1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 46 Number 7, July 1998

Table of Contents for this issue

Complete paper in PDF format

Electromagnetic Resonances of Immersed Dielectric Spheres

Chi-Chih Chen, Member, IEEE

Page 1074.

Abstract:

The complex natural resonances (CNR) for lossless dielectric spheres in a lossless dielectric medium are investigated. Significant differences between the external and internal resonances are presented. The external resonances are related to the external creeping waves and the internal resonances to the internally reflected waves. The internal resonances are more important in practice because of their smaller damping factors. Simple physical interpretation for predicting the resonance behavior of a general dielectric sphere is obtained.

References

  1. L. Peters and W. G. Swarner, "Approximations for dielectric or plasma scatters," Proc. IEEE, vol. 53, pp. 882-892, Aug. 1965.
  2. H. M. Nussenzveig, "High-frequency scattering by a transparent sphere--Part I: Direct reflection and transmission; Part II: Theory of the rainbow and the glory," J. Math. Phys., vol. 10, pp. 82-177, Jan. 1969.
  3. W. Franz, "Uber die Greenschen funktionen des zylinders und der kugel," Z. Naturforsch., vol. A-9, pp. 705-716, 1954.
  4. G. V. Frisk, J. W. Dickey, and H. Überall, "Surface wave modes on elastic cylinders," J. Acoust. Soc. Amer., vol. 58, pp. 996-1008, Nov. 1975.
  5. G. V. Frisk and H. Überall, "Creeping waves and lateral waves in acoustic scattering by large elastic cylinders," J. Acoust. Soc. Amer., vol. 59, pp. 46-53, Jan. 1976.
  6. A. Ashkin and J. M. Dziedzic, "Observation of optical resonances of dielectric spheres by light scattering," J. Appl. Optics, vol. 20, pp. 1803-1814, May 1981.
  7. T. S. Fahlen and H. C. Bryant, "Direct observation of surface waves on water droplets," J. Optical Soc. Amer., vol. 56, pp. 1635-1636, Nov. 1966.
  8. Y. M. Chen, "Diffraction by a smooth transparent object," J. Math. Phys., vol. 5, pp. 820-832, June 1964.
  9. W. Franz and P. Beckmann, "Creeping waves for objects of finite conductivity," IRE Trans. Antennas Propagat., vol. AP-4, pp. 203-208, 1956.
  10. L. C. Chan, D. L. Moffatt, and L. Peters, "A characterization of subsurface radar targets," Proc. IEEE, vol. 67, pp. 991-1000, July 1979.
  11. P. Barber, J. F. Owen, and R. K. Chang, "Resonant scattering for characterization of axisymmetric dielectric objects," IEEE Trans. Antennas Propagat., vol. AP-30, pp. 168-172, Mar. 1982.
  12. H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering.Cambridge, U.K.: Cambridge Univ. Press, 1992.
  13. P. R. Conwell, P. W. Barber, and C. K. Rushforth, "Resonant spectra of dielectric spheres," J. Acoust. Soc. Amer., vol. 1, pp. 62-67, Jan. 1984.
  14. R. F. Harrington, Time-harmonic Electromagnetic Fields.New York: McGraw-Hill, 1961, p. 294.
  15. L. R. Dragonette and L. Flax, "Relation between creeping waves and normal modes of vibration of a curved body," J. Acoust. Soc. Amer., vol. 61, pp. 711-715, Mar. 1977.
  16. R. F. Harrington, Time-harmonic Electromagnetic Fields.New York: McGraw-Hill, 1961, pp. 269-270.
  17. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.New York: Dover, 1972.
  18. C.-C. Chen, "Design and development of ground penetrating radar systems for the detection and classification of unexploded ordnances and land mines," Ph.D. dissertation, Ohio State Univ., Columbus, Aug. 1997.
  19. H. A. Haus, Waves and Fields in Optoelectronics.Englewood Cliffs, NJ: Prentice-Hall, 1984, p. 127.
  20. R. F. Harrington, Time-harmonic Electromagnetic Fields.New York: McGraw-Hill, 1961, pp. 292-298.
  21. H. C. van de Hulst, Light Scattering by Small Particles.New York: Wiley, 1957.