1998 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Antennas and Propagation
Volume 46 Number 3, March 1998
Table of Contents for this issue
Complete paper in PDF format
Time-Domain Sensing of Targets Buried Under a Rough Air-Ground Interface
Traian Dogaru, Student Member, IEEE, and Lawrence Carin, Senior Member, IEEE
Page 360.
Abstract:
We consider plane wave time-domain scattering from a fixed
target in the presence of a rough (random) surface with application to
ground penetrating radar. The time-domain scattering data are computed
via a two-dimensional (2-D)finite-difference time-domain (FDTD)
algorithm. In addition to examining the statistics of the time-domain
fields scattered from such a surface, we investigate subsurface target
detection by employing a (commonly used) matched-filter detector. The
results of such a detector are characterized by their receiver operating
characteristic (ROC), which quantifies the probability of detection and
probability of false alarm. Such ROC studies allow us to investigate
fundamental assumptions in the matched-filter detector: that the target
response is deterministic and the clutter signal stochastic, with the
two signals treated as additive and independent.
References
-
A. Ishimaru, Wave Propagation and Scattering in
Random Media.New York: Academic, 1978.
-
F. D. Hastings, J. B. Schneider, and S. L. Broschat, "A
Monte-Carlo FDTD technique for rough surface scattering,"
IEEE Trans. Antennas Propagat., vol.
43, pp. 1183-1191, Nov. 1995.
-
G. S. Brown, "The validity of shadowing corrections in rough
surface scattering," Radio
Sci., vol. 19, pp. 1461-1468, 1984.
-
--, "A new approach to the analysis of rough surface
scattering," IEEE Trans. Antennas
Propagat., vol. 39, pp. 943-948, July
1991.
-
E. I. Thorso and D. R. Jackson, "The validity of the
perturbation approximation for rough surface scattering using a Gaussian
roughness spectrum," J. Acoust. Soc.
Amer., vol. 86, pp. 261-277, 1989.
-
L. Tsang, S. H. Lou, C. H. Chan, and A. Ishimaru,
"Application of the finite element method to Monte Carlo
simulations of scattering of waves by random rough surfaces with the
periodic boundary condition," J. Electron. Waves
Appl., vol. 5, pp. 835-855, Aug. 1991.
-
E. I. Thorsos, "The validity of the Kirchoff approximation
for rough surface scattering using a Gaussian roughness spectrum,"
J. Acoust. Soc. Am., vol. 83, pp.
78-92, 1988.
-
R. Devayya and D. H. Wingham, "The numerical calculation of
rough surface scattering by the conjugate gradient method,"
IEEE Trans. Geosci. Remote Sensing,
vol. 30, pp. 645-648, Mar. 1992.
-
R. Collin, "Electromagnetic scattering from perfectly
conducting rough surfaces using a new full-wave method,"
IEEE Trans. Antennas Propagat., vol.
40, pp. 1466-1477, Dec. 1992.
-
S. Vitebskiy and L. Carin, "Moment-method modeling of
short-pulse scattering from and the resonances of a wire buried inside a
lossy, dispersive half space," IEEE Trans.
Antennas Propag., vol. 43, pp. 1303-1312, Nov.
1995.
-
S. Vitebskiy, K. Sturgess, and L. Carin, "Short-pulse
scattering from buried perfectly conducting bodies of revolution,"
IEEE Trans. Antennas Propagat., vol.
44, pp. 143-151, Feb. 1996.
-
S. Vitebskiy and L. Carin, "Resonances of perfectly
conducting wires and bodies of revolution buried in a lossy, dispersive
half space," IEEE Trans. Antennas
Propagat., vol. 44, pp. 1575-1583, Dec.
1996.
-
L. Peters, J. J. Daniels, and J. D. Young, "Ground
penetrating radar as a subsurface environmental sensing tool,"
Proc. IEEE, vol. 82, pp.
1802-1822, Dec. 1994.
-
J. M. Bourgeois and G. S. Smith, "A fully three-dimensional
simulation of a ground-penetrating radar: FDTD theory compared with
experiment," IEEE Trans. Geosci. Remote
Sensing, vol. 34, pp. 36-44, Jan. 1996.
-
P. E. Wannamaker, G. W. Hohmann, and W. A. San Filipo,
"Electromagnetic modeing of three-dimensional bodies in layered
earths using integral equations,"
Geophys., vol. 49, pp. 60-74,
Jan. 1984.
-
D. L. Moffatt and R. J. Puskar, "A subsurface electromagnetic
pulse radar," Geophys., vol.
41, pp. 506-518, June 1976.
-
S. Vitebskiy, L. Carin, M. Ressler, and F. Le,
"Ultra-wideband, short-pulse ground-penetrating radar: Simulation
and measurement," IEEE Trans. Geosci. Remote
Sensing, to be published.
