have invented certain new and useful Improvements in Button-Facing Machines, of which the following is a specification, reference being had therein to the accompanying drawings.

My invention consists in the means employed for maintaining the tool constantly in perfect condition for operating upon the work and producing uniform results therein, and more particularly in the means for hold-15 ing the tool and for feeding and grinding it

between operations.

The invention further consists in the peculiar combination, with said tool-holding means, of a work-carrier, and, further, in the 20 peculiar construction, arrangement, and combination of parts, as more fully hereinafter described and claimed.

In the drawings, Figure 1 is a side elevation of my machine. Fig. 2 is a plan view 25 thereof. Fig. 3 is a rear elevation. Fig. 4 is a cross-section on line x x, Fig. 1. Fig. 5 is a plan of the parts shown in Fig. 4. Fig. 6 is a longitudinal section, partly in elevation, through the tool-carrier. Fig. 7 is a section on line y y, Fig. 6. Fig. 8 is a section on line z z, Fig. 1. Fig. 9 is a perspective view of the end of the tool and the button on which it is operating.

Upon a suitable framework or table A is 35 mounted the rotary head B, carrying a series of button-holding chucks C. As these chucks form no part of my present invention, I shall omit describing them in detail and will simply say that the jaws of the chucks are adapt-40 ed to hold the button-blanks and are spread to grasp or release said blanks by depressing an annular ring or collar a surrounding the chuck. There are preferably three of these chucks mounted free to rotate in bearings 45 in the rotary head B, their shanks passing through said bearings and being provided at

their lower ends with the pulleys b. D is a drive-belt passing over idler-pulleys

 $D' D^2$ and around the pulley b of the chucks,

contact with all but one of said chuck-pul-

The head B is mounted upon a vertical spindle B', passing through the bearing A' on the frame A and having at its lower end 55 a head provided with radial arms B², corresponding in number to the chucks. The head B is intermittently turned through a partial rotation by a radial arm E, extending from a head on a horizontal shaft E' and adapted to 60 engage successively with the arms B2

F is a spring-pressed dog having a V-shaped end adapted to engage with V-notches in the periphery of the head B to stop and hold said head in exact position after each partial ro- 65

tation

F' is a rock-shaft journaled in standards on the frame, having the rock-arms F2 and F³ secured thereto and adapted to engage with and depress the ring a of two of the 70 chucks, so as to spread the jaws thereof, and thereby release the finished button from one and permit the operator to place a blank in the other.

 ${\rm F}^4$ is an actuating rock-arm for the shaft 75 F', and F⁵ is a pitman connecting this arm with a vertically-sliding head F6, which is intermittently raised and lowered by a cam E2 on the shaft E', the pitman F5 having an arm F⁷, adapted to engage with and retract the 80 dog F in the downward movement of said

The mechanism so far described forms no part of my present invention, which comprises the following construction and arrange-85

ment of parts:

G is a head secured to a spindle G', journaled in the standard A^2 upon the frame in proximity to the head B. This head is provided with two tool-carriers arranged on dia- 90 metrically-opposite sides thereof adapted in the rotation of said head to be carried over the third chuck of the head B. The head G is actuated by a gear-wheel G2, meshing with a gear-wheel B3 on the shaft B', which gears 95 are so proportioned that each third of a revolution of the head B will cause a half-revolution of the head G.

H is a spring-pressed holding-dog similar 50 the idlers D2 serving to hold said belt out of | to the stopping and holding dog F and engag- 100 ing with notches in the periphery of the head G, being adapted to be retracted by a rod H', connected to a lever H², engaging with a cam E³ on the shaft E'.

The spindle G' extends above the head G

and is screw-threaded.

I is a sleeve interiorly threaded to engage with the spindle G' and having an exterior thread of slightly-lesser pitch.

I' is a ratchet-wheel secured to the upper

end of the sleeve I.

J is a centrally-apertured head interiorly threaded to engage with the sleeve I and extending over the tool-carriers. These tool-carriers comprise the bearings c, secured to the head G, in which are vertically slidingly secured the sleeves d, having the tool-bars e passing centrally therethrough and secured therein by a set-screw f. At the upper end of the sleeves d are the collars h, between which and the top of the bearings c a spring is secured.

