1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 46 Number 2, February 1998

Table of Contents for this issue

Complete paper in PDF format

Computation of Electromagnetic Waves Diffraction by Spectral Moments Method

Driss Chenouni, Zakia Lakhliai, Claude Benoit, Gérard Poussigue, and Abdallah Sakout

Page 165.

Abstract:

In this paper, we solve, for the first time, electromagnetic wave propagation equations in heterogeneous media using the spectral moments method. This numerical method, first developed in condensed matter physics, was recently successfully applied to acoustic waves propagation simulation in geophysics. The method requires the introduction of an auxiliary density function, which can be calculated by the moments technique. This allows computation of the Green's function of the whole system as a continued fraction in time Fourier domain. The coefficients of the continued fraction are computed directly from the dynamics matrix obtained by discretization of wave propagation equations and from the sources and receivers. We illustrate this method through the study of a plane wave diffraction by a slit in two-dimensional (2-D) media and by a rectangular aperture in three-dimensional (3-D) media. Comparison with analytical results obtained with the Kirchhoff theory shows that this method is a very powerful tool to solve propagation equations in heterogeneous media. Last, we present a brief comparison with other computing methods.

References

  1. A. Taflove and Umashankar, "Finite element and finite difference methods in electromagnetic scattering," in Pier 2, M. A. Morgan, Ed.Amsterdam, The Netherlands: Elsevier, 1990, ch. 8.
  2. G. Mur, "Absorbing boundary conditions for the finite-difference approximations of the time-domain electromagnetic field equations," IEEE Trans. Electromagn. Compat., vol. EMC-23, pp. 377-382, Nov.1981.
  3. J. P. Berenger, "A perfectly matched layer for absorption of electromagnetic wave," J. Comput. Phys., vol. 114, no. 12, pp. 185-200, Oct. 1994.
  4. D. S. Katz, E. T. Thiele, and A. Taflove, "Validation and extention to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes," IEEE Microwave Guided Wave Lett., vol. 10, pp. 268-270, Aug. 1994.
  5. R. F. Harrington, Field Computation by Moment Methods.New York: Macmillan, 1968.
  6. S. M. Rao, D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., vol. AP-30, pp. 409-418, May 1982.
  7. E. W. Montroll, "Frequency spectrum of crystalline solids," J. Chem. Phys., vol. 10, pp. 218-229, 1942.
  8. C. Blumstein and J. C. Wheeler, "Modified-moments method: Application to harmonic solids," Phys. Rev. B., vol. 8, no. 4, pp. 1764-1776, Aug. 1973.
  9. J. C. Wheeler, M. G. Prais, and C. Blumstein, "Analysis of spectral density using the modified moments," Phys. Rev. B, vol. 10, no. 6, pp. 2429-2447, Sept. 1974.
  10. C. Benoit, "An analysis of the frequency distribution function and dielectric and scattering properties, using the orthogonalised-moments method," J. Phys. C: Solid State Phys., vol. 20, no. 6, pp. 765-789, Feb. 1987.
  11. --, "Determination of the inelastic neutron scattering cross section by the spectral moments method: Application to incommensurate crystal and quasi-crystal," J. Phys. Condens. Matter, vol. 1, no. 2, pp. 335-345, Jan. 1989.
  12. C. Benoit, G. Poussigue, and A. Assaf, "Dynamic and scattering properties of the Sierpinski gasket," J. Phys. Condens. Matter, vol. 4, no. 12, pp. 3153-3177, Mar. 1992.
  13. E. Royer, C. Benoit, and G. Poussigue, "Numerical study of dynamical properties of very large percolating cluster in d-dimensions (2 <= d <= 6)," in High Performance Computing II, M. Durand and F. El Dabaghi, Eds.North Holland, The Netherlands: Elsevier, 1991, pp. 513-524.
  14. --, "Dynamic of percolating networks," J. Phys. Condens. Matter, vol. 4, no. 2, pp. 561-569, Jan. 1992.
