1998 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Antennas and Propagation
Volume 46 Number 11, November 1998
Table of Contents for this issue
Complete paper in PDF format
An FDTD Formulation for Dispersive Media Using a Current Density
Qing Chen, Makoto Katsurai, and Paul H. Aoyagi
Page 1739.
Abstract:
A novel finite-difference time-domain (FDTD) formulation
for dispersive media called the JE convolution (JEC) method is derived
using the convolution relationship between the current density
{{J}} and the electric field {{E}}. The
high accuracy of the JEC method is confirmed by computing the reflection
and transmission coefficients for a nonmagnetized plasma slab in one
dimension. It is found that the new method has accuracy comparable to
the auxiliary differential equation (ADE) while having the same
computational efficiency as the less accurate recursive convolution (RC)
method. Numerical simulations also show that the JEC method exhibits
significantly higher accuracy than the RC method in modeling wave
attenuation inside the plasma.
References
-
K. S. Yee, "Numerical solution of initial boundary value
problems involving Maxwell's equations in isotropic media,"
IEEE Trans. Antennas Propagat., vol.
14, pp. 302-307, 1966.
-
A. Taflove and M. E. Brodwin, "Numerical solution of
steady-state electromagnetic scatting problems using the time-dependent
Maxwell's equations," IEEE Trans. Microwave
Theory Tech., vol. 23, pp. 623-630, 1975.
-
A. Taflove and K. R. Umashankar, "The finite-difference
time-domain method for numerical modeling of electromagnetic wave
interactions," Electomagn.,
vol. 10, pp. 105-126, 1990.
-
G. Mur, "Absorbing boundary conditions for finite-difference
approximation of time-domain electromagnetic-field equation,"
IEEE Trans. Electomagn. Compat., vol.
23, pp. 377-382, 1981.
-
R. J. Luebbers, F. Hunsberger, and K. Kunz, "A
frequency-dependent finite-difference time-domain formulation for
transient propagation in plasma," IEEE Trans.
Antennas Propagat., vol. 39, pp. 29-34,
1991.
-
R. J. Luebbers, F. Hunsberger, K. Kunz, and R. Standler, "A
frequency-dependent finite difference time-domain formulation for
dispersive materials," IEEE Trans. Electomagn.
Compat., vol. 32, pp. 22-227, 1990.
-
K. Kunz and R. J. Luebbers, The Finite-Difference
Time-Domain Method for Electromagnetics.Boca
Raton, FL: CRC, 1993.
-
R. J. Luebbers, D. Steich, and K. Kunz, "FDTD calculation of
scattering from frequency-dependent materials,"
IEEE Trans. Antennas Propagat., vol.
41, pp. 1249-1257, 1993.
-
F. Hunsberger, R. J. Luebbers, and K. Kunz,
"Finite-difference time-domain analysis of gyrotropic media I:
Magnetized plasma," IEEE Trans. Antennas
Propagat., vol. 40, pp. 1489-1495, 1992.
-
R. J. Luebbers and F. Hunsberger, "FDTD for
Nth-order dispersive
media," IEEE Trans. Antennas
Propagat., vol. 40, pp. 1297-1301, 1992.
-
R. J. Hawkins and J. S. Kallman, "Linear electronic
dispersion and finite-difference time-domain calculations: A simple
approach," J. Lightwave
Technol., vol. 11, pp. 1872-1874, Nov.
1993.
-
R. Siushansian and J. LoVetri, "A comparison of numerical
techniques for modeling electromagnetic dispersive media,"
IEEE Microwave Guided Wave Lett.,
vol. 5, pp. 426-428, 1995.
-
D. F. Kelley and R. J. Luebbers, "Piecewise linear recursive
convolution for dispersive media using FDTD,"
IEEE Trans. Antennas Propagat., vol.
44, pp. 792-797, 1996.
-
T. Kashiwa, N. Y. Yoshida, and I. Fukai, "Transient analysis
of a magnetized plasma in three-dimensional space,"
IEEE Trans. Antennas Propaga., vol.
36, pp. 1096-1105, 1988.
-
T. Kashiwa and I. Fukai, "A treatment by FDTD method of
dispersive characteristics associated with electronic
polarization," Microwave Opt. Technol.
Lett., vol. 3, pp. 203-205, 1990.
-
T. Kashiwa and I. Fukai, "A treatment by FDTD method of
dispersive characteristics associated with orientation
polarization," IEEE Trans. Inst. Electron.,
Inform., Commun. Eng., vol. 73, pp. 1326-1328,
1990.
-
M. D. Bui, S. S. Stuchly, and G. I. Costache, "Propagation of
transients in dispersive dielectric media," IEEE
Trans. Microwave Theory Technol., vol. 39, pp.
1165-1171, 1991.
-
R. M. Joseph, S. C. Hangness, and A. Taflove, "Direct time
integration of Maxwell's equations in linear dispersive media with
absorption for scattering and propagation of femtosecond electromagnetic
pulse," Opt. Lett., vol. 16,
pp. 1412-1414, 1991.
-
O. P. Gandhi, B.-Q. Gao, and T.-Y. Chen, "A
frequency-dependent finite-difference time-domain formulation for
general dispersive media," IEEE Trans. Microwave
Theory Technol., vol. 41, pp. 658-664,
1993.
-
A. Taflove, Computational
Electrodynamics--The Finite-Difference Time-Domain
Method.Norwood, MA: Artech House, 1995.
-
L. J. Nickisch and P. M. Franke, "Finite-difference
time-domain solution of Maxwell's equations for the dispersive
ionosphere," IEEE Antennas Propagat.
Mag., vol. 34, pp. 33-39, Oct. 1992.
-
D. M. Sullivan, "Frequency-dependent FDTD methods using
Z transforms," IEEE Trans. Antennas
Propagat., vol. 40, pp. 1223-1230, 1992.
-
J. L. Young, "A full finite difference time domain
implementation for radio wave propagation in a plasma,"
Radio Sci., vol. 29, pp.
1513-1522, 1994.
-
M. A. Lieberman and A. J. Lichtenberg, Principles
of Plasma Discharges and Materials
Processing.New York: Wiley, 1994.
-
T. Sekigochi, The Principle of Modern
Plasma.Tokyo, Japan: Ohmu, 1979 (in
Japanese).
-
M. Tanaga and K. Nishigawa, Physics of High
Temperature Plasma.Tokyo, Japan: Maruzen,
1991 (in Japanese).
-
W. C. Chew, Waves and Fields in Inhomogeneous
Media.New York: Van Nostrand Reinhold,
1990.