1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 46 Number 3, March 1998

Table of Contents for this issue

Complete paper in PDF format

Time-Domain Sensing of Targets Buried Under a Rough Air-Ground Interface

Traian Dogaru, Student Member, IEEE, and Lawrence Carin, Senior Member, IEEE

Page 360.

Abstract:

We consider plane wave time-domain scattering from a fixed target in the presence of a rough (random) surface with application to ground penetrating radar. The time-domain scattering data are computed via a two-dimensional (2-D)finite-difference time-domain (FDTD) algorithm. In addition to examining the statistics of the time-domain fields scattered from such a surface, we investigate subsurface target detection by employing a (commonly used) matched-filter detector. The results of such a detector are characterized by their receiver operating characteristic (ROC), which quantifies the probability of detection and probability of false alarm. Such ROC studies allow us to investigate fundamental assumptions in the matched-filter detector: that the target response is deterministic and the clutter signal stochastic, with the two signals treated as additive and independent.

References

  1. A. Ishimaru, Wave Propagation and Scattering in Random Media.New York: Academic, 1978.
  2. F. D. Hastings, J. B. Schneider, and S. L. Broschat, "A Monte-Carlo FDTD technique for rough surface scattering," IEEE Trans. Antennas Propagat., vol. 43, pp. 1183-1191, Nov. 1995.
  3. G. S. Brown, "The validity of shadowing corrections in rough surface scattering," Radio Sci., vol. 19, pp. 1461-1468, 1984.
  4. --, "A new approach to the analysis of rough surface scattering," IEEE Trans. Antennas Propagat., vol. 39, pp. 943-948, July 1991.
  5. E. I. Thorso and D. R. Jackson, "The validity of the perturbation approximation for rough surface scattering using a Gaussian roughness spectrum," J. Acoust. Soc. Amer., vol. 86, pp. 261-277, 1989.
  6. L. Tsang, S. H. Lou, C. H. Chan, and A. Ishimaru, "Application of the finite element method to Monte Carlo simulations of scattering of waves by random rough surfaces with the periodic boundary condition," J. Electron. Waves Appl., vol. 5, pp. 835-855, Aug. 1991.
  7. E. I. Thorsos, "The validity of the Kirchoff approximation for rough surface scattering using a Gaussian roughness spectrum," J. Acoust. Soc. Am., vol. 83, pp. 78-92, 1988.
  8. R. Devayya and D. H. Wingham, "The numerical calculation of rough surface scattering by the conjugate gradient method," IEEE Trans. Geosci. Remote Sensing, vol. 30, pp. 645-648, Mar. 1992.
  9. R. Collin, "Electromagnetic scattering from perfectly conducting rough surfaces using a new full-wave method," IEEE Trans. Antennas Propagat., vol. 40, pp. 1466-1477, Dec. 1992.
  10. S. Vitebskiy and L. Carin, "Moment-method modeling of short-pulse scattering from and the resonances of a wire buried inside a lossy, dispersive half space," IEEE Trans. Antennas Propag., vol. 43, pp. 1303-1312, Nov. 1995.
  11. S. Vitebskiy, K. Sturgess, and L. Carin, "Short-pulse scattering from buried perfectly conducting bodies of revolution," IEEE Trans. Antennas Propagat., vol. 44, pp. 143-151, Feb. 1996.
  12. S. Vitebskiy and L. Carin, "Resonances of perfectly conducting wires and bodies of revolution buried in a lossy, dispersive half space," IEEE Trans. Antennas Propagat., vol. 44, pp. 1575-1583, Dec. 1996.
  13. L. Peters, J. J. Daniels, and J. D. Young, "Ground penetrating radar as a subsurface environmental sensing tool," Proc. IEEE, vol. 82, pp. 1802-1822, Dec. 1994.
  14. J. M. Bourgeois and G. S. Smith, "A fully three-dimensional simulation of a ground-penetrating radar: FDTD theory compared with experiment," IEEE Trans. Geosci. Remote Sensing, vol. 34, pp. 36-44, Jan. 1996.
  15. P. E. Wannamaker, G. W. Hohmann, and W. A. San Filipo, "Electromagnetic modeing of three-dimensional bodies in layered earths using integral equations," Geophys., vol. 49, pp. 60-74, Jan. 1984.
  16. D. L. Moffatt and R. J. Puskar, "A subsurface electromagnetic pulse radar," Geophys., vol. 41, pp. 506-518, June 1976.