The head J is adapted to bear against the upper end of the sleeves d and has the slots 25 j, through which the tool-bars e pass.

J' is a post on the head G, having pivotally secured thereon at the upper end the rock-arm K, which is adapted in the rotation of the head to strike against a post L on the frame.

K' is a pawl carried by the arm K and engaging with the ratchet-wheel I', the width of this pawl being sufficient to permit it to move some distance vertically in relation to said ratchet-wheel without being disengaged therefrom.

M is a grinding-wheel secured to a horizontal arbor M', which is journaled in bearings M². These bearings are laterally adjustably secured, preferably by means of the clamping-bolts k and adjusting-screws l, to the head N, the latter being longitudinally slidingly secured to ways upon the plate O.

The plate O is vertically adjustably secured to the standard P on the frame, preferably by means of the adjusting-screws P', passing

through said standard.

Q is a rock-shaft journaled in the frame below the sliding head N, having the upwardly-50 extending rock-arm Q' engaging with a slot in said head.

Q² is another rock-arm on the shaft Q, connected by the link R with the weighted lever R', resting on a cam E⁴ on the shaft E'.

55 E⁵ is a cam on the shaft E', on which the lower end of the spindle B' rests.

 B^4 is a spring interposed between the gearwheel B^3 and the bottom of the table A.

The tool-bars e are of such a shape that 60 when sharpened by being ground obliquely the edge will be of the proper contour and will extend completely across the button or equally upon opposite sides of the center thereof.

The parts being thus constructed, the oper-65 ation of the machine is as follows: Motion is imparted to the shaft E' from a drive-shaft S through the medium of the elliptic gears T

and T', these driving the shaft E' at a variable speed. The rotation of the shaft E' will cause the cam E2 thereon to raise the sliding 70 head F⁶ and through the pitman connection F and rock-arm F⁴ will rock the shaft F', causing the rock-arms F² and F³ to depress the collar a of the chucks C beneath said arms, and thereby to open the jaws of said chucks. This 75 will allow the operator to place a button in one of said chucks, which as the arms F² and F³ are raised again by the further movement of the cam will be clamped firmly in position by the jaws of the chuck. Each rotation of 80 the shaft E' will cause the arm E to turn one of the arms B2 through a third of a revolution and the head B correspondingly. At the completion of this movement the dog F will engage with the notch in the periphery of 85 the head, drawing and holding said head in a position where that chuck C in which the button has just been placed will be exactly in line with the tool in the carrier on the head G. The movement of the head B is 90 accomplished during the fast part of the rotation of the shaft E', and the continued slower rotation of said shaft will cause the cam E⁵ to raise the spindle B' and lift the head B. This will carry the chuck C which is in line 95 with the tool upward into operative relation thereto, while the belt D will impart a rotary movement to said chuck. Thus if the chuck is rotated to carry the button in the direction indicated by the arrow in Fig. 9 it will cause 100 the edge of the tool between the points e' and e2 to cut into the button and shape it to the desired form, while that portion of the tool edge between the points e^2 and e^3 will scrape and smooth the shaped surface. After the 105 button is faced a further movement of the cam E5 will lower the head B, dropping the faced button away from the tool. The arm E on the shaft E' will then again come into engagement with one of the arms B2 and ro- 110 tate the head B through another third of a revolution, carrying the faced button into a position where the depression of the arm F2 will cause the opening of the chuck-jaws and allow the button to drop through the hollow 115 spindle of the chuck and into a suitable receptacle below the same. At every movement of the head B the head G will also be rotated through the gears B3 and G,2 which will carry the tool that has just operated 120 upon the button into a position where it can be operated upon by the grinding-wheel M. Each revolution of the head G will cause the rock-arm K on the post J' to strike against the post L, which will rock said arm and cause 125 the pawl K' carried thereby to turn the ratchet-wheel I' one or more notches. This will feed the sleeve I slightly downward upon the threaded spindle G'. The head J, however, being held from rotation will not be car- 130 ried down to the same degree as the sleeve I. but will allow said sleeve to feed downward therethrough. Thus the actual downward movement of the head J is only the difference

647,903

between the pitch of the inner and outer threads on the sleeve I. By this arrangement I am enabled to obtain an extremely fine feed of the tool, the head J pressing the sleeve d downward in the bearings c against the tension of the springs i. After each movement of the head G the lever E4 on the shaft E' will lift the weighted lever R' and through the medium of the link R, rock-arm Q², rock10 shaft Q, and rock-arm Q' will slide the head
N forward on the ways O, carrying the grinding-wheel M across the end of the tool e, while the weight on the lever R' will carry said grinding-wheel back again. This reciproca-15 tion of the grinding-wheel will cause the grinding off of the end of the tool to whatever degree said tool has been fed downward in the rotation of the head.