  15. A. Rahmani, C. Benoit, E. Royer-Vilanova, and G. Poussigue, "Vibrational properties of random percolating networks," J. Phys. Condens. Matter, vol. 5, no. 43, pp. 7941-7954, Oct. 1993.
  16. A. Rahmani, C. Benoit, and G. Poussigue, "A fractal model for silica aerogels," J. Phys. Condens. Matter, vol. 6, no. 8, pp. 1483-1496, Feb. 1994.
  17. G. Poussigue, C. Benoit, J. L. Sauvajol, J. P. Lere-Porte, and C. Chorro, "Dynamics of polythiophene with defects," J. Phys. Condens. Matter, vol. 3, no. 45, pp. 8803-8824, Nov. 1991.
  18. C. Benoit, G. Poussigue, and A. Azougarh, "Neutron scattering by phonons in quasicrystal," J. Phys. Condens. Matter, vol. 2, no. 11, pp. 2519-2536, Mar. 1990.
  19. G. Poussigue, C. Benoit, M. de Boissieu, and R. Currat, "Inelastic neutron scattering by quasicrystals: A model for icosahedral Al-Mn; for Al-Mn-Pd comparison with the experimental results," J. Phys. Condens. Matter, vol. 6, no. 3, pp. 659-678, Jan. 1994.
  20. C. Benoit, "The moments method and damped systems," J. Phys. Condens. Matter, vol. 6, no. 17, pp. 3137-3160, Jan. 1994.
  21. J. P. Gaspard and F. Cyrot-Lackmann, "Density of states from moments. Application to the impurity band," J. Phys. C: Solid-State Phys., vol. 6, no. 21, pp. 3077-3093, Oct. 1973.
  22. P. Lambin and J. P. Gaspard, "Continued-fraction technique for tight-binding systems: A generalized-moments method," Phys. Rev. B, vol. 26, no. 8, pp. 4356-4368, Oct. 1982.
  23. P. Turchi, F. Ducastelle, and G. Treglia, "Band gaps and asymptotic behavior of continued fraction coefficients," J. Phys. C: Solid-State Phys., vol. 15, no. 13, pp. 2891-2924, May 1982.
  24. E. Jurczek, "Orthogonalized-moments method," Phys. Rev. B, vol. 32, no. 6, pp. 4208-4211, Sept. 1985.
  25. C. Lanczos, "An iteration method for the solution of the eigenvalue problem of linear differential and integral operators," J. Res. Nat. Bur. Stand., vol. 45, pp. 255-282, 1950.
  26. R. Haydock, "The recursive solution of the Schrödinger equation," in Solid-State Phys., H. Ehrenreich, F. Seitz, and D. Turnbull, Eds.London, U.K.: Academic, 1980, vol. 35, pp. 216-294.
  27. C. Benoit, E. Royer, and G. Poussigue, "The spectral moments method," J. Phys.: Condens. Matter, vol. 4, no. 12, pp. 3125-3152, Mar. 1992.
  28. T. J. Stieltjes, "Quelques recherches sur la theorie des quadratures dites mécaniques," Ann. Ecole Normale, 3^irc serie Tome 1, pp. 409-460, 1884.
  29. V. Rousseau, C. Benoit, R. Bayer, M. Cuer, and G. Poussigue, "Elastic wave-propagation simulation in heterogeneous media by the spectral moments method," Geophys., vol. 61, no. 5, pp. 1269-1281, Sept. 1996.
  30. C. Benoit, G. Poussigue, V. Rousseau, Z. Lakhliai, and D. Chenouni, "Determination of the Green functions with large nonsymmetric matrices by moments method," Modeling Simul. Mater. Sci. Eng., vol. 3, pp. 161-185, Apr. 1995.
  31. J. D. Jackson, Classical Electrodynamics.New York: Wiley, 1962.
  32. E. Royer, "Etude numerique de la méthode des moments spectraux et application aux reseaux de percolation," Ph.D. dissertation, Univ. Montpellier, France, 1992.
  33. F. R. Gantmacher, Theorie des Matrices, J. Gabay, Ed.Paris, France: Dunod, 1966.
  34. E. Isaacson and H. B. Keller, Analysis of Numerical Methods.New York: Wiley, 1966.
  35. N. Akhieser, The Classical Moment Problem.Edinburg, U.K.: Oliver-Boyd, 1965.
  36. M. Born and E. Wolf, Principales of Optics.Oxford, U.K.: Pergamon, 1956.
  37. G. Poussigue, C. Benoit, D. Chenouni, and Z. Lakhliai, "Détermination par la méthode des moments spectraux de la diffraction des ondes électromagnétiques par un cylindre diélectrique de section circulaire ou carrée," C. R. Acad. Sci. Paris, t. 322, Série II.b, pp. 733-740, May 1996.
  38. Z. Lakhliai, D. Chenouni, C. Benoit, G. Poussigue, M. Brunet, S. Quentel, and A. Sakout, "Numerical study of electromagnetic wave propagation in twisted birefringent layers by the spectral moments method," Modeling Simul. Mater. Eng., vol. 4, pp. 597-611, Dec. 1996.