  17. S. Vitebskiy, L. Carin, M. Ressler, and F. Le, "Ultra-wideband, short-pulse ground-penetrating radar: Simulation and measurement," IEEE Trans. Geosci. Remote Sensing, to be published.
  18. M. A. Ressler and J. W. McCorkle, "Evolution of the Army Research Laboratory ultra-wideband test bed," in Ultra-Wideband Short-Pulse Electromagnetics--2, L. Carin and L. B. Felsen, Eds.New York: Plenum, 1995, pp. 109-123.
  19. S. L. Earp, E. S. Hughes, T. J. Elkins, and R. Vickers, "Ultra-wideband ground-penetrating radar for the detection of buried metallic mines," IEEE Aerosp. Electron. Syst. Soc. Mag., pp. 30-34, 1996.
  20. H. L. Van Trees, Detection, Estimation, and Modulation Theory.New York: Wiley, 1968.
  21. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell s equations in isotropic media," IEEE Trans. Antennas Propagat., vol. AP-14, pp. 302-307, May 1966.
  22. K. S. Kunz and R. J. Luebbers, The Finite-Difference Time-Domain Method for Electromagnetics.Boca Raton, FL: CRC, 1993.
  23. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method.Norwood, MA: Artech House, 1995.
  24. D. E. Merewether, R. Fisher, and F. W. Smith, "On implementing a numerical Huygens surface in a finite difference program to illuminate scattering bodies," IEEE Trans. Nucl. Sci., vol. NS-27, pp. 1829-1833, Dec. 1980.
  25. T.-T. Hsu and L. Carin, "FDTD analysis of plane-wave diffraction from microwave devices on an infinite dielectric slab," IEEE Microwave Guided Wave Lett., vol. 6, pp. 16-18, Jan. 1996.
  26. K. Demarest, Z. Huang, and R. Plumb, "An FDTD near-to-far-zone transformation for scatterers buried in stratified grounds," IEEE Trans. Antennas Propagat., vol. AP-44, pp. 1150-1157, Aug. 1996.
  27. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., vol. 114, pp. 185-200, Oct. 1994.
  28. J. Fang and Z. Wu, "Generalized perfectly matched layer an extension of Berengers perfectly matched layer boundary condition," IEEE Microwave Guided Wave Lett., vol. 5, pp. 451-453, Dec. 1995.
  29. Z. Wu and J. Fang, "Numerical implementation and performance of perfectly matched layer boundary condition for waveguide structures," IEEE Trans. Microwave Theory Tech., vol. 43, pp. 2676-2683, Dec. 1995.
  30. R. L. Higdon, "Absorbing boundary conditions for difference approximations to the multi-dimensional wave equations," Math. Comput., vol. 47, no. 176, pp. 437-459, Oct. 1986.
  31. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves.Englewood Cliffs, NJ: Prentice-Hall, 1973.
  32. L. B. Felsen and F. Niu, "Spectral analysis and synthesis options for short-pulse radiation from a point dipole in a grounded dielectric layer," IEEE Trans. Antennas Propagat., vol. 41, pp. 747-754, June1993.
  33. P. G. Petropoulos, "Stability and phase error analysis of FDTD in dispersive dielectrics," IEEE Trans. Antennas Propagat., vol. 42, pp. 62-69, Jan. 1994.
  34. P. G. Petropoulos, "Phase error control for FDTD methods of second and fourth order accuracy," IEEE Trans. Antennas Propagat., vol. 42, pp. 859-862, June 1994.
  35. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 2nd ed.New York: McGraw-Hill, 1984.
  36. L. Franks, Signal Theory.Englewood Cliffs, NJ: Prentice-Hall, 1969.
  37. S. Haykin, Adaptive Filter Theory, 3rd ed.Englewood Cliffs, NJ: Prentice-Hall, 1996.
  38. J. E. Hipp, "Soil electromagnetic parameters as functions of frequency, soil density, and soil moisture," Proc. IEEE, vol. 62, pp. 98-103, Jan. 1974.
  39. A. Dubey, I. Cindrich, J. M. Ralston, and K. Rigano, Eds., "Detection technologies for mines and minelike targets," in SPIE Proc., Orlando, FL, Apr. 1995, vol. 2496.
  40. K. O'Neil, R. F. Lussky, Jr., and K. D. Paulsen, "Scattering from a metallic object embedded near the randomly rough surface of a lossy dielectric," IEEE Trans. Geosci. Remote Sensing, vol. 34, pp. 367-376, Mar. 1996.
  41. Y. Miyazaki, "Statistical refelection properties of an electromagnetic pulse by buried objects in random media using the FDTD," in Proc. Int. Symp. Antennas Propagat., Chiba, Japan, Sept. 1996.