The tool may be ground to any desired an-20 gle by properly adjusting the position of the grinding wheel. Thus if the wheel is adjusted backward and upward the tool will be sharpened to a more acute angle, and if the wheel is adjusted forward and downward the 25 angle of grinding will be more obtuse. These adjustments may be readily made by means

of the adjusting-screws l and P'.

What I claim as my invention is-

1. In a button-facing machine, a feed for 30 the tool comprising the spindle or shaft screwthreaded, a sleeve engaging therewith, a head having a screw-threaded engagement upon the sleeve, the threads upon the interior and exterior of the sleeve being of slightly-different pitch, the tool, the head being connected to the tool, and driving means for the sleeve.

2. In a button-facing machine, the combination with a revoluble head having an intermittent rotational movement and provided 40 with a series of chucks, of a tool-holder having a complementary movement through a different orbit in a parallel plane, carrying a series of tools, means for registering a tool with a chuck and causing the tool and but-45 ton to contact and to separate after the button is faced and means for grinding the tool at an intermediate position in its movement.

3. In a button-facing machine, the combination with a revoluble head having an in-50 termittent rotational movement, a series of chucks thereon, a tool-holder having a complementary movement through a different orbit, a series of tools thereon, means for holding the tool-holder and the head stationary at 55 the point where the tool and chuck are alined, means for rotating the chuck, means for causing the chuck to approach the tool and to recede therefrom after the blank is faced and means for grinding the tool at an intermedi-

60 ate position of its movement.

4. In a button-facing machine the combination with the tool and a grinder therefor, of a revolving head for carrying said tool alternately to its working and its grinding positions, and means for feeding the tool com- 65 prising a tool-head, a differential screw connecting said tool and carrier heads and means for turning said screw slightly at each revolution of the carrier.

5. In a button-facing machine, the combi- 70 nation with the tool, a grinder therefor and a rotary head for carrying said tool alternately to its working and its grinding positions of feeding means for the tool comprising a central threaded shank on said carrier, a cen- 75 trally-apertured tool-head surrounding said shank, a sleeve having differential interior and exterior screw-threads engaging respectively with said shank and tool-head, a ratchetwheel on said sleeve, a pawl carried by said 80 carrier-head, and a stationary finger or stop adapted to actuate said pawl in each rotation of the carrier.

6. In a button-machine the combination of the rotary tool-carrying head, tool-holding 85 sleeves slidingly secured in bearings on diametrically-opposite sides of said head, a toolhead bearing on said sleeves and counteracting-springs on the sleeves, a central threaded spindle on the carrier-head, a feed-sleeve hav- 90 ing differential interior and exterior screwthreads respectively engaging with said spindle and tool-head, a ratchet-wheel on said sleeve, a pawl carried by said carrier-head and a stationary stop or finger by which said 95 pawl is adapted to be actuated in each rotation of the carrier.

7. In a button-facing machine, the combination with the tool of a rotary head carrying work-holding chucks, a vertical spindle for 100 said head having radial arms corresponding in number to the chucks, a variable-speed drive-shaft below said spindle carrying an arm thereon adapted to engage with said radial arms in the fast portion of the movement of 105 the shaft, and a cam adapted to raise said spindle in the slow movement of the shaft for the purpose described.

8. A button-facing tool having an edge adapted to extend completely across the face 110 of the button-blank and of similar contour on opposite sides of the center, one half of said edge forming a cutter and the other half a scraper.

In testimony whereof I affix my signature 115 in presence of two witnesses. WILHELM E. NAGEBORN.

Witnesses:

JAMES WHITTEMORE, OTTO F. BARTHEL.