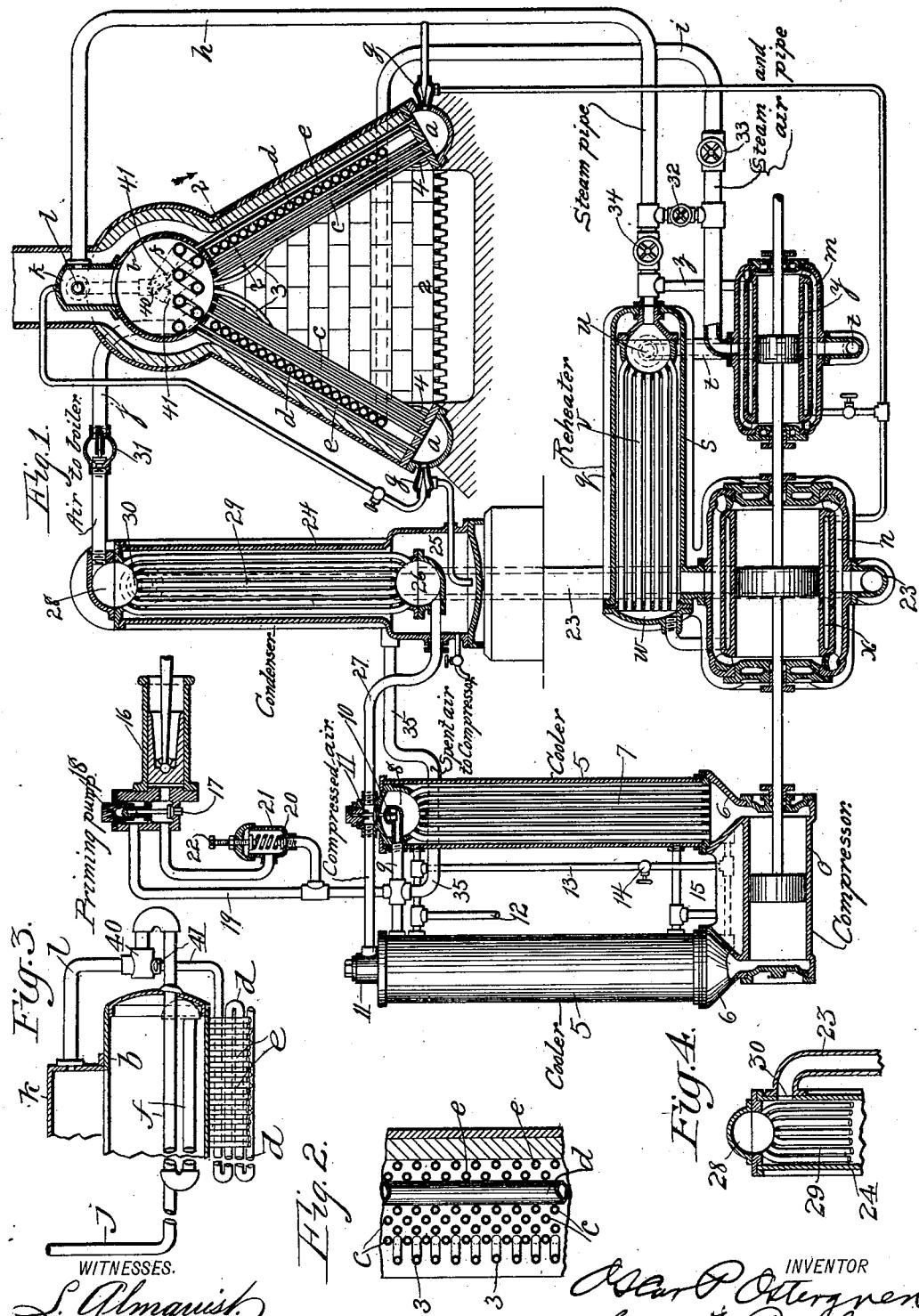


No. 676,685.


O. P. OSTERGREN.

Patented June 18, 1901.

METHOD OF UTILIZING THE LATENT HEAT OF STEAM IN STEAM POWER APPARATUS.

(Application filed June 19, 1900.)

(No Model.)

WITNESSES.
L. Almquist
C. Sedgwick

INVENTOR
Oscar P. Ostergren
by & T. P. Thayer
ATTY

UNITED STATES PATENT OFFICE.

OSCAR P. OSTERGREN, OF NEW YORK, N. Y., ASSIGNOR TO THE OSTERGREN MANUFACTURING COMPANY, OF NEW JERSEY.

METHOD OF UTILIZING THE LATENT HEAT OF STEAM IN STEAM-POWER APPARATUS.

SPECIFICATION forming part of Letters Patent No. 676,685, dated June 18, 1901.

Application filed June 19, 1900. Serial No. 20,807. (No model.)

