1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 46 Number 3, March 1998

Table of Contents for this issue

Complete paper in PDF format

A Method of Moments Approach for the Efficient and Accurate Modeling of Moderately Thick Cylindrical Wire Antennas

Douglas H. Werner, Senior Member, IEEE

Page 373.

Abstract:

This paper introduces a moment-method formulation, which is capable of accurately modeling moderately thick cylindrical wire antennas. New algorithms are presented for the efficient computation of the cylindrical wire kernel and related impedance matrix integrals. These algorithms make use of exact series representations as well as efficient numerical procedures and lead to a significant reduction in overall computation time for thicker wires. Another major advantage of this moment-method technique is that it is no longer restricted by the segment length-to-radius ratio limitations inherent in past formulations, thereby making it possible to achieve solution convergence for a much wider class of wire antenna structures. Several examples illustrating the superior convergence properties of this new moment-method formulation are presented and discussed.

References

  1. K. K. Mei, "On the integral equations of thin wire antennas," IEEE Trans. Antennas Propagat., vol. AP-13, pp. 374-378, May 1965.
  2. R. W. P. King, "The linear antenna--Eighty years of progress," Proc. IEEE, vol. 55, pp. 2-16, Jan. 1967.
  3. C. M. Butler and D. R. Wilton, "Analysis of various numerical techniques applied to thin-wire scatterers," IEEE Trans. Antennas Propagat., vol. AP-23, pp. 534-540, July 1975.
  4. R. F. Harrington, Field Computation by Moment Methods.New York: Macmillan, 1968.
  5. R. H. Duncan and F. A. Hinchey, "Cylindrical antenna theory," J. Research, vol. 64D, no. 5, pp. 569-584, Sept./Oct. 1960.
  6. R. W. P. King and T. T. Wu, "The thick tubular transmitting antenna," Radio Sci., vol. 2, no. 9, pp. 1061-1065, Sept. 1967.
  7. D. C. Chang, "On the electrically thick cylindrical antenna," Radio Sci., vol. 2, no. 9, pp. 1043-1060, Sept. 1967.
  8. P. G. Rogers and M. W. Gunn, "An entire-domain Galerkin analysis of the moderately thick dipole," IEEE Trans. Antennas Propagat., vol. AP-28, pp. 117-121, Jan. 1980.
  9. C. D. Taylor and D. R. Wilton, "The extended boundary condition solution of the dipole antenna of revolution," IEEE Trans. Antennas Propagat., vol. AP-20, pp. 772-776, Nov. 1972.
  10. P. C. Waterman, "New formulation of acoustic scattering," J. Acoust. Soc. Amer., vol. 45, pp. 1417-1429, June 1969.
  11. Y. S. Yeh and K. K. Mei, "Theory of conical equiangular-spiral antennas: Part I--Numerical technique," IEEE Trans. Antennas Propagat., vol. AP-15, pp. 634-639, Sept. 1967.
  12. E. K. Miller and F. J. Deadrick, "Some computational aspects of thin-wire modeling," in Numerical and Asymptotic Techniques in Electromagnetics, R. Mittra, Ed.New York: Springer-Verlag, 1975, pp. 89-127.
  13. G. J. Burke and A. J. Poggio, "Numerical electromagnetics code (NEC)--Method of moments," Rep. NOSC TD 116, Lawrence Livermore Lab., Livermore, CA, Jan. 1981.
  14. D. H. Werner, J. A. Huffman, and P. L. Werner, "Techniques for evaluating the uniform current vector potential at the isolated singularity of the cylindrical wire kernel," IEEE Trans. Antennas Propagat., vol. 42, pp. 1549-1553, Nov. 1994.
  15. --, "Analytical and numerical methods for evaluating electromagnetic field integrals associated with current-carrying wire antennas," in Advanced Electromagnetism: Foundations, Theory, Applications, T. W. Barrett and D. M. Grimes, Eds.Singapore: World Scientific, 1995, pp. 682-762.
  16. S.-O. Park and C. A. Balanis, "Efficient kernel calculation of cylindrical antennas," IEEE Trans. Antennas Propagat., vol. 43, pp. 1328-1331, Nov. 1995.
  17. D. H. Werner and V. Fotopolous, "An efficient technique for self-term evaluation of the uniform current vector potential integrals," J. Electromagn. Waves Applicat., vol. 10, pp. 1595-1600, 1996.
  18. D. H. Werner, "An exact formulation for the vector potential of a cylindrical antenna with uniformly distributed current and arbitrary radius," IEEE Trans. Antennas Propagat., vol. 41, pp. 1009-1018, Aug. 1993.
  19. D. H. Werner, P. L. Werner, J. A. Huffman, A. J. Ferraro, and J. K. Breakall, "An exact solution of the generalized exponential integral and its application to moment method formulations," IEEE Trans. Antennas Propagat., vol. 41, pp. 1716-1719, Dec. 1993.
  20. D. H. Werner, "Author's reply to the comments of A. E. Gera," IEEE Trans. Antennas Propagat., vol. 42, pp. 1201-1202, Aug. 1994.
  21. E. K. Miller, "Admittance dependence of the infinite cylindrical antenna upon exciting gap thickness," Radio Sci., vol. 2, no. 12, pp. 1431-1435, Dec. 1967.
  22. R. A. Hurd and J. Jacobsen, "Admittance of an infinite cylindrical antenna with realistic gap field," Electron. Lett., vol. 4, no. 19, pp. 420-421, Sept. 1968.
  23. F. M. Tesche, "The effect of the thin-wire approximation and the source gap model on the high-frequency integral equation solution of radiating antennas," IEEE Trans. Antennas Propagat., vol. AP-20, pp. 210-211, Mar. 1972.
  24. T. Do-Nhat and R. H. MacPhie, "The static electric field distribution between two semi-infinite circular cylinders: A model for the feed gap of a dipole antenna," IEEE Trans. Antennas Propagat., vol. AP-35, pp. 1273-1280, Nov. 1987.
  25. D. J. J. van Rensburg and D. A. McNamara, "On quasistatic source models for wire dipole antennas," Microwave Opt. Technol. Lett., vol. 3, no. 11, pp. 396-398, Nov. 1990.
  26. G. P. Junker, A. A. Kishk, and A. W. Glisson, "A novel delta gap source model for center fed cylindrical dipoles," IEEE Trans. Antennas Propagat., vol. 43, pp. 537-540, May 1995.
  27. G. P. Junker, A. W. Glisson, and A. A. Kishk, "On the stability of simple voltage source models for the study of mutual coupling effects," in 12th Annu. Rev. Progress Appl. Comput. Electromagn., Monterey, CA, Mar. 1996, pp. 842-847.
  28. R. W. P. King, Table of Antenna Characteristics.New York: IFI/Plenum, 1971.
  29. J. A. Huffman, "Numerical modeling of current-carrying wire antennas using exact expressions for the vector potential and electric field integrals," Ph.D. dissertation, Dept. Elect. Eng., The Pennsylvania State Univ., University Park, PA, May 1995.
  30. W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flannery, Numerical Recipes in Fortran, The Art of Scientific Computing, 2nd ed.New York: Cambridge Univ. Press, 1992.