1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 46 Number 3, March 1998

Table of Contents for this issue

Complete paper in PDF format

Electric Lines of Force of an Electrically Small Dipole-Loop Antenna Array

P. L. Overfelt

Page 451.

Abstract:

The electric lines of force of an electrically small dipole-loop antenna array have been determined analytically for both the near- and far-fields of the array. It has been found that the behavior of the families of electric contours are dependent upon a coupling parameter, which is the ratio of the loop and dipole sizes and currents. This parameter also controls the appearance (or not) and position of the points of equilibrium for the radiated field when analyzed in a real phase plane. The electric lines of force of the dipole-loop array exhibit increased directivity in the plane of the array when the coupling parameter is purely real, indicating that the respective dipole and loop currents must be in phase quadrature for this effect to occur.

References

  1. K. Fujimoto, A. Henderson, K. Hirasawa, and J. R. James, Small Antennas.New York: Wiley, 1987.
  2. S. K. Khamas, G. G. Cook, S. P. Kingsley, R. C. Woods, and N. M. Alford, "Investigation of the enhanced efficiencies of small superconducting loop antennas," J. Appl. Phys., vol. 74, p. 2914, 1993.
  3. G. G. Cook, S. K. Khamas, D. R. Bowling, P. L. Overfelt, and L. Hageman, "Predictions of the efficiencies of superconducting small antennas above lossy groundplanes using a Sommerfeld integral technique," J. Appl. Phys., vol. 76, p. 1266, 1994.
  4. A. P. Pischke and H. Chaloupka, "Electrically small superconducting planar radiating elements for arrays," in 22nd Eur. Microwave Conf. Proc., Helsinki, Finland, 1992.
  5. D. M. Grimes, "Quantum theory: The classical theory of nonlinear electromagnetics," Phys. D, vol. 32, p. 1, 1988.
  6. --, "Quantum theory and classical nonlinear electronics," Phys. D, vol. 20, p. 285, 1986.
  7. C. A. Grimes and D. M. Grimes, "A small antenna with aerospace application," in Aerosp. Appl. Conf. Dig., Crested Butte, CO, Feb. 1991, no. 3, pp. 1-10 (Session II).
  8. D. M. Grimes and C. A. Grimes, "Bandwidth and Q of antennas radiating TE and TM modes," IEEE Trans. Electromagn. Compat., vol. 37, p. 217, May 1995.
  9. C. A. Grimes and D. M. Grimes, "Small antenna configurations: Implementation promises and problems," in IEEE Int. Symp. Electromagn. Compat. Symp. Rec., Aug. 1995, pp. 92-96.
  10. L. J. Chu, "Physical limitations on omnidirectional antennas," J. Appl. Phys., vol. 19, p. 1163, 1948.
  11. R. F. Harrington, "Effect of antenna size on gain, bandwidth, and efficiency," J. Res. Nat. Bur. Stand., vol. 64D, p. 1, 1960.
  12. H. A. Wheeler, "Fundamental limitations of small antennas," Proc. IRE, vol. 35, p. 1479, 1947.
  13. --, "The radiansphere around a small antenna," in Proc. IRE, vol. 47, p. 1325, 1959.
  14. P. L. Overfelt, D. R. Bowling, and D. J. White, "A collocated magnetic loop, electric dipole array antenna (preliminary results)," NAWCWPNS Tech. Pub. 8212, China Lake, CA, Sept. 1994.
  15. P. L. Overfelt, "Electric lines of force of an electrically small mixed mode array antenna," NAWCWPNS Tech. Pub. 8372, China Lake, CA, Oct. 1997.
  16. J. S. McLean, "The application of the method of moments to the analysis of electrically small `compound' antennas," in IEEE Int. Symp. Electromagn. Compat. Symp. Rec., Aug. 1995, pp. 119-124.
  17. D. J. White, D. R. Bowling, and P. L. Overfelt, "Active impedance matching for superdirective supergain HTS antenna arrays," NAWCWPNS Tech. Pub. 8249, China Lake, CA, Apr. 1995.
  18. D. R. Bowling, private communication, 1995.
  19. W. R. Smythe, Static and Dynamic Electricity.New York: McGraw-Hill, 1950, pp. 7-10, 547.
  20. F. E. Borgnis and C. H. Papas, "Electromagnetic waveguides and resonators," in Encyclopedia of Physics, S. Flugge, Ed.Berlin, Germany: Springer-Verlag, 1958, vol. XVI, pp. 317-318.
  21. H. T. H. Piaggio, An Elementary Treatise on Differential Equations and Their Applications.London, U.K.: Bell, 1933, chs. 11, 12.
  22. G. W. Bluman and J. D. Cole, Similarity Methods for Differential Equations.New York: Springer-Verlag, 1974, pp. 74-77.
  23. P. Lorraine and D. R. Corson, Electromagnetic Fields and Waves.San Francisco, CA: Freeman, 1970, ch. 14.
  24. W. Leighton, Ordinary Differential Equations.Belmont, CA: Wadsworth, 1970, chs. 2, 8, 13.