To all whom it may concern:

Be it known that I, OSCAR P. OSTERGREN, a subject of the King of Sweden and Norway, and a resident of Bedford Park, borough of the Bronx, city and State of New York, have invented certain new and useful Improvements in Methods of Utilizing the Latent Heat of the Steam in Steam-Power Apparatus, of which the following is a specification.

10 My invention consists of an improved method of utilizing the latent heat of the steam for useful effect in steam-power apparatus.

15 Various contrivances of apparatus may be employed for carrying out the invention.

The form of apparatus that I have chosen for illustration in the present case is represented in the accompanying drawings, in which—

20 Figure 1 is mainly a sectional elevation of the apparatus; but some of the parts are represented in side view. Fig. 2 is a detail in section in the line 2 2, Fig. 1. Fig. 3 is a detail consisting of a vertical section through 25 the boiler to show the pipe connections more clearly. Fig. 4 is a detail consisting of a vertical section of the upper portion of the pre-heater and condenser to show the connection of the exhaust-pipe of the motor-engine.

30 The basis of the apparatus is a steam-generator, motor-engine and compressed-air heater, air-compressor, steam-condenser, mixer of the air and steam, and preferably a superheater.

35 The steam-generator, air-mixer, and superheater may of course be constructed in various ways; but the most desirable form at present developed consists of the A-shaped boiler, comprising the base-drums *a*; steam-drum *b*, two sets of inclined water-tubes *c*, respectively connected at their lower ends in the drums *a* and at their upper ends connected into the steam-drum *b*, two other sets of inclined water-tubes *e*, also connected at their lower ends

40 into the drums *a* and at their upper ends connected into the steam-drum *b*, also the two series of horizontal superheating-tubes *d*, intermediate of the tubes *c* *e* of each side, respectively, and also the coil of air-heating tubes *f* in the steam-drum. The tubes *c* of the inner rows are placed close together to

form a baffling-wall against the hot gases from the fire-grate 2 upward nearly to the steam-drum, where the alternate tubes of said row are deflected inward, as represented at 55 3, for passages through said wall, and the inner rows of said tubes *c* are more openly disposed for downward passage and for direct impingement of the gases on tubes *d*, and the outer tubes *e* are also separated for upward 60 passages. Alternate tubes of the inner rows of series *c* are also deflected inward at the bottom 4 to facilitate connection with the drums. Feed-water is injected into the drums *a* at *g* and circulates upwardly through 65 the tubes *c* into the steam-drum and downwardly through tubes *e*. The steam-pipe *h* takes steam away from the boiler directly, and pipe *i* takes combined steam and air from the superheating-tubes *d*, the compressed air being supplied thereto from the pipe *j* through the coil *f* in steam-drum *b*, and thence into tubes *d*, and steam enters coil *f* from the steam-dome *k* at *l*. 70

The motor-engine is in this case a tandem 75 compound comprising a high-pressure jacketed cylinder *m* and the low-pressure cylinder *n*, also jacketed, with an air-compressing cylinder *o* and piston directly connected on the same piston-rod. 80

A reheater for the exhaust-vapor from the high-pressure cylinder *m* is provided at *q* for heating said exhaust by live steam from the boiler before entering the low-pressure cylinder, which consists of the hollow cylinder 85 *s*, receiving the exhaust from cylinder *m* through pipe *t* and containing the live-steam-receiving head *u* at one end and a multitude of tubes *v*, discharging from said head into the collecting-chamber *w* at the other end, 90 from which the steam enters the jacket *x* of cylinder *n* through pipe *r*.

The jacket *y* of cylinder *m* is in connection with the steam-pipe *h* by the branch *z* for heating it by steam directly from the steam-drum. The water of condensation in the jackets is returned as feed-water to the boiler by one of the injectors *g*. 95

For combining compressed air with steam as a means of utilizing the latent heat of the steam for useful work, as before stated, an air-compressor is employed and with it a 100

heater for the compressed air for preheating the air by the exhaust-vapor of the motor-engine intermediately of the compressor and the boiler. Any form of compressor may be used; 5 but the one herein represented comprises the compressing-cylinder *o*, before mentioned, and a pair of coolers forming part of the compressing apparatus, as follows, said coolers consisting of the hollow cylinders *5*, set up 10 right on the funnel-mouths *6* of the cylinder-ports, respectively, and each containing a multitude of tubes *7*, communicating with a collecting-chamber *8* in the upper end of said cylinder, into which the air is received through 15 suction-pipe *9* and valve *10*. Water packing is employed in the cylinder and coolers in such quantity in each that the air will be forced out through the eduction-valves *11* alternately on its way to the preheater as the 20 piston arrives at the ends of its strokes, respectively. Cooling-water admitted through a supply-pipe *12* and discharged through pipe *15* circulates through the cylinders *5* around the tubes *7* for cooling the air to facilitate 25 compression. A pipe *13* connects with the supply-pipe for cooling-water and with the funnels *6* of the coolers to replenish the supply of packing-water from time to time as it may be reduced by absorption by the air. Said 30 pipe is controlled by a cock *14*. This form of compressor is particularly favorable for use as an element of my improved engine because of the isothermal distribution by the water packing of the heat generated by the 35 compression, whereby higher efficiency is obtained both in compressing and cooling.

