1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 46 Number 11, November 1998

Table of Contents for this issue

Complete paper in PDF format

An FDTD Formulation for Dispersive Media Using a Current Density

Qing Chen, Makoto Katsurai, and Paul H. Aoyagi

Page 1739.

Abstract:

A novel finite-difference time-domain (FDTD) formulation for dispersive media called the JE convolution (JEC) method is derived using the convolution relationship between the current density {{J}} and the electric field {{E}}. The high accuracy of the JEC method is confirmed by computing the reflection and transmission coefficients for a nonmagnetized plasma slab in one dimension. It is found that the new method has accuracy comparable to the auxiliary differential equation (ADE) while having the same computational efficiency as the less accurate recursive convolution (RC) method. Numerical simulations also show that the JEC method exhibits significantly higher accuracy than the RC method in modeling wave attenuation inside the plasma.

References

  1. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., vol. 14, pp. 302-307, 1966.
  2. A. Taflove and M. E. Brodwin, "Numerical solution of steady-state electromagnetic scatting problems using the time-dependent Maxwell's equations," IEEE Trans. Microwave Theory Tech., vol. 23, pp. 623-630, 1975.
  3. A. Taflove and K. R. Umashankar, "The finite-difference time-domain method for numerical modeling of electromagnetic wave interactions," Electomagn., vol. 10, pp. 105-126, 1990.
  4. G. Mur, "Absorbing boundary conditions for finite-difference approximation of time-domain electromagnetic-field equation," IEEE Trans. Electomagn. Compat., vol. 23, pp. 377-382, 1981.
  5. R. J. Luebbers, F. Hunsberger, and K. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. Antennas Propagat., vol. 39, pp. 29-34, 1991.
  6. R. J. Luebbers, F. Hunsberger, K. Kunz, and R. Standler, "A frequency-dependent finite difference time-domain formulation for dispersive materials," IEEE Trans. Electomagn. Compat., vol. 32, pp. 22-227, 1990.
  7. K. Kunz and R. J. Luebbers, The Finite-Difference Time-Domain Method for Electromagnetics.Boca Raton, FL: CRC, 1993.
  8. R. J. Luebbers, D. Steich, and K. Kunz, "FDTD calculation of scattering from frequency-dependent materials," IEEE Trans. Antennas Propagat., vol. 41, pp. 1249-1257, 1993.
  9. F. Hunsberger, R. J. Luebbers, and K. Kunz, "Finite-difference time-domain analysis of gyrotropic media I: Magnetized plasma," IEEE Trans. Antennas Propagat., vol. 40, pp. 1489-1495, 1992.
  10. R. J. Luebbers and F. Hunsberger, "FDTD for Nth-order dispersive media," IEEE Trans. Antennas Propagat., vol. 40, pp. 1297-1301, 1992.
  11. R. J. Hawkins and J. S. Kallman, "Linear electronic dispersion and finite-difference time-domain calculations: A simple approach," J. Lightwave Technol., vol. 11, pp. 1872-1874, Nov. 1993.
  12. R. Siushansian and J. LoVetri, "A comparison of numerical techniques for modeling electromagnetic dispersive media," IEEE Microwave Guided Wave Lett., vol. 5, pp. 426-428, 1995.
  13. D. F. Kelley and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. Antennas Propagat., vol. 44, pp. 792-797, 1996.
  14. T. Kashiwa, N. Y. Yoshida, and I. Fukai, "Transient analysis of a magnetized plasma in three-dimensional space," IEEE Trans. Antennas Propaga., vol. 36, pp. 1096-1105, 1988.
  15. T. Kashiwa and I. Fukai, "A treatment by FDTD method of dispersive characteristics associated with electronic polarization," Microwave Opt. Technol. Lett., vol. 3, pp. 203-205, 1990.
  16. T. Kashiwa and I. Fukai, "A treatment by FDTD method of dispersive characteristics associated with orientation polarization," IEEE Trans. Inst. Electron., Inform., Commun. Eng., vol. 73, pp. 1326-1328, 1990.
  17. M. D. Bui, S. S. Stuchly, and G. I. Costache, "Propagation of transients in dispersive dielectric media," IEEE Trans. Microwave Theory Technol., vol. 39, pp. 1165-1171, 1991.
  18. R. M. Joseph, S. C. Hangness, and A. Taflove, "Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulse," Opt. Lett., vol. 16, pp. 1412-1414, 1991.
  19. O. P. Gandhi, B.-Q. Gao, and T.-Y. Chen, "A frequency-dependent finite-difference time-domain formulation for general dispersive media," IEEE Trans. Microwave Theory Technol., vol. 41, pp. 658-664, 1993.
  20. A. Taflove, Computational Electrodynamics--The Finite-Difference Time-Domain Method.Norwood, MA: Artech House, 1995.
  21. L. J. Nickisch and P. M. Franke, "Finite-difference time-domain solution of Maxwell's equations for the dispersive ionosphere," IEEE Antennas Propagat. Mag., vol. 34, pp. 33-39, Oct. 1992.
  22. D. M. Sullivan, "Frequency-dependent FDTD methods using Z transforms," IEEE Trans. Antennas Propagat., vol. 40, pp. 1223-1230, 1992.
  23. J. L. Young, "A full finite difference time domain implementation for radio wave propagation in a plasma," Radio Sci., vol. 29, pp. 1513-1522, 1994.
  24. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing.New York: Wiley, 1994.
  25. T. Sekigochi, The Principle of Modern Plasma.Tokyo, Japan: Ohmu, 1979 (in Japanese).
  26. M. Tanaga and K. Nishigawa, Physics of High Temperature Plasma.Tokyo, Japan: Maruzen, 1991 (in Japanese).
  27. W. C. Chew, Waves and Fields in Inhomogeneous Media.New York: Van Nostrand Reinhold, 1990.