1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 46 Number 6, June 1998

Table of Contents for this issue

Complete paper in PDF format

Theoretical Analysis of UHF Propagation in a City Street Modeled as a Random Multislit Waveguide

Reuven Mazar, Alexander Bronshtein, and I.-Tai Lu, Senior Member, IEEE

Page 864.

Abstract:

In this work, we perform an analysis of a channel for the UHF wave propagation in the city street. The street is modeled as a planar multislit waveguide with screens and slits distributed by a Poisson law. Statistical propagation characteristics in such a waveguide can be expressed in terms of multiple ray fields approaching the observer along a direct ray and the rays reflected by the waveguide walls. The corresponding average field and intensity distributions can be transformed into the sums of mode-like solutions using the Poisson summation formula. Numerical examples are presented and compared with the experimental data.

References

  1. J. Walfisch and H. L. Bertoni, "A theoretical model of UHF propagation in urban environments," IEEE Trans. Antennas Propagat., vol. 36, pp. 1788-1796, Dec. 1989.
  2. H. L. Bertony, W. Honcharenko, L. R. Maciel, and H. H. Xia, "UHF propagation prediction for wireless personal communications," Proc. IEEE, vol. 82, pp. 1333-1359, Sept. 1994.
  3. E. Green, "Radio link design for microcellular systems," Brit. Telecommun. Technol. J., vol. 8, pp. 85-86, 1990.
  4. U. Dersh and E. Zollinger, "Propagation mechanisms in microcell and indoor environments," IEEE Trans. Veh. Technol., vol. 43, pp. 1058-1066, Nov. 1994.
  5. L. R. Maciel, H. L. Bertoni, and H. H. Xia, "Unified approach to prediction of propagation over buildings for all ranges of base station antenna height," IEEE Trans. Veh. Technol., vol. 42, pp. 41-45, Feb. 1993.
  6. A. J. Rustako, N. Amitay, G. J. Owens, and R. S. Roman, "Radio propagation at microwave frequencies for line-of-sight microcellular mobile and personal communications," IEEE Trans. Veh. Technol., vol. 40, pp. 203-210, Feb. 1991.
  7. F. Ikegami, T. Takeuchi, and S. Yoshida, "Theoretical prediction of mean field strength for urban mobile radio," IEEE Trans. Antennas Propagat., vol. 39, pp. 299-302, Mar. 1991.
  8. G. Lampard and T. Vu-Dihn, "The effect of terrain on radion propagation in urban microcells," IEEE Trans. Veh. Technol., vol. 42, pp. 314-317, Aug. 1993.
  9. S. Y. Tan and H. S. Tan, "UTD propagation model in an urban street scene for microcellular communications," IEEE Trans. Electromagn. Compat., vol. 35, pp. 423-428, Nov. 1993.
  10. A. J. Goldsmith and L. J. Greenstein, "A measurement-based model for predicting coverage areas of urban microcells," IEEE J. Select. Areas Commun., vol. 11, pp. 1013-1023, July 1993.
  11. M. C. Lawton and J. P. McGeehan, "The application of deterministic ray launching algorithm for the prediction of radio channel characteristics in small-cell environments," IEEE Trans. Veh. Technol., vol. 43, pp. 955-969, Nov. 1994.
  12. H. H. Xia, H. L. Bertoni, L. R. Maciel, A. Lindsay-Stewart, and R. Row, "Radio propagation characteristics for line-of-sight microcellular and personal communications," IEEE Trans. Antennas Propagat., vol. 40, pp. 1439-1447, Oct. 1993.
  13. K. A. Hughes, "Mobile propagation in London at 936 MHz," Electron. Lett., vol. 18, pp. 141-143, 1982.
  14. P. Harley, "Short distances attenuation measurements at 900 MHZ and 1.8 GHz using low antenna heights for microcells," IEEE J. Select. Areas Commun., vol. 7, pp. 5-11, Jan. 1989.
  15. N. Blaunstein and M. Levin, "VHF/UHF wave attenuation in a city with regularly spaced buildings," Radio Sci., vol. 31, no. 2, pp. 313-323, 1996.
  16. R. Mazar and A. Bronshtein, "Propagation model of a city street for personal and microcellular communications," Electron. Lett., vol. 33, no. 1, pp. 91-93, 1997.
  17. L. B. Felsen and A. H. Kamel, "Hybrid ray-mode formulation of parallel plane waveguide Green's functions," IEEE Trans. Antennas Propagat., vol. AP-29, pp. 637-649, Apr. 1981.
  18. R. Mazar and B. Katz, "Ray-mode analysis of a random medium waveguide," J. Acoust. Soc. Amer., vol. 95, no. 4, pp. 2495-2504, 1994.
  19. J. B. Keller, "Geometric theory of diffraction," J. Opt. Soc. Amer., vol. 52, pp. 116-130, 1957.
  20. L. B. Felsen and N. Marcuwitz, Radiation and Scattering of Waves.Englewood Cliffs, NJ: Prentice Hall, 1973.
  21. R. G. Kouyooumjian and P. H. Pathak, "A uniform theory of diffraction for and edge in a perfectly conducting surface," Proc. IEEE, vol. 62, pp. 1448-1461, Nov. 1974.
  22. C. A. Borovikov and B. E. Kinber, Geometrical Theory of Diffraction.London, U.K.: Inst. Elect. Eng., 1978, vol. 37 (Electromagn. Waves Ser.).
  23. R. C. Hansen, Ed., Geometric Theory of Diffraction.New York: IEEE, 1981.
  24. V. I. Klyatskin, Stochastic Equations and Waves in Randomly Inhomogeneous Media.Moscow, Russia: Nauka, 1980 (in Russian).
  25. W. C. Y. Lee, Mobile Communications Engineering.New York: McGraw-Hill, 1982.
  26. D. S. Ahluwalia and J. B. Keller, "Wave propagation and underwater acoustics," in Lecture Notes in Physics, J. B. Keller and J. S. Papadakis, Eds.Berlin, Germany: Springer-Verlag, 1977, vol. 20.
  27. B. Z. Katzenelenbaum, "Diffraction on a plane mirror at the break point in a wide waveguide," Radiotech. Electron., vol. 7, pp. 1111-1119, 1963 (in Russian).