-
M. A. Ressler and J. W. McCorkle, "Evolution of the Army
Research Laboratory ultra-wideband test bed," in
Ultra-Wideband Short-Pulse
Electromagnetics--2, L. Carin and L. B. Felsen,
Eds.New York: Plenum, 1995, pp. 109-123.
-
S. L. Earp, E. S. Hughes, T. J. Elkins, and R. Vickers,
"Ultra-wideband ground-penetrating radar for the detection of
buried metallic mines," IEEE Aerosp. Electron.
Syst. Soc. Mag., pp. 30-34, 1996.
-
H. L. Van Trees, Detection, Estimation, and
Modulation Theory.New York: Wiley,
1968.
-
K. S. Yee, "Numerical solution of initial boundary value
problems involving Maxwell s equations in isotropic media,"
IEEE Trans. Antennas Propagat., vol.
AP-14, pp. 302-307, May 1966.
-
K. S. Kunz and R. J. Luebbers, The
Finite-Difference Time-Domain Method for
Electromagnetics.Boca Raton, FL: CRC,
1993.
-
A. Taflove, Computational Electrodynamics: The
Finite-Difference Time-Domain Method.Norwood,
MA: Artech House, 1995.
-
D. E. Merewether, R. Fisher, and F. W. Smith, "On
implementing a numerical Huygens surface in a finite difference program
to illuminate scattering bodies," IEEE Trans.
Nucl. Sci., vol. NS-27, pp. 1829-1833, Dec.
1980.
-
T.-T. Hsu and L. Carin, "FDTD analysis of plane-wave
diffraction from microwave devices on an infinite dielectric
slab," IEEE Microwave Guided Wave
Lett., vol. 6, pp. 16-18, Jan. 1996.
-
K. Demarest, Z. Huang, and R. Plumb, "An FDTD
near-to-far-zone transformation for scatterers buried in stratified
grounds," IEEE Trans. Antennas
Propagat., vol. AP-44, pp. 1150-1157, Aug.
1996.
-
J. P. Berenger, "A perfectly matched layer for the absorption
of electromagnetic waves," J. Comput.
Phys., vol. 114, pp. 185-200, Oct. 1994.
-
J. Fang and Z. Wu, "Generalized perfectly matched layer an
extension of Berengers perfectly matched layer boundary
condition," IEEE Microwave Guided Wave
Lett., vol. 5, pp. 451-453, Dec. 1995.
-
Z. Wu and J. Fang, "Numerical implementation and performance
of perfectly matched layer boundary condition for waveguide
structures," IEEE Trans. Microwave Theory
Tech., vol. 43, pp. 2676-2683, Dec. 1995.
-
R. L. Higdon, "Absorbing boundary conditions for difference
approximations to the multi-dimensional wave equations,"
Math. Comput., vol. 47, no. 176, pp.
437-459, Oct. 1986.
-
L. B. Felsen and N. Marcuvitz, Radiation and
Scattering of Waves.Englewood Cliffs, NJ:
Prentice-Hall, 1973.
-
L. B. Felsen and F. Niu, "Spectral analysis and synthesis
options for short-pulse radiation from a point dipole in a grounded
dielectric layer," IEEE Trans. Antennas
Propagat., vol. 41, pp. 747-754,
June1993.
-
P. G. Petropoulos, "Stability and phase error analysis of
FDTD in dispersive dielectrics," IEEE Trans.
Antennas Propagat., vol. 42, pp. 62-69, Jan.
1994.
-
P. G. Petropoulos, "Phase error control for FDTD methods of
second and fourth order accuracy," IEEE Trans.
Antennas Propagat., vol. 42, pp. 859-862, June
1994.
-
A. Papoulis, Probability, Random Variables, and
Stochastic Processes, 2nd ed.New York:
McGraw-Hill, 1984.
-
L. Franks, Signal
Theory.Englewood Cliffs, NJ: Prentice-Hall,
1969.
-
S. Haykin, Adaptive Filter
Theory, 3rd ed.Englewood Cliffs, NJ:
Prentice-Hall, 1996.
-
J. E. Hipp, "Soil electromagnetic parameters as functions of
frequency, soil density, and soil moisture,"
Proc. IEEE, vol. 62, pp.
98-103, Jan. 1974.
-
A. Dubey, I. Cindrich, J. M. Ralston, and K. Rigano, Eds.,
"Detection technologies for mines and minelike targets," in
SPIE Proc., Orlando, FL, Apr. 1995,
vol. 2496.
-
K. O'Neil, R. F. Lussky, Jr., and K. D. Paulsen, "Scattering
from a metallic object embedded near the randomly rough surface of a
lossy dielectric," IEEE Trans. Geosci. Remote
Sensing, vol. 34, pp. 367-376, Mar. 1996.
-
Y. Miyazaki, "Statistical refelection properties of an
electromagnetic pulse by buried objects in random media using the
FDTD," in Proc. Int. Symp. Antennas
Propagat., Chiba, Japan, Sept. 1996.