A feed-pump *16* is connected with the suction-pipe *9* of the compressor. When starting the engine, the pump receives the air 40 through a suction-valve *17* and discharging it into the suction-pipe *9* of the compressor through eduction-valve *18* and pipe *19*. It is desirable that the pressure of air in the compressor be maintained at a certain limit, for 45 which a relief-valve *20* is attached to the pipe *19*, which is controlled by a spring *21*, provided with an adjusting-screw *22*, which may be set for escape of pressure above any predetermined point. Most of the air to be 50 compressed will, however, be recovered from the preheater, into which the exhaust of combined air and steam from the low-pressure cylinder is discharged through pipe *23*, this air being drawn by the suction of the compressor-pump *o* through pipe *35* into suction-pipe *9*, said pipe *35* being suitably connected with the preheater.

The preheater consists of the upright hollow cylinder *24*, having an enlargement of 60 the lower end for a hot-well *25* and containing in the upper part of said hot-well a receiving-chamber *26* for reception of the compressed air through discharge-pipe *27* of the compressor. The receiving-chamber *26* is 65 connected with a collecting-chamber *28* in the upper part of cylinder *24* by a multitude of tubes *29*, through which the compressed air

passes and which are surrounded by the exhaust from cylinder *n*, which enters at 30 near the upper end of cylinder *24*, passing 70 downward along the tubes in the opposite direction of the ascending air in the tubes. The cold air from the cooler condenses the steam, which gives up most of its heat, especially the latent heat, to the air and falls into 75 the hot-well *25* as water, from which it is returned to the boiler as feed-water by one of the injectors *g*. Some heat is also contributed by the hot air combined with and exhausting with the steam. The air thus compressed and 80 then heated, being in a gaseous state, expands in due proportion for every increment of heat absorbed, and thus converts the latent heat of the steam into power without any loss, while water either preheated or heated in the 85 boiler must first be supplied with its enormous proportion of latent heat before being endowed with effective power, the latent heat going to waste without contributing effective force. The air thus heated enters the superheating-coil *f* through pipe *j*, in which is a check-valve *31*, preventing backflow, and steam enters along with the air issuing from coil *f* at 40, and they enter the superheaters *e* together through branches *41* and mix 95 therein.

When starting the engine, live steam from the pipe *h* is first admitted to cylinder *m* through valve *32* in a connecting-passage between steam-pipe *h* and the combined steam and air pipe *i*, valve *33* in the latter pipe being closed. This serves to operate the engine until a sufficient amount of air is accumulated in the system by means of the feed-pump *16* and compressor for the proper working of the engine, backflow from the boiler being in the meantime prevented by the check-valve *31*. When air-pressure has accumulated sufficiently in the compressor and preheater to pass check-valve *31* into the generator, valve *32* is to be closed and valve *33* opened for the regular operation of the engine. Valve *34*, admitting live steam into the preheater *q* and the steam-jackets of the cylinders, may be opened to begin with. The 115 air after being compressed isothermally will first absorb all available heat from the exhaust-vapors and will then in passing through the tubes *f* in the steam-drum rise to the temperature of the surrounding steam, and therefrom will branch out, along with the steam entering from the steam-drum through pipe *1*, into the two systems of superheating-tubes *e*, where the steam and air will be more thoroughly mixed and superheated for greater 120 efficiency before entering the motor-engine.

Whatever waste of heat there is in this engine is what is carried away in the cooling-water of the compressor in preparing the compressed air to take up the heat of the exhaust-vapors, no part of which is wasted, provided the preheater be properly insulated, and which, including the latent heat, is largely in excess of that expended in the cooling-

water and manifestly greater than the power expended in compressing the air.

Good results may be had without the superheater in the steam-generator, and the invention is not therefore limited to the use of it; but greater efficiency is obtained by the use of it. Nor is the invention limited to the use of a reheater intermediate of the high and low pressure cylinders of the motor-engine.

What I claim as my invention is—

1. The method of utilizing the latent heat of the exhaust-steam of a steam-engine for useful effect in said engine, which consists in using air or other gaseous body together with steam as the motor fluid, condensing the spent steam and transferring the heat given up in the condensation of said spent steam to such gaseous body, and injecting said body into the boiler as a vehicle for re-

turning said heat thereto for further useful effect in said engine.

2. The method of utilizing the latent heat of the exhaust-steam of a steam-engine for useful effect in said engine, which consists in using air or other gaseous body, together with the steam as the motor fluid, condensing the spent steam, recooling and compressing the gaseous body separated from the condensed steam, and using it for effecting the condensation and for recovering the heat thereof, and returning said reheated gaseous body to the boiler for use together with the steam in the engine.

Signed at New York city this 13th day of June, 1900.

OSCAR P. OSTERGREN.

Witnesses:

C. SEDGWICK,
J. M. HOWARD.